The ICARUS detector in underground Hall B of LNGS

The ICARUS T600 detector

- Two identical modules
 - 3.6 × 3.9 × 19.6 ≈ 275 m³ each
 - Liquid Ar active mass: ≈ 476 t
 - Drift length = 1.5 m (1 ms)
 - HV = -75 kV E = 0.5 kV/cm
 - v-drift = 1.55 mm/µs

• 4 wire chambers:

- 2 chambers per module
 - 3 readout wire planes per chamber, wires at 0, $\pm 60^{\circ}$
 - ≈ 54000 wires, 3 mm pitch, 3 mm plane spacing
- 20+54 PMTs , 8" Ø, for scintillation light:

VUV sensitive (128nm) with wave shifter (TPB)

Key feature: LAr purity from electro-negative molecules (O_2 , H_2O , CO_2). Now: 0.06 ppb (O_2 equivalent) -> 5 ms lifetime.

LAr purification

LAr continuously filtered, e $\mbox{ life-time measured by charge attenuation study on cosmic }\mu$ tracks.

 $\tau_{\rm ele}$ > 5ms (~60 ppt $[O_2]_{\rm eq})$ corresponding to a maximum charge attenuation of 17% at 1.5m

These results allow operation at larger drift distances

LAr recirculation system upgrade:

- 11 accidental stops up to now (LAr immersed pumps)
- New pumps with non-immersed motor already ordered installation 2012. Similar pumps operating since 2010 on the LN2 circulation systems worked without any accidental stop.

ICARUS T600 trigger system

• CNGS:

 CNGS "Early Warning" signal sent 80 ms before the SPS p extraction: allows opening a 60 ms wide gate around neutrino arrival time at LNGS.
 PMT sum signal for each chamber in coincidence with the beam gate.

- 2.40 ms offset value in agreement with 2.44 ms v tof (40 μs fiber transit time from external lab to Hall B)
- Spill duration reproduced (10.5µs),
 1 mHz event rate , ≈ 80 events/day
- PMT sum signal: coincidence of two adjacent chambers (50% cathode transparency)
- Globally 35 mHz trigger rate achieved: ~130 cosmic events/h after intervention on read-out, was 100 in 2011.
- Local trigger based on deposited charge (SuperDaedalus):

on-line hit-finding/zero-skipping algorithm implemented in FPGA's, used to improve trigger efficiency at low energy (below 500 MeV)

CNGS neutrino runs – summary

ICARUS T600 fully operational since Oct. 1st 2010

2011: Mar. $19^{th} \div Nov. 14^{th}$

Detector live-time > 93%

- November 2011 and May 2012: timing measurement with bunched beam.
- 2011 run: expected 1200 CC and 390 NC events (so far, for 2.7 10¹⁹ pot 925 v interactions in 447 t fiducial volume with ~ 3% detector electronic inefficiency - DAQ crate off; 975 interactions expected from MC assuming full detector efficiency).

- The analysis of CNGS neutrino events is ongoing.
- First step on cosmic-ray analysis: automatic reconstruction of deposited energy from c-muons in agreement with expectations
- In parallel, optimization of analysis tools in term of performance, calibrations and event reconstruction:
 - Progresses in 3D reconstruction, leading to better performance especially for horizontal tracks
 - Momentum measurement by M.S. for escaping muons, under refinement
 - Progresses in the Particle Identification Algorithm
 - Progresses in automatic reconstruction: vertex finding, clustering, track finding
 - Developments on tools for calorimetric reconstruction

Cosmic ray muon spectrum

3D reconstruction

NEW: Single 3D PLA-fit optimized to all available hits in the 2D wire planes and all identified 3D reference points (vertices, delta rays). 2D hit-to-hit associations are not longer needed -> missing parts in a single view and horizontal tracks are now accepted.

Automation of the event reconstruction

- > A challenging task due to the complexity of high energy CNGS events.
- Algorithm for identification and reconstruction of the promary vertex exploits relative angular distribution of hit positions. Identified 2D vertices are merged together to recontruct 3D vertex.
- Validation with visually identified CNGS vertices. Distributions of the distance between reconstructed and visually identified vertex position.

Obtained, with real CNGS data, algorithm efficiency ~ 97%.

m.i.p. calibration with CNGS muons

dE/dx distribution for real and MC muon tracks from CNGS events

- Tracks reconstructed in 3D. δ rays and showers rejected. Same reconstruction on MC muons with CNGS spectrum.
- Very good agreement (~ 2-3%) residual small difference due to noise patterns and their effects on δ ray.

Calibration with stopping particles: examples

dE/dx vs range - MC pattern vs real data

 Deposited dE/dx vs residual range No guenching correction Black dots: not consistent with any pattern, most probably protons interacting at very low energy with emission of neutrons and photons

PId: proton

Methods for identification of non-stopping particles are under development (including guenching correction)

dE/dx for stopping particles

dE/dx as a function of residual range for stopping particles, 2011 data sample, quenching correction applied.

Example of data: kaon decay in a CNGS event

Slide: 13

Muon momentum by multiple scattering

• Key tool to measure momentum of non-contained μ 's: essential for v_u CC event reconstruction.

Two methods under development:

- > 2D track projection in Coll. view is repeatedly segmented at various segment lengths (L_{seg}) ; deflection angles θ along the track are extracted by linear fit; to estimate muon momentum the distribution of $\theta(L_{seg})$ is fitted the opimization of the track segmentation not needed. (A.Ferrari, C.Rubbia ICARUS TN 99)
- Kalman fit of the segmented track; muon momentum p extracted from deflection angle Θ. (ICARUS Coll. - Eur. Phys. J C48 (2006) 667)

π^0 identification / reconstruction in CNGS events (1)

 π^0 showers identified by:

- 2γ conversion separated from primary vertex
- Reconstruction of $\gamma\gamma$ invariant mass
- Ionization in the first segment of showers (1 or 2 mips)

π^0 identification / reconstruction in CNGS events (2)

Mean: $133.8 \pm 4.4(stat) \pm 4 (syst) MeV/c^2 \sigma = 20.5 MeV$

dE/dx in the first 2.5 cm of candidate photon shower

Total energy deposition in CNGS n events

- Comparison of the predicted (full MC) and detected deposited energy spectrum from NC and CC events on 2010 statistics and a subset of the 2011 statistics
- Used for the "superluminal" neutrino searches

Search for superluminal v's radiative processes in ICARUS Phys. Lett. B-711 (2012) 270-275

- Cohen and Glashow [Phys. Rev. Lett., 107 (2011) 181803] argued that superluminal v should loose energy mainly via e⁺e⁻ bremsstrahlung, on average 0.78·E_v energy loss/emission
- Full FLUKA simulation of the process kinematics, folded in the CNGS beam, studied as a function of $\delta = (v_1^2 c^2)/c^2$

For $\delta = 5 \ 10^{-5}$ (OPERA first claim):

- > full v event suppression for E > 30 GeV
- ~10⁷ e⁺e⁻ pairs /10¹⁹ pot/kt
- Effects searched in 6.7 10¹⁸ pot·kt ICARUS exposure (2010/11) to CNGS
 - No spectrum suppression found in both NC , CC data (~ 400 events)
 - No e⁺e⁻ pair bremsstrahlung event candidate found
- The lack of pair in CNGS ICARUS 2010/2011 data, sets the limit:

 $\delta = (v_v^2 - c^2)/c^2 < 2.5 \ 10^{-8} \ 90\% \ CL$

- comparable to the SuperK atm. limit $\delta < 1.4 \ 10^{-8}$, somewhat larger than the lower energy velocity constraint $\delta < 4 \ 10^{-9}$ from SN1987A.

Neutrino time of flight with CNGS bunched beam

- 2011 low intensity bunched beam: 4 bunches/spill, 3 ns FWHM, 524 ns separation.
- ICARUS observed 7 beam-associated events, (~2.2 10¹⁶ pot collected): 2 CC v_µ events, 1 NC v event, 1 stopping + 3 crossing µ's from v interaction in upstream rock.
- Arrival time determined using the prompt scintillation light signals (~ns resolution) and the accurate localization of each event w.r.t. PMT position.

Neutrino time of flight: 2011 result Phys. Lett. B 713 (2012) 17-22

- All fixed delays/propagation times calibrated (thanks also to LNGS and CERN)
- Baseline estimation relies on existing available geodesy data (OPERA/LNGS)
- Variable corrections to GPS from OPERA/CERN recipe
- The average δt of_c tof_v of the 7 events is + 0.3 ns with an r.m.s. of 10.5 ns; statistical error on the average = 4.9 ns; systematic error ~ 9 ns

Data taking/analysis with 2012 bunched CNGS

- New beam structure: 64 bunches, 3 ns width, 100 ns spacing.
- 2011 system + Borexino + White Rabbit (CERN synchronization system)
- Beam related events observed in ICARUS (for ~1.8 10¹⁷ pot):
 - \geq 16 crossing μ 's (1 stopping) from the upstream rock;
 - \succ 7 CC v_µ events;
 - 2 NC v event.
- Analysis in progress:
 - PRELIMINARY results compatible with 2011 value: 0 to 3 ns depending on timing synchronization path;

distribution r.m.s: ~ 3.7 ns (10.5 in 2011)

Systematics corrections and offset under final evaluation (PMT-DAQ propagation chain, topological corrections, timing delay).

A proposal for short baseline neutrino "anomalies" with innovative LAr imaging detectors coupled with large muon spectrometers

SPSC-P347

(ICARUS + NESSIE)

Sterile neutrinos

- The possible presence of oscillations into sterile neutrinos was proposed by B. Pontecorvo, but so far without conclusion.
- Two distinct classes of anomalies have been reported, although not in an entirely conclusive level, namely:
 - observation of excess v_e electrons originated by initial anti- v_μ events from accelerators (LNSD/MiniBooNE)
 - The apparent disappearance signal in the anti- v_e events detected from (1) near-by nuclear reactors and (2) from Mega-Curie k-capture calibration sources in the Gallium experiments which detect solar v_e
- These experiments may all point out to the possible existence of at least one fourth non standard neutrino state driving oscillations at a small distances, with typically $\Delta m^2_{new} \ge 1 \text{ eV}^2$ and relatively large mixing angles.
- The existence of additional neutrino states may be also hinted — or at least not excluded — by cosmological data

New Neutrino Facility in the CERN North Area

100 GeV primary beam fast extracted from SPS; target station next to TCC2; decay pipe I =100m, \emptyset = 3m Neutrino and antineutrino beams, energy around 2GeV

Far detector: T600 + magnetic spectrometer Near detector: new 150 ton Lar + magnetic spectrometer →Nue appearance, nue disappearance, numu disappearance, low systematic because of near-far comparison

attivita' del Gruppo di Milano 2011-2012

- Software di ricostruzione off-line: coordinamento e partecipazione allo sviluppo
- Partecipazione alla presa dati
- Supporto al Technical Coordinator (da parte di A.Scaramelli)
- Analisi dati (ongoing)
- Sviluppi futuri: partecipazione alla proposta per una ricerca di oscillazioni "alla LSND" con due rivelatori LAr TPC sul fascio del SPS al CERN

Futuro

Fine 2012 o primi mesi 2013: stop del fascio CNGS
• T600 in operazione per alcuni mesi, proton decay, atmosferici,

test criogenia
Possibilmente : fine 2013 e inizio 2014 : decommissioning, trasporto al CERN

attivita' del Gruppo di Milano 2012-2013 •1.5 F.T.E

•Prosecuzione del coordinamento software

- Partecipazione alla presa dati T600
- Partecipazione all'analisi dati
- Confronto dati/Montecarlo e possibili sviluppi MC
- Supporto all'esperimento
- Ottimizzazione target/ottica e studi di fisica per SPS-NF
 Partecipazione decommissioning T600 -

- Supporto tecnico per eventuale spostamento T600
 Partecipazione studi di ingegneria/criogenia per nuova installazione al CERN

Anagrafica Icarus Milano

A.Cesana	100
P.R. Sala	50
A. Scaramelli	100 (acc. over 70)
Totale FTE:	1.5

Possibile richiesta di partecipazione di un tecnico per decommissioning

PRELIMINARE: preventivi 2012

Missioni interne	
(meetings nazionali, attivita' ai LNGS)	15
Missioni estere	
(meetings, coll. CERN, CNGS, SPS)	6
Consumo	
supporti per il calcolo, metabolismo	2

Totale

29

+ fondi sub-judice per SPS-NF, da quantificare in riunione 11-7

end

Expected signals for LSND/MiniBooNE anomalies

- Event rates for the near and far detectors given for 4.5 10¹⁹ pot. The oscillated signals are clustered below 3 GeV of visible energy
- Values for: $sin^2(2\theta) = 0.002$, $\Delta m^2 = 2 eV^2$ are reported as example

o v		NEAR (neg. foc.)	NEAR (pos. foc.)	FAR (neg. foc.)	FAR (pos. foc.)
produce	{ _e + [†] _e (LAr)	35 K	54 K	4.2 K	6.4 K
	{ _∫ + ∱ _∫ (LAr)	2030 K	5250 K	270 K	670 K
	Appear. test point	590	1900	360	914
detected	$\{\mu_{\mu}$ (LAr+NESSiE)	230 K	1200 K	21 K	110 K
	<pre>{ (NESSiE)</pre>	1150 K	3600 K	94 K	280 K
	<pre>∱ (Lar+NESSiE)</pre>	370 K	56 K	33 K	6.9 K
	\overline{v}_{μ} (NESSiE)	1100 k	300 K	89 K	22 K
	Disappear. test point	1840	4700	1700	5000

NOTE: { "contamination" in anti-{ negative polarity beam

Comparing LSND sensitivities

Expected sensitivity for the proposed experiment: $\langle _{\uparrow} \rangle$ beam (left) and anti- $\langle _{\uparrow} \rangle$ (right) for 4.5 10¹⁹ pot (1 year) and 9.0 10¹⁹ pot (2 years) respectively. LSND allowed region is fully explored in both cases.

Sensitivity to $\nu\mu$ disappearance (see NESSIE for details)

