The Physics Potential of an e+e-Collider in Light of LHC Data

James Wells CERN & University of Michigan June 2012

	ATLAS Exotics Searc	hes* - 95% CL Lower Limits (\$	Status: March 2012)
Large ED (ADD) : monojet	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-096]	3.2 τεν Μ _D (δ=2)	•
Large ED (ADD) : diphoton	L=2.1 fb ⁻¹ (2011) [1112.2194]	<u>з.о теу</u> <i>М_S</i> (GRW с	ut-off) ATLAS
$ω$ UED : γγ + $E_{T,miss}$	L=1.1 fb ⁻¹ (2011) [1111.4116]	1.23 Tev Compact. scale 1/R (SP	S8) Preliminary
RS with $k/M_{\rm Pl} = 0.1$: diphoton, $m_{\gamma\gamma}$	L=2.1 fb ⁻¹ (2011) [1112.2194]	1.85 Tev Graviton mass	
RS with $k/M_{\rm Pl} = 0.1$: dilepton, $m_{\rm H}$	L=4.9-5.0 fb ⁻¹ (2011) [ATLAS-CONF-2012-007]	2.16 TeV Graviton mass	$\int t dt = (0.04 - 5.0) \text{ fb}^{-1}$
RS with $k/M_{Pl} = 0.1$: ZZ resonance, $m_{IIII / IIII}$	L=1.0 fb ⁻¹ (2011) [1203.0718]	845 Gev Graviton mass	$\int Ldl = (0.04 - 5.0)$ lb
RS with $g_{add} / g_s = -0.20$: tt \rightarrow l+jets, m_s	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-029]	1.03 Tev KK gluon mass	s = 7 TeV
ADD BH $(M_{TH}^{\text{qgn}}/M_{D}=3)$: multijet, $\Sigma p_{\tau}, N_{\text{jets}}$	L=35 pb ⁻¹ (2010) [ATLAS-CONF-2011-068]	1.37 TeV Μ _D (δ=6)	
ADD BH ($M_{TH}/M_D=3$) : SS dimuon, $N_{ch. part.}$	L=1.3 fb ⁻¹ (2011) [1111.0080]	1.25 TeV Μ _D (δ=6)	
ADD BH $(M_{TH}/M_{D}=3)$: leptons + jets, Σp_{T}	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-147]	1.5 TeV <i>M_D</i> (δ=6)	
Quantum black hole : dijet, $F_{y}(m_{jj})$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]	4.11 TeV Μ _D (δ=6	5)
qqqq contact interaction : $\hat{\chi}(m_{ij})$	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]	7.8 TeV	Λ
\Im qqll CI : ee, $\mu\mu$ combined, \ddot{m}_{μ}	<i>L</i> =1.1-1.2 fb ⁻¹ (2011) [1112.4462]	10.2 1	Λ (constructive int.)
uutt CI : SS dilepton + jets + $E_{T.miss}$	L=1.0 fb ⁻¹ (2011) [1202.5520]	1.7 TeV Λ	
SSM Z' : m _{ee/uu}	L=4.9-5.0 fb ⁻¹ (2011) [ATLAS-CONF-2012-007]	2.21 TeV Z' mass	
SSM W': m _{T.e/u}	<i>L</i> =1.0 fb ⁻¹ (2011) [1108.1316]	2.15 TeV W' mass	
Scalar LQ pairs (β =1) : kin. vars. in eejj, evjj	<i>L</i> =1.0 fb ⁻¹ (2011) [1112.4828]	660 Gev 1 st gen. LQ mass	
Scalar LQ pairs (β =1) : kin. vars. in uuji, uvji	L=1.0 fb ⁻¹ (2011) [Preliminary]	685 Gev 2 nd gen. LQ mass	
4^{th} generation : Q $\overline{Q} \rightarrow W q W q$	L=1.0 fb ⁻¹ (2011) [1202.3389] 350 GeV	Q₄ mass	
4^{th} generation : $u^4 \overline{u}^4 \rightarrow WbWb$	L=1.0 fb ⁻¹ (2011) [1202.3076] 404 GeV	u, mass	
4 th generation : $d^{\frac{4}{d}}$ \rightarrow WtWt	L=1.0 fb ⁻¹ (2011) [Preliminary] 480 G	ev d, mass	
New guark b' : b' $\vec{b}' \rightarrow \vec{Z} \vec{b} + X, m$	L=2.0 fb ⁻¹ (2011) [Preliminary] 400 GeV	b' mass	
\rightarrow tr + A_A_ : 1-lep + jets + F_{-}	L=1.0 fb ⁻¹ (2011) [1109.4725] 420 GeV	T mass (<i>m</i> (A ₂) < 140 GeV)	
Excited quarks : γ-jet resonance, m	L=2.1 fb ⁻¹ (2011) [1112.3580]	2.46 TeV g* mass	
Excited quarks : dijet resonance, m_{i}^{yet}	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]	3.35 TeV g* mass	
Excited electron : e- γ resonance, m_{μ}	L=4.9 fb ⁻¹ (2011) [ATLAS-CONF-2012-023]	2.0 TeV e^* mass ($\Lambda = m(e)$	*))
Excited muon : μ - γ resonance, $m_{\mu}^{e\gamma}$	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-023]	1.9 TeV μ^* mass ($\Lambda = m(\mu^*)$	
Techni-hadrons : dilepton, modern	L=1.1-1.2 fb ⁻¹ (2011) [ATLAS-CONF-2011-125] 470 G	$p_{\rm ev} = 0 / \omega_{\rm T} = 0.000 (m_{\rm ev} / \omega_{\rm T}) = 100 (m_{\rm ev} $	deV)
Techni-hadrons : WZ resonance (vIII), $m_{\pm,1}^{ee/\mu\mu}$	L=1.0 fb ⁻¹ (2011) [Preliminary] 483 G	ev ρ mass $(m(\rho) = m(\pi_{\pi}) + m_{W}, m(a))$:	= 1.1 m(0)
Maior, neutr. (LRSM, no mixing) : 2-lep + iets	L=2.1 fb ⁻¹ (2011) [Preliminary]	1.5 TeV N mass (m(W)) = 2 T	eV)
$\tilde{w}_{\rm p}$ (LRSM, no mixing) : 2-lep + jets	$I = 2.1 \text{ fb}^{-1} (2011) [Preliminary]$	2.4 TeV W $_{\rm B}$ mass ($m(N)$) < 1.4 GeV)
$H_{L}^{\pm\pm}$ (DY prod., BR($H^{\pm\pm} \rightarrow \mu\mu$)=1) : SS dimuon, m	$l = 1.6 \text{ fb}^{-1}$ (2011) [1201 1091] 355 GeV	$H_{\mu}^{\pm\pm}$ mass	,
Color octet scalar : dijet resonance, $m_{\mu}^{\mu\mu}$	$I = 4.8 \text{ fb}^{-1}$ (2011) [ATLAS-CONE-2012-038]	194 TeV Scalar resonance	mass
Vector-like quark : CC. m	$l = 1.0 \text{ fb}^{-1}$ (2011) [1112 5755]	$\Omega \Omega $)
Vector-like guark : NC. $m_{\rm ex}$	$l = 1.0 \text{ fb}^{-1}$ (2011) [1112 5755]	260 GeV Ω mass (coupling $\kappa_{qQ} = v/m_{Q}$)	
	10 ⁻¹	1	10 10 ²
	10		
*Only a selection of the available mass limits on new states or	abanamana shawn		iviass scale [IEV]

*Only a selection of the available mass limits on new states or phenomena shown

		ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 2012)					
	MSUGRA/CMSSM : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033] 1.40 TeV $\tilde{q} = \tilde{g}$ mass					
	MSUGRA/CMSSM : 1-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-041] 1.20 TeV $\tilde{q} = \tilde{g}$ mass					
Se	MSUGRA/CMSSM : multijets + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037] 850 GeV \tilde{g} mass (large m_0)					
rch	Pheno model : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033] 1.38 TeV \tilde{q} mass $(m(\tilde{g}) < 2 \text{ TeV}, \text{ light } \tilde{\chi}_1^0)$ ATLAS					
sea	Pheno model : 0-lep + j's + $E_{T,miss}$	$L=4.7 \text{ fb}^{-1} (2011) \text{ [ATLAS-CONF-2012-033]} 940 \text{ GeV} \widetilde{\text{g}} \text{ mass } (m(\widetilde{\text{q}}) < 2 \text{ TeV}, \text{ light } \widetilde{\chi}_1^0) \qquad \qquad \text{Preliminary}$					
sive	Gluino med. $\tilde{\chi}^{\pm}$ ($\tilde{g} \rightarrow q\bar{q} \tilde{\chi}^{\pm}$) : 1-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-041] 900 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 200 \text{ GeV}, m(\tilde{\chi}^{\pm}) = \frac{1}{2}(m(\tilde{\chi}^0) + m(\tilde{g}))$					
nclus	GMSB : 2-lep OS _{SF} + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-156] 810 GeV \tilde{g} mass (tan β < 35)					
7	$GMSB: 1-\tau + j's + E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-005] 920 GeV \tilde{g} mass (tan β > 20)					
	$GMSB: 2-\tau + j's + E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-002] 990 GeV \tilde{g} mass (tan β > 20)					
	GGM :γγ + E _{T,miss}	L=1.1 fb ⁻¹ (2011) [1111.4116] 805 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) > 50 \text{ GeV})$					
6	Gluino med. \tilde{b} ($\tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0$) : 0-lep + b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003] 900 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 300 \text{ GeV})$					
atio	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t\bar{t} \tilde{\chi}_{1}^{0}$) : 1-lep + b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003] 710 GeV \widetilde{g} mass ($m(\widetilde{\chi}_1^0) < 150$ GeV)					
ner	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t\bar{t} \chi_1^0$) : 2-lep (SS) + j's + $E_{T,miss}$	s L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-004] 650 GeV \tilde{g} mass ($m(\tilde{\chi}_1^0) < 210$ GeV)					
d gei	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t\bar{t} \tilde{\chi}_{1}^{0}$) : multi-j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037] 830 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 200 \text{ GeV})$					
Thin	Direct $\widetilde{b}\widetilde{b}$ ($\widetilde{b}_1 \rightarrow b\widetilde{\chi}_1^0$) : 2 b-jets + $E_{T,\text{miss}}$	L=2.1 fb ⁻¹ (2011) [1112.3832] 390 GeV \tilde{b} mass $(m(\tilde{\chi}_1^0) < 60 \text{ GeV})$					
	Direct $\widetilde{t}\widetilde{t}$ (GMSB) : Z(\rightarrow II) + b-jet + E	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-036] 310 GeV \widetilde{t} mass (115 < $m(\widetilde{\chi}_1^0)$ < 230 GeV)					
G	Direct gaugino $(\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow 3 I \tilde{\chi}_1^0)$: 2-lep SS + $E_{T,\text{miss}}$	$ \begin{array}{c c} \textbf{L=1.0 fb^{-1}(2011) [1110.6189]} & \textbf{170 GeV} & \widetilde{\chi}_1^{\pm} \text{ mass } ((m(\widetilde{\chi}_1^0) < 40 \text{ GeV}, \widetilde{\chi}_1^0, m(\widetilde{\chi}_1^{\pm}) = m(\widetilde{\chi}_2^0), m(\widetilde{l}, \widetilde{\nu}) = \frac{1}{2} (m(\widetilde{\chi}_1^0) + m(\widetilde{\chi}_2^0))) \end{array} $					
<u></u>	Direct gaugino $(\tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow 3I \tilde{\chi}_1^0)$: 3-lep + $E_{T,\text{miss}}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-023] 250 GeV $\tilde{\chi}_1^{\pm}$ mass ($m(\tilde{\chi}_1^0) < 170$ GeV, and as above)					
es	AMSB : long-lived $\widetilde{\chi}_1^{\pm}$	L=4.7 fb ⁻¹ (2011) [CF-2012-034] ^{118 GeV} $\tilde{\chi}_1^{\pm}$ mass (1 < $\tau(\tilde{\chi}_1^{\pm})$ < 2 ns, 90 GeV limit in [0.2,90] ns)					
irtici	Stable massive particles (SMP) : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 562 GeV g mass					
d pa	SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 294 GeV b mass					
live	SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 309 GeV t mass					
-buc	SMP : R-hadrons (Pixel det. only)	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-022] 810 GeV g mass					
ΓC	GMSB : stable $\widetilde{\tau}$	L=37 pb ⁻¹ (2010) [1106.4495] 136 GeV T MASS					
	RPV : high-mass $e\mu$	L=1.1 fb ⁻¹ (2011) [1109.3089] 1.32 TeV $\tilde{\nu}_{\tau}$ mass (λ'_{311} =0.10, λ_{312} =0.05)					
RPV	Bilinear RPV : 1-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [1109.6606] 760 GeV $\tilde{q} = \tilde{g}$ mass ($c\tau_{LSP} < 15$ mm)					
	MSUGRA/CMSSM - BC1 RPV : 4-lepton + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-035] 1.77 TeV ĝ mass					
	Hypercolour scalar gluons : 4 jets, $m_{ij} \approx m_{kl}$	L=34 pb ⁻¹ (2010) [1110.2693] 185 GeV sgluon mass (excl: $m_{sg} < 100 \text{ GeV}, m_{sg} \approx 140 \pm 3 \text{ GeV}$					
		10 ⁻¹ 1 10					

Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena shown

DRAFT: The Physics Case for an e⁺e⁻ Linear Collider

James E. Brau^{*a*}, Rohini M. Godbole^{*b*}, Francois R. Le Diberder^{*c*}, M.A. Thomson^{*d*}, Harry Weerts^{*e*}, Georg Weiglein^{*f*}, James D. Wells^{*g*}, Hitoshi Yamamoto^{*h*}

^(a) Center for High Energy Physics, University of Oregon, USA

- ^(b) Centre for High Energy Physics, Indian Institute of Science, Bangalore, India
- (c) Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud, France

^(d) Cavendish Laboratory, University of Cambridge, UK

- ^(e) Argonne National Laboratory, Argonne, USA
- (f) DESY, Hamburg, Germany
- ^(g) CERN, Geneva, Switzerland
- ^(h) Tohoku University, Japan

Report Commissioned for the European Strategy Process, 2012

	250 GeV	350 GeV	500 GeV	1 TeV	1.5 TeV	3 TeV
$\sigma(e^+e^- \rightarrow ZH)$	250 fb	130 fb	60 fb	20 fb	5 fb	1 fb
$\sigma(e^+e^- \rightarrow H\nu_e\overline{\nu}_e)$	20 fb	40 fb	80 fb	220 fb	320 fb	510 fb
Int. \mathcal{L}	$250{\rm fb}^{-1}$	$350{\rm fb}^{-1}$	$500 {\rm fb}^{-1}$	$1000{\rm fb}^{-1}$	$1500{\rm fb}^{-1}$	$2000 {\rm fb^{-1}}$
# ZH events	62,500	45,500	30,000	20,000	7,500	2,000
# $H\nu_e\overline{\nu}_e$ events	5,000	14,000	40,000	200,000	500,000	1,000,000

Table 1: The Higgs cross sections for the Higgsstrahlung and WW-fusion processes at various centre-of-mass energies and a comparison of the expected number of events accounting for the anticipated luminosities at these energies.

Figure 1: The recoil mass distribution in simulated $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^-H$ events in the ILD detector concept at the ILC [10]

\sqrt{s}	250 GeV	350 GeV
Int. \mathcal{L}	$250{\rm fb}^{-1}$	$350{\rm fb}^{-1}$
$\Delta(\sigma)/\sigma$	3%	4%
$\Delta(g_{ m HZZ})/g_{ m HZZ}$	1.5 %	1.8%

Table 2: Precisions measurements of the Higgs coupling to the Z at $\sqrt{s} = 250 \text{ GeV}$ and $\sqrt{s} = 350 \text{ GeV}$.

	250 GeV	350 GeV	3 TeV
$B(H \rightarrow bb)$	2.7 %	2.3 %	2%
$B(H \rightarrow cc)$	8 %	6%	3%
$B(H \rightarrow gg)$	9%	7%	?
$B(H \to \tau \tau)$	$6\%^*$	6%	?
$B(\mathrm{H} \to \mu^+ \mu^-)$	_	_	15 %
$B(\mathrm{H} \to \mathrm{WW}^*)$	< 13 %	< 13 %*	?
$g_{ m Hbb}$	1.6 %	1.4 %	< 2 %
$g_{ m Hcc}$	4%	3%	2 %
$g_{ m H au au}$	3%	3%	?
$g_{ m HWW}$	< 6 %	< 6 %	< 2 %
$g_{ m HZZ}$	1.5 %	1.8 %	?
$g_{ m HWW}/g_{ m HZZ}$?	?	$ < 1 \%^*$

Table 3: The precision on the Higgs branching ratios and couplings obtainable from studies of the Higgsstrahlung process at a LC operating at either $\sqrt{s} = 250 \text{ GeV}$ or $\sqrt{s} = 350 \text{ GeV}$ for respective integrated luminosities of 250 fb^{-1} and 350 fb^{-1} . The uncertainties on the couplings include the uncertainties on g_{HZZ} . Also shown are the precisions achievable at a LC operating at 3 TeV. The numbers marked with asterisk are estimates, all other numbers come from full simulation studies. The question marks indicate that the results of ongoing studies are not yet available.

	500 GeV	1.4 TeV	3.0 TeV
$\sigma(e^+e^- \rightarrow ZHH)$	0.2 fb	_	_
$\sigma(e^+e^- \rightarrow \nu_e \overline{\nu}_e HH)$	_	0.2 fb	0.9 fb
$\Delta\lambda/\lambda$	< 50 %	<20%	< 25 %

Table 4: Current estimates of precision on the Higgs self-coupling achievable at a high energy LC.

Figure 2: The LC precision on the relation between the Higgs couplings to the masses of the particles.

Figure 3: Typical deviations of the Higgs couplings to different particles from the SM predictions in a Two-Higgs-Doublet model. The LC precisions for the various couplings are indicated.

Figure 4: The $e^+e^- \rightarrow ZH$ cross section energy dependence near threshold for different spin states.

CLIC Conceptual Design Report

CDR has been released as of last December: https://edms.cern.ch/document/117771

- 1. Physics Potential
- 2. Experimental Conditions and Detector Requirements
- 3. Detector Concepts
- 4. Vertex Detectors
- 5. Tracking System
- 6. Calorimetry
- 7. Detector Magnet System
- 8. Muon System
- 9. Very Forward Calorimeters
- 10. Readout Electronics and Data Acquisition System
- 11. Interaction Region and Detector Integration
- 12. Physics Performance
- 13. Future Plans and R&D Prospects

Focus of this short talk is on the Physics Potential

Organization

1 Cl	LIC Physics Potential	15
1.1	Introduction	15
1.2	Higgs	16
1.2.1	The Higgs Boson in the Standard Model	18
1.2.2	The Higgs Bosons of the MSSM	20
1.2.3	Higgs Bosons in other Extensions	22
1.3	Supersymmetry	23
1.3.1	CLIC potential for Heavy SUSY	25
1.3.2	Reconstructing the High-Scale Structure of the Theory	27
1.3.3	Testing the Neutralino Dark Matter Hypothesis	29
1.4	Higgs Strong Interactions	30
1.5	Z', Contact Interactions and Extra Dimensions	33
1.6	Impact of Beam Polarisation	37
1.7	Precision Measurements Potential	40
1.8	Discussion and Conclusions	42

Introductory Comments

Topic sub-editors:

Higgs Physics: Abdelhak Djouadi (Orsay), Markus Schumacher (Freiburg)

Supersymmetry: Sabine Kraml (Grenoble), Werner Porod (Würzburg)

Alternative Scenarios: Roberto Contino (Rome), Christophe Grojean (CERN)

Precision: Andre Hoang (Vienna), Klaus Moenig (DESY)

Polarisation: Gudi Moortgat-Pick (DESY), JW (CERN/Michigan)

Physics case built on bring together many different elements into this one document:

- Past CLIC study results
- Current benchmark studies
- Latest theory views consistent with all measured data
- Theory analyses suggesting viable search strategies and results

Chapter 1 Editors: Gian Giudice, James Wells (CERN-PH-TH)

Higgs Physics

 $\Delta(\sigma \times Br(bb)) = 0.2\%$ stat. unc.

Fig. 1.3: Reconstructed sample for two Higgs channels with $M_{\rm H} = 120$ GeV at CLIC with $\sqrt{s} = 3$ TeV with 2 ab⁻¹. The histograms are stacked distributions of signal and background reconstructed using the CLIC_SiD detector (see Chapter 12).

Fig. 1.2: Relative error in the Higgs boson coupling determination to different particle species. The top diagram is for a Higgs mass of 120 GeV at $\sqrt{s} = 500$ GeV and with 500 fb⁻¹ of integrated luminosity, except $g_{\text{Ht\bar{t}}}$, which is obtained at $\sqrt{s} = 800$ GeV with 1 ab⁻¹. The bottom table gives coupling constant determination and sensitivity to deviations from the SM obtained at CLIC 3 TeV with 2 ab⁻¹ for 120 GeV Higgs boson mass (see text for further explanation).

Extremely good resolution on the heavy Higgs masses and widths.

Fig. 1.5: Higgs mass peak reconstruction in the processes $e^+e^- \rightarrow HA$ (left), and in $e^+e^- \rightarrow H^+H^-$ (right), at a CLIC detector using *model II*, see Chapter 12. The corresponding background channels are shown as well. The finite Higgs widths are taken into account.

Fig. 1.18: Search reach in the $m_A - \tan\beta$ plane for LHC and CLIC. The left-most coloured regions are current limits from the Tevatron with ~ 7.5 fb⁻¹ of data at $\sqrt{s} = 1.96$ TeV and from ~ 1 fb⁻¹ of LHC data at $\sqrt{s} = 7$ TeV. The black line is projection of search reach at LHC with $\sqrt{s} = 14$ TeV and 300 fb⁻¹ of luminosity [78]. The right-most red line is search reach of CLIC in the HA mode with $\sqrt{s} = 3$ TeV. This search capacity extends well beyond the LHC. A linear collider at $\sqrt{s} = 500$ GeV can find heavy Higgs mass eigenstates if their masses are below kinematic threshold of 250 GeV.

At the LHC the heavy Higgs are not expected to be discovered in this case.

At CLIC 3 TeV, they can be discovered, and can help resolve between models.

Fig. 1.19: Resolving SUSY breaking models and masses with CLIC: Shown are the nearly degenerate spectra of a mSUGRA model and a mGMSB model. Assuming some of the SUSY particles masses are measured, with a spectrum of the type above predicted by the different models of Supersymmetry breaking, CLIC would be able to discern not only some of the slepton masses and the heavier charginos within the two models, but also the SUSY Higgs masses. For mSUGRA the soft masses are $m_0 = 175 \text{ GeV}, m_{1/2} = 645 \text{ GeV}, A_0 = 0$, with $\tan \beta = 10$ and $\mu > 0$. For mGMSB the number of messengers are $n_l = n_q = 5$, and $\Lambda_{\text{SUSY}} = 4 \cdot 10^4 \text{ GeV}, M_{\text{Mess}} = 10^{12} \text{ GeV}$, with $\tan \beta = 10$.

Supersymmetry

After the LHC, there may be much to discover and measure within SUSY at CLIC.

Electroweak states (e.g., sleptons and charginos) particularly difficult at LHC.

There is even the prospect of no sign of SUSY at LHC but discovery at CLIC.

Fig. 1.8: Distribution of $\tilde{\chi}_1^{\pm}$ (right) and \tilde{e}_R (left) masses of pMSSM points that escape 14 TeV LHC searches with 1 fb⁻¹, 10 fb⁻¹ and 100 fb⁻¹ of integrated luminosity [41]. The top red histograms show the mass distributions in the full model set.

Fig. 1.9: SUSY production cross sections (in fb) of *model II* as a function of \sqrt{s} . Every line of a given colour corresponds to the production cross section of one of the particles in the legend, e.g. the three green lines are, per increasing threshold, $e^+e^- \rightarrow \tilde{\chi}_1^- \tilde{\chi}_1^+$, $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_2^\pm$, and $e^+e^- \rightarrow \tilde{\chi}_2^- \tilde{\chi}_2^+$ respectively. The first threshold is the $e^+e^- \rightarrow ZH$ production.

Table 1.1: Values of the SUSY particle masses of the chosen benchmark point (*model II*) and estimated experimental statistical accuracies at CLIC, as obtained in the analyses presented in Chapter 12, and also in [20] (indicated with *). All values are in GeV. The last column is either out of kinematic reach or not studied.

Particle	Mass	Stat. acc.	Particle	Mass	Stat. acc	Particle	Mass
$egin{array}{c} \widetilde{\chi}^0_1 \ \widetilde{\chi}^0_2 \ \widetilde{\chi}^0_3 \ \widetilde{\chi}^0_4 \ \widetilde{\chi}^\pm_1 \end{array}$	340.3 643.1 905.5 916.7 643.2	$\pm 3.3 \\ \pm 9.9 \\ \pm 19.0^{*} \\ \pm 20.0^{*} \\ \pm 3.7$	h A H H [±]	118.5 742.0 742.0 747.6	$\pm 0.1^{*}$ ± 1.7 ± 1.7 ± 2.1	$ \begin{array}{c} \widetilde{\tau}_1 \\ \widetilde{\tau}_2 \\ \widetilde{t}_1 \\ \widetilde{t}_2 \\ \widetilde{b}_1 \end{array} \end{array} $	670 974 1393 1598 1544
	916.7 1010.8 1010.8 1097.2	$\pm 7.0^{*} \pm 2.8 \pm 5.6 \pm 3.9$	$\begin{array}{c} \text{Quantity} \\ \Gamma(A) \\ \Gamma(H^{\pm}) \end{array}$	QuantityValueStat. acc. \widetilde{b}_2 $\Gamma(A)$ 22.2 ± 3.8 \widetilde{u}_R $\Gamma(H^{\pm})$ 21.4 ± 4.9 \widetilde{g}	$ \begin{array}{c} \mathbf{b}_{1} \\ \mathbf{\widetilde{b}}_{2} \\ \mathbf{\widetilde{u}}_{R} \\ \mathbf{\widetilde{u}}_{L} \\ \mathbf{\widetilde{g}} \end{array} $	1610 1818 1870 1812	

Table 1.2: Fitted parameters in GeV from the chargino/neutralino sector. Each column represents a local minimum in the best fit to the data.

M_1	342.1 ± 3.5	-341.9 ± 3.5	341.8 ± 3.5	-342.3 ± 3.5
M_2	655.3 ± 6.0	655.3 ± 6.1	654.2 ± 6.1	654.2 ± 6.1
μ	924.8 ± 6.2	924.8 ± 6.2	-925.5 ± 6.2	-925.5 ± 6.2

Fig. 1.10: Extrapolation of SUSY-breaking parameters from the electroweak to the GUT scale for *model II*, assuming 3% measurement precision on the physical sfermion masses.

Also, Dark Matter relic abundance can be inferred statistically to $\Omega h^2 = 0.10 + 0.02$

Fig. 1.11: One sigma range of the determined scalar mass parameters at the GUT scale assuming 5% (blue), 3% (green) and 1% (red) measurement precision on the physical sfermion masses. The black line $_{25}$ indicates the nominal value $m_0 = 966$ GeV.

Higgs Strong Interaction

Z' and Contact Interactions

Fig. 1.14: Limits on the scale of contact interactions (Λ/g) that can be set by CLIC in the $\mu^+\mu^-$ (left) and $b\overline{b}$ (right) channels with $\sqrt{s} = 3$ TeV and $\mathscr{L} = 1$ ab⁻¹. A degree of polarisation $P_- = 0, 0.8$ ($P_+ = 0, 0.6$) has been assumed for the electrons (positrons). The various models are defined in Table 6.6 of [20], except the model V1 which is defined as { $\eta_{LL} = \pm, \eta_{RR} = \mp, \eta_{LR} = 0, \eta_{RL} = 0$ }.

Z' physics: Extraordinary discovery reach (well beyond LHC), and simultaneous capability to determine couplings and discern models.

Fig. 1.16: Left: Observation of new gauge boson resonances in the $\mu^+\mu^-$ channel by auto-scan at 3 TeV. The two resonances are the $Z_{1,2}$ predicted by the 4-site Higgsless model of [67]. Right : Expected resolution at CLIC with $\sqrt{s} = 3$ TeV and $\mathscr{L} = 1$ ab⁻¹ on the "normalised" leptonic couplings of a 10 TeV Z' in various models, assuming lepton universality. The couplings can be determined up to a twofold ambiguity. The mass of the Z' is assumed to be unknown. χ, η and ψ refer to various linear combinations of U(1) subgroups of E_6 ; the SSM has the same couplings as the SM Z; LR refers to U(1) surviving in Left-Right model; LH is the Littlest Higgs model and SLH, the Simplest Little Higgs model. The two fold ambiguity is due to the inability to distinguish (a, v) from (-a, -v). The degeneracy between the ψ and SLH models might be lifted by including other channels in the analysis (tī, bb, ...).

Conclusions

- Precise physics potential conditioned on LHC results
- Excellent capabilities for Higgs precision measurements
- Excellent capabilities for discovering electroweak states
- Excellent reach in composite/higher dimensional operators

Near future: Respond to LHC results. Motivate and define energy staging options.

Table 1.6: Discovery reach of various theory models for different colliders and various levels of integrated luminosity, \mathscr{L} [73]. LHC14 and the luminosity-upgraded SLHC are both at \sqrt{s} =14 TeV. LC800 is an 800 GeV e⁺e⁻ collider and CLIC3 is \sqrt{s} =3 TeV. TGC is short for Triple Gauge Coupling, and " μ contact scale" is short for LL μ contact interaction scale Λ with g = 1 (see Section 1.4).

New particle	collider: £:	LHC14 100 fb ⁻¹	SLHC 1 ab ⁻¹	LC800 500 fb ⁻¹	CLIC3 1 ab^{-1}
squarks [TeV]		2.5	3	0.4	1.5
sleptons [TeV]		0.3	-	0.4	1.5
Z' (SM couplings) [TeV]		5	7	8	20
2 extra dims M_D [TeV]		9	12	5-8.5	20-30
TGC (95%) ($\lambda_{\gamma \text{ coupling}}$)		0.001	0.0006	0.0004	0.0001
μ contact scale [TeV]		15	-	20	60
Higgs compos. scale [TeV]		5-7	9-12	45	60