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Model 

We use a three-step method to study the occurrence of the high-spin toroidal isomeric states:  
 

First, using the quadrupole moment constrained Skyrme-HFB (or -HF+BCS) model we look for 
the oblate configurations with toroidal density distributions without rotation. 
 

Next, we take these toroidal configurations as the starting points in Q20-constrained and cranked 
Skyrme-HF calculations to gain the stabilizing effect for these toroidal configurations due to a 
non-collective rotation around symmetry z-axis.  
 

In the last step, when we locate a local minimum for each quantized value of angular 
momentum I=Iz, we repeat the unconstrained and symmetry-unrestricted cranked Skyrme-HF 
calculations to find the high-spin toroidal isomeric states. 
 
The symmetry unrestricted code HFODD [1] and an augmented Lagrangian method [2] were 
used to solve constrained HFB (or HF+BCS) equations with SkM* Skyrme force [3] in the p-h 
channel and a density dependent mixed pairing [4, 5] interaction in the p-p channel. 
 

The stretched harmonic oscillator basis of HFODD was composed of states having not more than 
N0 = 26 quanta in either of the Cartesian directions, and not more than 1140 states in total. 



Light N=Z toroidal nuclei in constrained SkM*-HFB model 
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Light NZ toroidal nuclei in constrained SkM*-HFB model 
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RDHO (a) and cranked RDHO (b) s.p. states of a toroidal 
nucleus as a function of R/d and w 
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Labels: (n L W), where 
n=(nz+nr)  

nz- azimuthal nodal q.n., 
nr- radial nodal q.n., 

L- z-component of orbital 
   angular momentum, 

 
 

Note that the low-lying states  
have nz = nr= 0. 

 
The slope of the Routhians: 

 
 

The spin is given by 
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Lmax = [N - (N mod 4)]/4 

For nz = 0 N (or Z) = 4Lmax + 2 N (or Z) = 4Lmax 

1p-1h I = 2Lmax + 2 I = 2Lmax  

2p-2h I = 4Lmax + 2 I = 4Lmax + 1 

3p-3h I = 6Lmax + 4 I = 6Lmax  

4p-4h I = 8Lmax + 4 I = 8Lmax + 1 

5p-5h I = 10Lmax + 6 I = 10Lmax  



 Toroidal high-spin isomers (N=Z) 



 Toroidal high-spin isomers (NZ) 



Effective moment of inertia 
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The toroidal density can be parameterized as 
 
 

 
and the rigid-body moment of inertia is 



Neutron-quasiparticle energies for toroidal 52Fe with I=0 

[N,nz,L]W 



Proton-quasiparticle energies for toroidal 52Fe with I=0 

[N,nz,L]W 



Stability of toroidal high-spin isomers against nucleon emission 

The modulus squared of the wave functions 
[N,nz=0,L=7,8,9]W,  representing  the particle 
states in the 5p.-5h excit. of 52Fe. 
 

The wave functions and the density 
distributions r  were calculated in the SkM*-
HF+BCS model with a constrain on the 
quadrupole moment, Q20=-36 b, which is close 
to the deformation of the toroidal 52Fe(132 ) 
isomer. 
 

The nz=0 and L=7,8,9 wave functions do not 
exhibit the unbound characteristics of leakage 
and oscillation beyond the single-particle 
potential. They are well localized in the 
toroidal region of the attractive mean-field 
potential. These states seem analogous to the 
bound states in the continuum (BIC) first 
suggested by von Neumann and Wigner in 
1929. 



Stability of toroidal high-spin isomers against nucleon emission 

The wave functions and the density 
distributions r  were calculated in the cranked 
SkM*-HF model (in the intrinsic frame) for the 
equilibrium configuration of the 52Fe(132 ) 
isomer. 
 

The nz=0 and L=7,8,9 wave functions do not 
exhibit the unbound characteristics of leakage 
and oscillation beyond the single-particle 
potential. They are well localized in the 
toroidal region of the attractive mean-field 
potential. These states seem analogous to the 
bound states in the continuum (BIC) first 
suggested by von Neumann and Wigner in 
1929  
. 

In contrast, the wave functions of the 
[10,1,1]1/2 state that is not used for the 
construction of the toroidal isomer, has a wave 
function extending outside the single-particle 
potential. 



Properties of high-spin toroidal isomers with 28 A 52 
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Z N E* Iz w Q20 R=xc d R/d rmax=A xc w A 

- - MeV  MeV b fm fm - fm-3 fm fm fm-3 

14 14 143.18 44 2.8 -5.86 4.33 1.45 2.99 0.12 4.33 1.23 0.119 

16 16 153.87 48 1.9 -8.22 4.87 1.42 3.43 0.12 4.87 1.21 0.122 

    193.35 66 2.2 -10.51 5.57 1.40 3.98 0.11 5.57 1.19 0.108 

16 20 206.49 74 1.8 -13.85 6.06 1.39 4.36 0.11 6.06 1.18 0.112 

18 18 168.03 56 1.7 -11.31 5.44 1.40 3.88 0.12 5.44 1.19 0.125 

    198.63 72 1.85 -13.73 6.04 1.39 4.34 0.11 6.04 1.18 0.113 

    238.56 92 2.0 -16.78 6.73 1.37 4.91 0.10 6.73 1.17 0.103 

18 22 215.49 80 1.65 -17.83 6.56 1.38 4.75 0.12 6.56 1.18 0.116 

    253.42 102 1.85 -21.37 7.21 1.37 5.26 0.11 7.21 1.17 0.107 

20 20 178.36 60 1.5 -14.96 5.97 1.40 4.26 0.13 5.97 1.19 0.126 

    214.23 82 1.9 -17.61 6.51 1.39 4.68 0.12 6.51 1.18 0.117 

22 22 195.46 68 1.2 -19.57 6.55 1.39 4.71 0.13 6.55 1.18 0.128 

    223.09 88 1.4 -22.27 7.01 1.38 5.08 0.12 7.01 1.17 0.120 

    260.24 112 1.6 -25.76 7.56 1.37 5.52 0.11 7.56 1.16 0.113 

24 24 207.12 72 1.2 -25.08 7.12 1.38 5.16 0.13 7.12 1.17 0.128 

    239.26 98 1.4 -28.00 7.54 1.37 5.50 0.12 7.54 1.17 0.122 

    271.02 120 1.43 -30.55 7.90 1.36 5.81 0.12 7.90 1.16 0.118 

26 26 202.86 52 0.8 -29.24 7.39 1.38 5.35 0.13 7.39 1.17 0.134 

    227.54 80 0.95 -31.43 7.68 1.38 5.56 0.13 7.68 1.17 0.130 

    252.65 104 1.3 -33.54 7.94 1.37 5.79 0.13 7.94 1.16 0.126 

    288.91 132 1.5 -35.62 8.20 1.36 6.03 0.12 8.20 1.16 0.123 



High-spin toroidal isomers in 28 A 52  



Conclusions  

 Light nuclei under non-collective rotation about the symmetry axis can assume a toroidal 
shape (toroidal high-spin isomers). 

 

 Our investigation into the region of nuclei with NZ indicates that just as the N=Z nuclei, 
toroidal high-spin nuclei are also commonly present in the mass region 28A52.  

 

 In the light high-spin toroidal isomers all occupied single-particle states have the same 
quantum number nz=0.  

 

 All these states, even with the positive energies, do not exhibit the unbound characteristics. 
They are not only localized in the toroidal region of the attractive mean-field potential but also 
square integrable. These states seem analogous to the bound states in the continuum (BIC) 
first suggested by von Neumann and Wigner in 1929 [1,2,3]. 
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Non-collective rotation about symmetry axis  


