

Pairing effects in nuclear reactions

Denis Lacroix

IPN Orsay

Outline:

- Generalities on time-dependent energy density functional theory
- Time-dependent mean-field with pairing
- Collective motion in nuclear
- Reaction mechanisms: transfer reaction and fission

Coll: G. Scamps, Y. Tanimura

Ultimate Goals : give a unified description of nuclear structure and reactions provide predictive theory in explored and unexplored region of nuclear chart

Status of TD-EDF

Symmetry unrestricted simulations

State of the art functional consistent with nuclear structure

Kim, Otsuka, Bonche, J. Phys.G23, (1997). Nakatsukasa, Yabana, PRC71, (2005). Maruhn, Reinhard, Stevenson, Stone, Strayer, PRC71 (2005). Umar and Oberacker, PRC71, (2005). Simenel, Avez, Int. J. Mod. Phys. E17, (2008). Washiyama, Lacroix PRC78, (2008). Gao-Feng et al PRCC90, (2014).

Challenges : beyond the independent particle picture

Shape coexistence

We know that pairing affects dynamic

Two-nucleon transfer

Difficulty -interaction -number of particles (mesoscopic)

Nuclear reaction on a mesh

TDHF is a standard tool $|\Phi_i
angle$: Slater

$$i\hbar \frac{d\rho}{dt} = [h(\rho), \rho]$$
 Single-particle evolution

Simenel, Lacroix, Avez, arXiv:0806.2714v2

Introduction of pairing: TDHFB

$$i\hbar \frac{d}{dt}\mathcal{R} = [\mathcal{H}(\mathcal{R}), \mathcal{R}] \qquad \qquad \mathcal{R} = \begin{pmatrix} \rho & \kappa \\ -\kappa^* & 1-\rho \end{pmatrix}$$

Quasi-particle evolution

(Active Groups: France, US, Japan...)

BCS limit of TDHFB (also called Canonical basis TDHFB)

TDHFB = 1000 * (TDHF)

Neglect Δ_{ij} $|\Phi(t)\rangle = \prod_{k>0} \left(u_k(t) + v_k(t) a_k^{\dagger}(t) a_{\overline{k}}^{\dagger}(t) \right) |-\rangle.$

TDHFB is very demandingStetcu, Bulgac, Magierski, and Roche, PRC 84 (2011)Reasonable results for collective motionEbata, Nakatsukasa et al, PRC82 (2010)Sometimes more predictive than TDHFBScamps, Lacroix, Bertsch, Washiyama, PRC85 (2012)

Anticipated pairing effects: outline of coming applications

Small amplitude motion: mono-nuclear system

Static/quasi-static effects

Proper ground state deformations

Dynamical effects

Onset of new collective modes (Giant Pairing Vib)

Large amplitude motion: di-nuclear system

Direct dynamical effects

Large scale study of giant quadrupole resonances

Systematic study of isoscalar and isovector GQR in

Spherical (1)

30

- Axially deformed nuclei (||)
- **Triaxial nuclei** (|||)

Detailed study of deformation effects

Benchmark with existing QRPA theory

QRPA: Yoshida, Nakatsukasa, PRC88 (2013)

Pairing effect on nuclear collective motion

Extraction of the density dependence of the symmetry energy

Systematic in deformed nuclei: fragmentation and damping

54 triaxial nuclei

Scamps, Lacroix, arXiv:1401.5211

Nuclear reactions with pairing

Heavy-Ion collisions

How does it look like from a time-dependent point of view?

(Courtesy G. Scamps)

Transfer reaction below the Coulomb barrier

Use projection technique on good particle number

Simenel; PRL105 (2010). Sekizawa, Yabana PRC 90, 064614 (2014) Scamps, Lacroix, PRC 87 (2013).

Extract one, two, ... nucleons transfer probabilities

 P_{1n}, P_{2n}, \dots

Dynamics with pairing: Results on Ca+Ca reactions

Enhancement of the pair transfer probability

First conclusion

 P_{1n}, P_{2n}, \dots

Link between pairing strength and pairing gap:

Strong beam energy dependence

Scamps, Lacroix, PRC 87 (2013)

Corradi et al, Phys. Rev. C 84 (2011)

(Other effects are important!)

Prospective in the time-dependent description of fission with pairing

Scamps Simenel, Lacroix, arxiv:1501.03592 Tanimura, Lacroix, Scamps, arxiv:1505.05647

Fission with TD-EDF without pairing

Simenel, Umar, PRC C89 (2014). Goddard, Stevenson, Rios, arxiv:1504:001909

Strong interplay between structure and dynamic

- TD-EDF does not follow the adiabatic path
- Existence of a spontaneous fission threshold at larger deformation than the fission barrier

Still, information on fission can be obtained

Fission with TD-EDF with pairing

Improve the threshold anomaly

Allows to consider the fission of superfluid nuclei

Fission of superfluid ²⁵⁸Fm

Beyond the independent quasi-particle picture: ongoing work

Need to describe configuration mixing and its propagation

Our objective: use the stochastic mean-field approach to describe fission Life, D.

Lacroix, Ayik, EPJA (Review) 50 (2014)

First step: extract from TD-EDF, Information on selected degrees of freedom

We recently developed a general scheme to deduce collective momenta, collective masses, ... from TD-EDF

Tanimura, Lacroix, Scamps, arxiv:1505.05647

Bongole Moment Quilby

-1870

-1880 -1890 -1900

-1910

.1920

.1930 1940

