Study of cluster structures in 10Be and 16C neutron-rich nuclei via break-up reactions

Daniele Dell’Aquila
Università degli studi di Napoli “Federico II” & INFN – Sezione di Napoli for the CHIMERA Collaboration

dellaquila@na.infn.it
Exotic structures in light nuclei

- Clustering in non self-conjugated nuclei;
- The state of art of 10Be and 16C nuclei structure;

Exotic structures in light nuclei

- Exotic beam production and tagging at INFN-LNS: The FRIBs facility;
- The 4π CHIMERA multi-detector array;
- Helium break-up of self-conjugated nuclei as experimental test;

Experimental results

- 4He-6He correlations: the 10Be structure;
- 6He-10Be correlations: the 16C structure;

Conclusions and future perspectives
Exotic structures in light nuclei: an interesting scenario

Complexity of nuclear force → **dominant** phenomena of nucleon-nucleon **correlations** which determine a spatial re-organization of the nucleons in bounded **sub-units** → the **constituent clusters**.
The ^{10}Be case

AMD+VAP calculations → high deformation in GS → [1] → $K^\pi=0^+$ rotational band [2]

High $\alpha-\alpha$ cluster distance [3] → strong **molecular structure** → $K^\pi=0^+$ **molecular band** built on the 6.1793 MeV [4] state

The 10Be case

Rotational band in dimeric structure \rightarrow very interesting case

<table>
<thead>
<tr>
<th>J</th>
<th>J(J+1)</th>
<th>E_x (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>6.18</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>7.54</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>10.15 [4]</td>
</tr>
</tbody>
</table>

possible cluster configurations \rightarrow AMD calculations Ref. [1]

molecular states predicted \rightarrow possible rotational bands \rightarrow 6He+10Be powerful disintegration channel to explore this region \rightarrow confirmations needed.

no experimental evidence on 16C molecular nature still provided [2,3] \rightarrow very low statistic measurements

Expected nuclear reactions

- 16C disintegration
- 4He+12Be
- 8He+8Be
- $^2n+^{14}$C
- $^{n+15}$C
Beam production \rightarrow IFF (In Flight Fragmentation) technique \rightarrow FRIBs (Flight Radioactive Ion Beams) facility @ INFN-LNS:

- $^{18}\text{O}^{7+}$ at 56 MeV/u (superconducting cyclotron K800);
- ^{9}Be (1,5 mm thickness) production target;
- LNS-FRS (Fragment-Recoil Separator) $B\rho \approx 2.8 Tm$;

Tagging system [1] (particle by particle identification):

- MCP large area detector;

Beam production \rightarrow **IFF** (In Flight Fragmentation) technique \rightarrow **FRIBs** (Flight Radioactive Ion Beams) facility @ **INFN-LNS**:
- $^{18}\text{O}^{7+}$ at 56 MeV/u (superconducting cyclotron K800);
- ^{9}Be (1.5 mm thickness) production target;
- **LNS-FRS** (Fragment-Recoil Separator) $B\rho \approx 2,8Tm$;

Tagging system [1] (particle by particle identification):
- **MCP** large area detector;
- **DSSSD** position sensitive detector ($\approx 13m$ after);

Beam production → IFF (In Flight Fragmentation) technique → FRIBs (Flight Radioactive Ion Beams) facility @ INFN-LNS:
- 18O$^+$ at $56 \text{ MeV/}u$ (superconducting cyclotron K800);
- 9Be (1.5 mm thickness) production target;
- LNS-FRS (Fragment-Recoil Separator) $B\rho \approx 2.8Tm$;

Tagging system [1] (particle by particle identification):
- MCP large area detector;
- DSSSD position sensitive detector ($\approx 13m$ after);

Identification (ΔE-ToF) plot FRIBs cocktail beam → good performances.
High exotic beams intensity:
- 16C (49.5 MeV/u) 10^5 pps;
- 13B (49.5 MeV/u) $5 \cdot 10^4$ pps;
- 10Be (56.0 MeV/u) $4 \cdot 10^4$ pps;

CHIMERA (Charged Heavy Ion Mass Energy Resolving Array) [1,2]

- 1192 ΔE-E telescopes (∼300 µm Si + CsI(Tl) scintillator);
- 9 forward rings (1° ≤ θ ≤ 30°);
- 17 rings sphere (30° < θ ≤ 176°);

First 3 forward rings → 144 telescopes (1° ≤ θ ≤ 7°) complete azimuthal coverage → ΔE-E identification technique.

Good 4He – 6He separation → beryllium line mainly dominated by 10Be
As a starting check → **correlations** between helium break-up fragments from self-conjugated nuclei

- **2α correlations** → the ^8Be spectroscopy:
 - MonteCarlo simulation → good agreement with the experimental data for the 91.8 keV peak ($^8\text{Be}_{\text{gs}}$) → good consistency of the procedure.
 - Possible contaminations of ^9Be neutron decay → **ghost peaks**?

- **3α correlations** → the ^{12}C spectroscopy:
 - 3 body correlations → good agreement with the literature → ^{12}C Hoyle state.

Note: The diagrams illustrate the experimental data and MonteCarlo simulation results for ^8Be and ^{12}C, respectively, highlighting the peaks and energy levels.
As a **starting check** → **correlations** between **helium break-up** fragments from self-conjugated nuclei

- **2α correlations** → the **8Be** spectroscopy:
 - MonteCarlo simulation → good agreement with the experimental data for the 91.8 keV peak (**8Be**
 gs) → good consistency of the procedure.

Possible contaminations of **9Be** neutron decay → **ghost peaks**?

- **3α correlations** → the **12C** spectroscopy:

3 body correlations → good agreement with the literature → **12C Hoyle state**.

Interesting study of **sequential de-excitation** for the Hoyle state → **12C**

C: **12** → **α + Be gs** (green spectrum)
Possible new state in ^{10}Be

6He+^4He channel: the ^{10}Be structure

Found **bumps** corresponding to **excited states** known in literature (vertical arrows) \rightarrow interesting peak at about **13.5 MeV**.

Smooth efficiency for both the possible target nuclei (^{12}C and ^1H from the polyethylene CH$_2$ target used) \rightarrow **MonteCarlo simulation** with exponential angular distribution in the anelastic scattering center of mass frame:

$$\frac{d\sigma}{d\Omega_{cm}} \propto e^{\frac{\theta_{cm}}{\alpha}}$$

α fall-of factor 12°-16°

Flat **spurious background** contribution \rightarrow **event mixing** procedure.

Possible **evidence** of a new excited state at about **13.5 MeV** not reported in literature.
Angular correlation analysis on 13.5 MeV state → high spin contributions → possible 6+ assignment → agreement with the recent R-matrix calculation in resonant elastic scattering 6He+4He experiment [1]

Angular correlation analysis on 13.5 MeV state \rightarrow high spin contributions \rightarrow possible 6$^+$ assignment \rightarrow agreement with the recent R-matrix calculation in resonant elastic scattering $^6\text{He}+^4\text{He}$ experiment [1]

Possible 6$^+$ further member of the K=0$^+$ molecular band \rightarrow low statistics \rightarrow new experiments are needed.
As a **final test** → complete MonteCarlo simulation with the **13.5 MeV** state (shadowed histogram) → nice **agreement** with the experimental data (black points)

Table:

<table>
<thead>
<tr>
<th>E_x (MeV)</th>
<th>J^π</th>
<th>Γ_{tot} (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.51</td>
<td>$2^+ [1,2,3]$</td>
<td>0.14 [4,5]</td>
</tr>
<tr>
<td>10.6 [5]</td>
<td></td>
<td>0.20 [8,4]</td>
</tr>
<tr>
<td>11.8</td>
<td>(4$^+$) [5,6]</td>
<td>0.12 [5,6]</td>
</tr>
<tr>
<td>≈ 13.5</td>
<td>$6^+ [9]$, this work</td>
<td>≈ 0.15 this work</td>
</tr>
</tbody>
</table>

[5] Brookhaven National Laboratory, National Nuclear Data Center
^{16}C 2 body disintegration \rightarrow $^{6}\text{He} + ^{10}\text{Be}$ break-up channel \rightarrow low statistics data.

Enhancement at about 20.6 MeV \rightarrow possible agreement with the previous low statistics measurements $^{[1]} [^{[2]}$$^{[3]}$$^{[4]}$ more statistics required to confirm the suggestion.

Future perspectives: the CLIR experiment @ LNS

CLIR (Clustering in Light Ion Reactions) February–June 2015 → new investigation of cluster structures in nuclear reactions induced by FRIBs beams at INFN-LNS

FARCOS array [2] coupled to **CHIMERA** device → improved energy and angular resolution → **DSSSD+CsI** detectors.

FARCOS array [1] more info in E.V. Pagano’s talk
CLIR (Clustering in Light Ion Reactions) February–June 2015 → new investigation of cluster structures in nuclear reactions induced by FRIBs beams at INFN-LNS

FARCOS array [2] coupled to **CHIMERA** device → **improved** energy and angular resolution → **DSSSD**+**CsI** detectors.

$\Delta E-E$ identification plot with **FARCOS**

DSSSD (1500 μm) vs **CsI** fast

$^{16}\text{O}+\text{C} @ 55$ MeV/u
We have performed a spectroscopic investigation of 10Be and 16C via cluster break-up reactions at intermediate energies at INFN-LNS.

The cocktail beam was provided by the FRIBs facility → particle by particle identification → tagging system coupled to CHIMERA 4π multi-detector.

6He-4He correlations → structure of 10Be → new possible 6^+ state at about 13.5 MeV excitation energy → possible agreement with a recent R-matrix calculation [1] (resonant elastic scattering data) → energetic compatibility with a 6^+ further member of the 10Be molecular band.

6He-10Be correlations → structure of 16C → very low statistics data → agreement with previous experiment enhancement at about 21 MeV excitation energy.

Future Perspectives: