The ICARUS detector in underground Hall B of LNGS

The ICARUS T600 detector

Two identical modules

- $3.6 \times 3.9 \times 19.6 \approx 275 \mathrm{~m}^{3}$ each
- Liquid Ar active mass: $\approx 476 \dagger$
- Drift length $=1.5 \mathrm{~m}$ (1 ms)
- $H V=-75 \mathrm{kV} \quad E=0.5 \mathrm{kV} / \mathrm{cm}$
- v-drift $=1.55 \mathrm{~mm} / \mu \mathrm{s}$
- 4 wire chambers:
- 2 chambers per module
- 3 readout wire planes per chamber, wires at $0, \pm 60^{\circ}$
= ≈ 54000 wires, 3 mm pitch, 3 mm plane spacing
- 20+54 PMTs, 8" \varnothing, for scintillation light:
- VUV sensitive (128nm) with wave shifter (TPB)

Key feature: LAr purity from electro-negative molecules $\left(\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}\right)$.
Now: 0.06 ppb (O_{2} equivalent) -> 5 ms lifetime.

LAr purification

Electron lifetime trend West cryostat

Electron lifetime trend East cryostat

LAr continuously filtered, e^{-}life-time measured by charge attenuation study on cosmic μ tracks.
$\tau_{\text {ele }}>5 \mathrm{~ms}$ ($\sim 60 \mathrm{ppt}\left[\mathrm{O}_{2}\right]_{\text {eq }}$) corresponding to a maximum charge attenuation of 17% at 1.5 m

These results allow operation at larger drift distances
LAr recirculation system upgrade:

- 11 accidental stops up to now (LAr immersed pumps)
- New pumps with non-immersed motor already ordered - installation 2012. Similar pumps operating since 2010 on the LN2 circulation systems worked without any accidental stop.

ICARUS T600 trigger system

- CNGS:
>CNGS "Early Warning" signal sent 80 ms before the SPS p extraction: allows opening a 60 ms wide gate around neutrino arrival time at LNGS.
$>$ PMT sum signal for each chamber in coincidence with the beam gate.

$>2.40 \mathrm{~ms}$ offset value in agreement with $2.44 \mathrm{~ms} v$ tof ($40 \mu \mathrm{~s}$ fiber transit time from external lab to Hall B)
$>$ Spill duration reproduced ($10.5 \mu \mathrm{~s}$), 1 mHz event rate , ≈ 80 events/day
$>$ PMT sum signal: coincidence of two adjacent chambers (50\% cathode transparency)
$>$ Globally 35 mHz trigger rate achieved: ~ 130 cosmic events/h after intervention on read-out, was 100 in 2011.
- Local trigger based on deposited charge (SuperDaedalus):
> on-line hit-finding/zero-skipping algorithm implemented in FPGA's, used to improve trigger efficiency at low energy (below 500 MeV)
- ICARUS T600 fully operational since Oct. $1^{\text {st }} 2010$

\Rightarrow Detector live-time > 93\%

> November 2011 and May 2012: timing measurement with bunched beam.
> 2011 run: expected 1200 CC and 390 NC events (so far, for 2.710^{19} pot $925 v$ interactions in 447 \dagger fiducial volume with $\sim 3 \%$ detector electronic inefficiency - DAQ crate off; 975 interactions expected from MC assuming full detector efficiency).
- The analysis of CNGS neutrino events is ongoing.
- First step on cosmic-ray analysis: automatic reconstruction of deposited energy from c-muons in agreement with expectations
- In parallel, optimization of analysis tools in term of performance, calibrations and event reconstruction:
>Progresses in 3D reconstruction, leading to better performance especially for horizontal tracks
> Momentum measurement by M.S. for escaping muons, under refinement
$>$ Progresses in the Particle Identification Algorithm
>Progresses in automatic reconstruction: vertex finding, clustering, track finding
> Developments on tools for calorimetric reconstruction

Cosmic ray muon spectrum

- CR data automatically filtered:
> Skip fake triggers
> Find "good" muons for purity
> First reconstruction
- Good agreement of energy spectrum with MC expectation is found (MC simulation includes light collection and trigger conditions).

East semimodule

3D reconstruction

NEW: Single 3D PLA-fit optimized to all available hits in the 2D wire planes and all identified 3D reference points (vertices, delta rays). 2D hit-to-hit associations are not longer needed -> missing parts in a single view and horizontal tracks are now accepted.

Automation of the event reconstruction

- A challenging task due to the complexity of high energy CNGS events.
> Algorithm for identification and reconstruction of the promary vertex exploits relative angular distribution of hit positions. Identified 2D vertices are merged together to recontruct 3D vertex.
> Validation with visually identified CNGS vertices. Distributions of the distance between reconstructed and visually identified vertex position.

Obtained, with real CNGS data, algorithm efficiency ~ 97\%.
m.i.p. calibration with CNGS muons

$\mathrm{dE} / \mathrm{dx}$ distribution for real and MC muon tracks from CNGS events

- Tracks reconstructed in 3D. δ rays and showers rejected. Same reconstruction on MC muons with CNGS spectrum.
- Very good agreement ($\sim 2-3 \%$) - residual small difference due to noise patterns and their effects on δ ray.

Calibration with stopping particles: examples

$\mathrm{d} E / \mathrm{d} x$ vs range - MC pattern vs real data

- Deposited dE/dx vs residual range
- No quenching correction
- Black dots: not consistent with any pattern, most probably protons interacting at very low energy with emission of neutrons and

PId: not-stopping photons

Methods for identification of non-stopping particles are under development (including quenching correction)

dE/dx for stopping particles

REAL DATA 2011 (correction for recombincation applied)

$d E / d x$ as a function of residual range for stopping particles, 2011 data sample, quenching correction applied.

Example of data: kaon decay in a CNGS event

Corresponding PId patterns

Muon momentum by multiple scattering

- Key tool to measure momentum of non-contained μ 's: essential for $v_{\mu} C C$ event reconstruction.

Two methods under development:
$>2 D$ track projection in Coll. view is repeatedly segmented at various segment lengths ($L_{\text {seg }}$): deflection angles θ along the track are extracted by linear fit; to estimate muon momentum the distribution of $\theta\left(L_{\text {seg }}\right)$ is fitted - the opimization of the track segmentation not needed. (A.Ferrari, C.Rubbia - ICARUS TN 99)
$>$ Kalman fit of the segmented track; muon momentum p extracted from deflection angle Ө. (ICARUS Coll. - Eur. Phys. J C48 (2006) 667)

- Both methods under validation
- $\Delta p / p$ depends mainly on the track length: for CNGS $\Delta p / p<$

Collection view

$$
\begin{aligned}
& \text { Minv }=104 \mathrm{MeV} / \mathrm{c}^{2} \\
& p \pi=165 \mathrm{MeV} / \mathrm{c} \\
& (0.478,-0.729,0.49)
\end{aligned}
$$

Conversion distances:

$71.2 \mathrm{~cm}, 13.7 \mathrm{~cm}, 41.8 \mathrm{~cm}, 17.4 \mathrm{~cm}$

$$
\text { Edep }=229 \pm 20 \mathrm{MeV}
$$

Initial ionizations:
$5.1,6.1,3.1$ and $4.4 \mathrm{MeV} / \mathrm{cm}$
π^{0}

Edep $=139 \pm 12 \mathrm{MeV}$
Minv= $133 \mathrm{MeV} / \mathrm{c}^{2}$
Wire coordinate ($\sim 3 \mathrm{~m}$)
$p \pi=344 \mathrm{MeV} / \mathrm{c}$
($0.697,0.497,-0.517$) CNGS v beam direction
π^{0} showers identified by:

- 2γ conversion separated from primary vertex
- Reconstruction of $\gamma \gamma$ invariant mass
- Ionization in the first segment of showers (1 or 2 mips)

π^{0} identification / reconstruction in CNGS events (2)

$d E / d x$ in the first 2.5 cm of candidate photon shower

- Comparison of the predicted (full MC) and detected deposited energy spectrum from NC and CC events on 2010 statistics and a subset of the 2011 statistics
- Used for the "superluminal" neutrino searches

Search for superluminal v's radiative processes in ICARUS Phys. Lett. B-711 (2012) 270-275

- Cohen and Glashow [Phys. Rev. Lett., 107 (2011) 181803] argued that superluminal v should loose energy mainly via $e^{+} e^{-}$bremsstrahlung, on average $0.78 \cdot \mathrm{E}_{\mathrm{v}}$ energy loss/emission
- Full FLUKA simulation of the process kinematics, folded in the CNGS beam, studied as a function of $\delta=\left(v_{3}^{2}-c^{2}\right) / c^{2}$
For $\delta=510^{-5}$ (OPERA first claim):
> full v event suppression for $E>30 \mathrm{GeV}$
> $\sim 10^{7} e^{+} e^{-}$pairs $/ 10^{19} \mathrm{pot} / \mathrm{kt}$
- Effects searched in 6.710^{18} pot•kt ICARUS exposure (2010/11) to CNGS
- No spectrum suppression found in both NC , CC data (400 events)
- No $e^{+} e^{-}$pair bremsstrahlung event candidate found
- The lack of pair in CNGS ICARUS 2010/2011 data, sets the limit:

$$
\delta=\left(v_{v}{ }^{2}-c^{2}\right) / c^{2}<2.510^{-8} 90 \% C L
$$

- comparable to the SuperK atm. limit $\delta<1.410^{-8}$, somewhat larger than the lower energy velocity constraint $\delta<410^{-9}$ from SN1987A.
- 2011 low intensity bunched beam: 4 bunches/spill, 3 ns FWHM, 524 ns separation.
- ICARUS observed 7 beam-associated events, ($\sim 2.210^{16}$ pot collected): 2 CC v_{μ} events, 1 NC v event, 1 stopping +3 crossing μ 's from v interaction in upstream rock.
- Arrival time determined using the prompt scintillation light signals (\sim ns resolution) and the accurate localization of each event w.r.t. PMT position.

Neutrino time of flight: 2011 result

Phys. Lett. B 713 (2012) 17-22

- All fixed delays/propagation times calibrated (thanks also to LNGS and CERN)
- Baseline estimation relies on existing available geodesy data (OPERA/LNGS)
- Variable corrections to GPS from OPERA/CERN recipe
- The average $\delta t=\sqrt{b} f_{c}-$ tof f_{v} of the 7 events is +0.3 ns with an r.m.s. of 10.5 ns ; statistical error on the average $=4.9$ ns: systematic error ~ 9 ns

Data taking/analysis with 2012 bunched CNGS

- New beam structure: 64 bunches, 3 ns width, 100 ns spacing.
- 2011 system + Borexino + White Rabbit (CERN synchronization system)
- Beam related events observed in ICARUS (for ~1.8 1017 pot):
>16 crossing μ 's (1 stopping) from the upstream rock;
$>7 C C v_{\mu}$ events:
- 2 NC vevent.
- Analysis in progress:

PPRELIMINARY results compatible with 2011 value: 0 to 3 ns depending on timing synchronization path;
$>$ distribution r.m.s: ~ 3.7 ns (10.5 in 2011)
$>$ Systematics corrections and offset under final evaluation (PMT-DAQ propagation chain, topological corrections, timing delay).

A proposal for short baseline neutrino "anomalies" with innovative LAr imaging detectors coupled with large muon spectrometers

SPSC-P347
(ICARUS + NESSIE)

Sterile neutrinos

- The possible presence of oscillations into sterile neutrinos was proposed by B. Pontecorvo, but so far without conclusion.
- Two distinct classes of anomalies have been reported, although not in an entirely conclusive level, namely:
$>$ observation of excess v_{e} electrons originated by initial anti- v_{μ} events from accelerators (LNSD/MiniBooNE)
$>$ the apparent disappearance signal in the anti-v events detected from (1) near-by nuclear reactors and (2) from Mega-Curie k-capture calibration sources in the Gallium experiments which detect solar v_{e}
- These experiments may all point out to the possible existence of at least one fourth non standard neutrino state driving oscillations at a small distances, with typically $\Delta m^{2}{ }_{\text {new }} \geq 1 \mathrm{eV}^{2}$ and relatively large mixing angles.
- The existence of additional neutrino states may be also hinted - or at least not excluded - by cosmological data

New Neutrino Facility in the CERN North Area

100 GeV primary beam fast extracted from SPS; target station next to TCC2; decay pipe $I=100 \mathrm{~m}, \varnothing=3 \mathrm{~m}$ Neutrino and antineutrino beams, energy around 2 GeV

Far detector: T600 + magnetic spectrometer
Near detector: new 150 ton Lar + magnetic spectrometer
\rightarrow Nue appearance, nue disappearance, numu disappearance, low systematic because of near-far comparison

attivita’ del Gruppo di Milano 2011-2012

- Software di ricostruzione off-line: coordinamento e partecipazione allo sviluppo
- Partecipazione alla presa dati
- Supporto al Technical Coordinator (da parte di A.Scaramelli)
- Analisi dati (ongoing)
- Sviluppi futuri: partecipazione alla proposta per una ricerca di oscillazioni "alla LSND" con due rivelatori LAr TPC sul fascio del SPS al CERN

Fine 2012 o primi mesi 2013: stop del fascio CNGS

- T600 in operazione per alcuni mesi, proton decay, atmosferici, test criogenia
- Possibilmente : fine 2013 e inizio 2014 : decommissioning, trasporto al CERN

$$
\begin{aligned}
& \text { attivita' del Gruppo di Milano 2012-2013 } \\
& \hline 1.5 \text { F.T.E }
\end{aligned}
$$

- Prosecuzione del coordinamento software
- Partecipazione alla presa dati T600
- Partecipazione all'analisi dati
- Confronto dati/Montecarlo e possibili sviluppi MC
- Supporto all'esperimento
- Ottimizzazione target/ottica e studi di fisica per SPS-NF
- Partecipazione decommissioning T600 -
- Supporto tecnico per eventuale spostamento T600
- Partecipazione studi di ingegneria/criogenia per nuova installazione al CERN

Anagrafica Icarus Milano

A.Cesana 100P.R. Sala 50
A. Scaramelli 100 (age over 70)1.5

Possibile richiesta

 di partecipazione di un tecnico per decommissioning
PRELIMINARE: preventivi 2012

Missioni interne (meetings nazionali, attivita' ai LNGS)
Missioni estere (meetings, coll. CERN, CNGS,SPS)
Consumo
supporti per il calcolo, metabolismo
Totale 29

+ fondi sub-judice per SPS-NF, da quantificare in riunione 11-7
end

Expected signals for LSND/MiniBooNE anomalies

- Event rates for the near and far detectors given for 4.510^{19} pot. The oscillated signals are clustered below 3 GeV of visible energy
- Values for: $\sin ^{2}(2 \theta)=0.002, \Delta \mathrm{~m}^{2}=2 \mathrm{eV}^{2}$ are reported as example

		NEAR (neg. foc.)	NEAR (pos. foc.)	$\begin{gathered} \text { FAR } \\ \text { (neg. foc.) } \end{gathered}$	$\begin{gathered} \text { FAR } \\ \text { (pos. foc.) } \end{gathered}$
	$\left\{_{e}+\gamma_{e}\right.$ (LAr)	35 K	54 K	4.2 K	6.4 K
	$i_{1}+\psi_{1}($ LAr $)$	2030 K	5250 K	270 K	670 K
	Appear. test point	590	1900	360	914
$\begin{aligned} & \overline{0} \\ & \stackrel{y}{y} \\ & \stackrel{y}{\psi} \\ & \stackrel{y}{0} \end{aligned}$	$\}_{\mu}($ LAr + NESSiE)	230 K	1200 K	21 K	110 K
	\{, (NESSiE)	1150 K	3600 K	94 K	280 K
	$\dagger_{\text {, }}($ Lar+NESSiE)	370 K	56 K	33 K	6.9 K
	\bar{v}_{μ} (NESSiE)	1100 k	300 K	89 K	22 K
	Disappear. test point	1840	4700	1700	5000

NOTE: $\{$ "contamination" in anti-\{ negative polarity beam

Comparing LSND sensitivities

Expected sensitivity for the proposed experiment: $\{$, beam (left) and anti- $\{$, (right) for 4.510^{19} pot (1 year) and 9.010^{19} pot (2 years) respectively. LSND allowed region is fully explored in both cases.

Sensitivity to $\nu \mu$ disappearance (see NESSIE for details)

90% C.L. sensitivity for 2 years anti- $\{+1$ year v. Exclusion limits : CCFR, CDHS, SciBooNE + MiniBooNE

