Impact of the In-Medium Conservation of Energy on the π^{-}/π^{+} Multiplicity Ratio

Dan Cozma

IFIN-HH Magurele/Bucharest, Romania

dan.cozma@theory.nipne.ro

NN2015 Catania, Italy 21-26 June 2015

Elliptic Flow vs.

$$\frac{dN}{d\phi} \sim 1 + 2v_1 \cos \phi + 2v_2 \cos 2\phi$$

UrQMD - Y. Wang et al. PRC 89, 044603 (2014)

TuQMD - linear/moderately stiff M.D. Cozma et al. PRC 88, 044912 (2013) UrQMD – linear P. Russotto et.al PLB 697, 491 (2011) IBUU - linear/moderately stiff G.-C. Yong private communication

Pion ratios

Isobar model (no symmetry potential) $\pi^{-}/\pi^{+}=(5N^{2}+NZ)/(5Z^{2}+NZ)$

IBUU - Z.Xiao et al. PRL 102,062502 (2009)

ImQMD – stiff

Z.-Q. Feng et al., PLB 683, 140 (2010) Boltzmann-Langevin – super-soft W.-J. Xie et al., PLB 718, 1510 (2013) TuQMD (VEC) – super-soft M.D. Cozma (arXiv:1409.3110) pBUU – no sensitivity to SE J. Hong et al. PRC 90, 024605 (2014)

Energy Conservation - The Smoking Gun

80's transport models – total energy conserved (potentials dependent only on density)

Collective phenomena – momentum dependence **Isospin effects** – isospin asymmetry dependence Violation of totalenergy conservation

Determination of final state kinematics of 2-body collisions <u>neglects</u> medium effects

Gogny: Das, Das Gupta, Gale, Li PRC67, 034611 (2003) HA: Hartnack, Aichelin, PRC 49, 2901 (1994)

Transport Model

Quantum Molecular Dynamics (TuQMD):

Monte Carlo cascade + Mean field + Pauli-blocking+ in medium cross section

all 4* resonances below 2 GeV - 10 Δ^{*} and 11 N*

baryon-baryon collisions:

all elastic channels

inelastic channels NN \rightarrow NN^{*}, NN \rightarrow N Δ ,NN $\rightarrow \Delta$ N^{*}, NN $\rightarrow \Delta\Delta^*$, NR \rightarrow NR'

pion-absorption \Rightarrow **resonance-decay channels**: $\Delta \leftrightarrow N\pi$, $\Delta^* \leftrightarrow \Delta\pi$, $N^* \leftrightarrow N\pi$

meson production/absorption: η(547), ρ(770), ω(782), η'(958), f₀(980), a₀(980),Φ(1020)

previously applied to study:

-dilepton emission in HIC: K.Shekter, PRC 68, 014904 (2003);D. Cozma, PLB640,170 (2006); E.Santini PRC78,03410 -EoS of symmetric nuclear matter: C. Fuchs, PRL 86, 1974 (2001); Z.Wang NPA 645, 177 (1999) (2008) -In-medium effects and HIC dynamics: C. Fuchs, NPA 626,987 (1997); U. Maheswari NPA 628,669 (1998)

upgrades implemented in Bucharest:

-various parametrizations for the EoS: optical potential, symmetry energy(power-law, Gogny) -threshold effects for baryon resonance reaction emission absorption, π emission/absorption -in-medium pion potential

-clusterization algorithms (MST, SACA): promising preliminary results

-planned:account for threshold effects for reactions involving strangeness degrees of freedom

0.5

1 p_{lab} [GeV]

 $\pi^{+}\mathbf{p}$

1.5

2

πp 10 1.5 2.0 $\pi + \pi \rightarrow \rho$ 0.5 0.0 1.0 p_{lab} [GeV]

Isospin dependence of EoS

a) momentum dependent – generalization of the Gogny interaction: Das, Das Gupta, Gale, Li PRC67, 034611 (2003)

$$\begin{aligned} U(\rho,\beta,p,\tau,x) &= A_u(x)\frac{\rho_{\tau'}}{\rho_0} + A_l(x)\frac{\rho_{\tau}}{\rho_0} + B(\rho/\rho_0)^{\sigma}(1-x\beta^2) - 8\tau x \frac{B}{\sigma+1}\frac{\rho^{\sigma-1}}{\rho_0^{\sigma}}\beta\rho_{\tau'} \\ &+ \frac{2C_{\tau\tau}}{\rho_0}\int d^3p'\,\frac{f_{\tau}(\vec{r},\vec{p'})}{1+(\vec{p}-\vec{p'})^2/\Lambda^2} + \frac{2C_{\tau\tau'}}{\rho_0}\int d^3p'\,\frac{f_{\tau'}(\vec{r},\vec{p'})}{1+(\vec{p}-\vec{p'})^2/\Lambda^2} \end{aligned}$$

$$S(\rho) = S(\rho_0) + \frac{L_{sym}}{3} \frac{\rho - \rho_0}{\rho_0}$$
$$\frac{+K_{sym}}{18} \frac{(\rho - \rho_0)^2}{\rho_0^2}$$

Х	L _{sym} [MeV]	K _{sym} [MeV]				
-2	152	418				
-1	106	127				
0	61	-163				
1	15	-454	N			
2	-31	-745				

100

50

0

Power-Law $S(\rho)=u^{\gamma}$ $\gamma = 2$ $\gamma = 1.5$ $\gamma = 1.0$ $\gamma = 0.5$ $\gamma = 0.0$

---- x= 2

 ρ/ρ_0

2

 $U_{sym}(\rho,\beta) = \begin{cases} S_0(\rho/\rho_0)^{\gamma} - linear, stiff\\ a + (18.5 - a)(\rho/\rho_0)^{\gamma} - soft, supersoft \end{cases}$

Energy conservation (in-medium)

$\sqrt{p_1^2 + m_1^2} + U(p_1) + \sqrt{p_2^2 + m_2^2} + U(p_2) = \sqrt{p'_1^2 + m'_1^2} + U(p'_1) + \sqrt{p'_2^2 + m'_2^2} + U(p'_2)$

- rarely considered in transport models below 1 AGeV, with a few exceptions: G. Ferini et al. PRL 97, 202301 (2006), C.Fuchs et al. PRC 55, 411 (1997), T. Song, C.M. Ko PRC 91, 014901 (2015)
- Ansatz for the isospin 3/2 resonance potential motivated by decay channel - see also S.A. Bass et al., PRC 51, 3343 (1995)
- imposed in the CM of the colliding nuclei (not in the Eckart frame)
- reactions: NN \leftrightarrow NR, R \leftrightarrow N π (R \leftrightarrow N $\pi\pi$ not corrected)

-A. Li.	NPA 70	8 (365)	2002

Reaction	$\Delta U = U^{f} - U^{i}$	Effect
nn → p∆ ⁻	U ^p -U ⁿ <0	more π^{-}
$nn \rightarrow n\Delta^0$	1/3(U ^p -U ⁿ)<0	more π ⁻ , π ⁰
$np \rightarrow p\Delta^0$	1/3(U ^p -U ⁿ)<0	more π ⁻ , π ⁰
$np \rightarrow n\Delta^+$	1/3(U ⁿ -U ^p)>0	less π^+ , π^0
$pp \ \rightarrow \ p\Delta^{\!+}$	1/3(U ⁿ -U ^p)>0	less π^+ , π^0
$pp \rightarrow n\Delta^{++}$	U ⁿ -U ^p >0	less π^+

Different "scenarios"

VEC – vacuum energy conservation constraint LEC - "local" energy conservation – limited impact on multiplicities and ratios GEC- "global" energy conservation – conserve energy of the entire system -in-medium cross-sections for the inelastic channels

Multiplicity Ratio

Energy Conservation Scenario

Optical Potential Dependence

Pion ratio vs Elliptic Flow

Impact of the $\Delta(1232)$ potential

 Phenomenology – inclusive electron nucleus scattering (He,C,Fe) attractive
- Δ-nucleus potential deeper than the nucleon-nucleus potential O'Connel, Sealock PRC 42, 2290 (1990)

Ab initio calculations – Argonne v_{28} interaction (BBG)=> repulsive Δ potential

Baldo, Ferreira NPA 569, 645 (1994) - 3D reduction of Bethe-Salpeter equation similar (DB) Malfliet, de Jong PRC 46, 2567 (1992) - strong dominant repulsive contribution from T=2 sector

Energy dependence

close or below threshold

Samurai (TPC+Nebula Collaboration) -pion production, flow (including neutrons) -energies 285-350 MeV ¹³²Sn+¹²⁴Sn, ¹⁰⁵Sn+¹¹²Sn

above threshold (FOPI/GSI)

Conclusions

Conservation of Energy: important impact on pion multiplicities in heavy-ion collisions at a few hundred MeV impact energy

 π^{-}/π^{+} : - confirmed as sensitive to the stiffness of asy-EoS

- increased sensitivity below production threshold
- dependence on in-medium cross-sections and optical potential choice is modest
 - However:
- isovector part of the in-medium Δ potential has a large/decisive impact

<u>Good news:</u> -consistency between pion ratio and elliptic flow constraints can be achieved (GEC scenario <u>only</u>!)

Differences between different models – most likely due to different choices for the isovector $\Delta(1232)$ and pion potentials

To do list: - retardation and relativistic corrections

- in-medium baryon potentials (particularly $\Delta(1232)$)
- pion potentials (recently included)

Worst case scenario: <u>test of our understanding</u> of hadronic interaction in the few hundred MeV energy domain

Approximations

final state phase space in NN->NR

