Searching for New Physics in Heavy Flavours

Luca Silvestrini INFN, Rome

- Introduction
- Status of flavour physics in the SM
- UT beyond the SM and constraints on NP
- CP violation in Charm Physics
- Conclusions and Outlook

INTRODUCTION

The Standard Model works beautifully up to a few hundred GeV's, but it must be an effective theory valid up to a scale $\Lambda \leq M_{planck}$:

INTRODUCTION - II

- Two accidental symmetries of the SM are crucial for our discussion:
 - 1) Absence of tree-level flavour changing neutral currents, GIM suppression of FCNC @ the loop level
- 2) No CP violation @ tree level ⇒ Flavour physics extremely sensitive to NP!!

EXPRESS REVIEW OF THE SM

- All flavour violation from charged current coupling: CKM matrix V
- $V_{\rm CKM} = \begin{pmatrix} 1 \lambda^2/2 & \lambda & A\lambda^3(\rho i\eta) \\ -\lambda & 1 \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 \bar{\rho} i\bar{\eta}) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$
 - Top quark exchange dominates FCNC loops: third row (V_{tq}) determines FCNC's $\leftrightarrow \overline{\rho}, \overline{\eta}$, apex of the Unitarity Triangle from V_{ub}*V_{ud} + V_{cb}*V_{cd} + V_{tb}*V_{td}=1

Flavour summarized on the $p-\eta$ plane CC BR(b \rightarrow ulv), BR(B \rightarrow \pilv) NC Δm_a (B_a-B_a mass diff.) CC $A_{CD}(b \rightarrow c\overline{c}s) (J/\psi K, ...)$ NC $A_{CP}(b \rightarrow s\bar{s}s, d\bar{d}s) (\phi K, \pi K, ...)$ CC/NC $A_{CP}(b \rightarrow ddd, uud) (\pi\pi, \rho\rho, ...)$ СС BR(b \rightarrow cud, cus) (DK, ...) CC BR($B \rightarrow \tau v$) NC $BR(B \rightarrow \rho \gamma)/BR(B \rightarrow K^* \gamma)$ NC ε_к

Silvestrini

 $K_{\text{Frascati, 26/6/2012}}^+$

SEMILEPTONIC DECAYS

THE OVERALL PICTURE

 $\rho = 0.138 \pm 0.021$ $\eta = 0.350 \pm 0.014$ $A = 0.822 \pm 0.014$ $\lambda = 0.2254 \pm 0.0006$

Parameter	Input value	Full fit	SM Prediction
f_{B_s}	0.233 ± 0.01	0.2303 ± 0.0058	—
f_{B_s}/f_{B_d}	1.2 ± 0.02	1.201 ± 0.018	_
B_{B_s}/B_{B_d}	1.05 ± 0.07	1.086 ± 0.051	_
B_{B_s}	0.87 ± 0.04	0.853 ± 0.036	_
B_k	0.75 ± 0.02	0.755 ± 0.02	0.847 ± 0.09
$\alpha[^{\circ}]$	91.4 ± 6.1	89.3 ± 3.0	87.9 ± 3.8
$\beta[^\circ]$	_	22.07 ± 0.9	26.1 ± 2.3
$\sin(2\beta)$	0.68 ± 0.023	0.697 ± 0.023	0.792 ± 0.05
$\cos(2\beta)$	0.87 ± 0.13	0.718 ± 0.022	0.616 ± 0.064
$2\beta + \gamma[^{\circ}]$	-90 ± 56 and 94 ± 52	112.8 ± 3.2	113.0 ± 3.2
$\gamma[^\circ]$	-103.9 ± 10.5 and 75.5 ± 10.5	68.6 ± 3.1	67.8 ± 3.2
$ \epsilon_k $	$0.00222894 \pm 1.14971 \times 10^{-5}$	$0.00222754 \pm 1.0978 \times 10^{-5}$	_
$B(B\to\tau\nu)10^{-4}$	1.64 ± 0.34	0.857 ± 0.082	0.813 ± 0.077
$J_{cp} 10^{-5}$	_	3.1 ± 0.12	_
$B(B_s \rightarrow ll), 10^{-9}$	_	3.45 ± 0.27	_

tensions

Frascati, 26/6/2012

more standard model predictions:

M.Bona et al, 0908.3470 [hep-ph]

L. Silvestrini

(SEMI)LEPTONIC $B \rightarrow \tau$

- (Semi)leptonic $B \rightarrow \tau$ decays seem to systematically deviate from SM predictions:
 - BR(B $\rightarrow \tau v$) higher than SM prediction by 2.7 σ
 - BR($B \rightarrow D\tau v$)/BR($B \rightarrow DIv$) higher than SM prediction by 2σ
 - BR(B \rightarrow D* τ v)/BR(B \rightarrow D*Iv) higher than SM prediction by 2.7σ BaBar 2012

11

 Deviation inconsistent with 2HDMII and simple MFV models @ large tanß Fajfer et al 2012 Frascati, 26/6/2012

UTfit beyond the Standard Model

- 1. fit simultaneously for the CKM and
- the NP parameters (generalized UT fit)
 - add most general NP to all sectors
 - use all available experimental info
 - find out how much room is left for NP in ΔF =2 transitions
- 2. perform an $\Delta F=2$ EFT analysis to
- put bounds on the NP scale
 - consider different choices of the FV and CPV couplings

1. Parameterization of generic NP contributions to the mixing amplitudes K mixing amplitude (2 real parameters): $\operatorname{Re} A_{\kappa} = C_{\Delta m_{\kappa}} \operatorname{Re} A_{\kappa}^{SM} \operatorname{Im} A_{\kappa} = C_{\varepsilon} \operatorname{Im} A_{\kappa}^{SM}$ $B_{d} \text{ and } B_{s} \text{ mixing amplitudes (2+2 real parameters):}$ $A_{q} e^{2i\phi_{q}} = C_{B_{q}} e^{2i\phi_{B_{q}}} A_{q}^{SM} e^{2i\phi_{q}^{SM}} = \left(1 + \frac{A_{q}^{NP}}{A_{q}^{SM}} e^{2i(\phi_{q}^{NP} - \phi_{q}^{SM})}\right) A_{q}^{SM} e^{2i\phi_{q}^{SM}}$

Observables:

$$\Delta m_{q/K} = C_{B_q/\Delta m_K} (\Delta m_{q/K})^{SM} \epsilon_K = C_{\epsilon} \epsilon_K^{SM}$$

$$A_{CP}^{B_d \to J/\psi K_s} = \sin 2(\beta + \phi_{B_d}) \qquad A_{CP}^{B_s \to J/\psi \phi} \sim \sin 2(-\beta_s + \phi_{B_s})$$

$$A_{SL}^q = \lim_{\text{Frascati, 26/6/2012}} (\Gamma_{12}^q/A_q) \qquad \Delta \Gamma^q/\Delta m_q = \text{Re}(\Gamma_{12}^q/A_q)$$
L. Silvestrini $\Delta m_q = \text{Re}(\Gamma_{12}^q/A_q)$

UT parameters in the presence of NP

Model-independent determination of the CKM parameters (no NP in tree-level decays)

 $\bar{\rho} = 0.136 \pm 0.043$ $\bar{\eta} = 0.397 \pm 0.054$

NP FIT RESULTS

NP IN B_d MIXING

• $C_{\rm Bd} = 0.94 \pm 0.14$

([0.70,1.27] @ 95% probability)

•
$$\phi_{Bd} = (-3.6 \pm 3.7)^{\circ}$$

([-11,3.7]° @ 95% probability)

NP IN B_s MIXING

• $C_{\rm Bs} = 1.02 \pm 0.10$

([0.83,1.24] @ 95% probability)

•
$$\phi_{Bs} = (-1.1 \pm 2.8)^{\circ}$$

([-5,4.3]° @ 95% probability)

The DO dimuon asymmetry remains unexplained

A NOTE ON MEASURING β_{s}

• β_{ς} is $O(\lambda^2)$, so must consider $O(\lambda^2)$

corrections to decay amplitudes, introducing unavoidable correlation with other CKM elements

- Subleading corrections can be controlled using suitable U-spin related control channels
- $B_s \rightarrow J/\Psi \phi$ is problematic since it has no simple control channels; $B_s \rightarrow KK$ look better

D-D MIXING

- Established experimentally only in 2007
- Great experimental progress recently
- SM long distance contributions difficult to estimate, but solid prediction: no CPV in mixing
- Direct CPV possible in SCS decays (and recently observed by LHCb and CDF)

BASIC FORMULAE

• All mixing-related observables can be expressed in terms of $x=\Delta m/\Gamma$, $y=\Delta\Gamma/2\Gamma$ and |q/p|, or better in terms of M_{12} , Γ_{12} and

$$\Phi_{12}$$
=arg(Γ_{12}/M_{12}):

$$M_{12}| = \frac{1}{\tau_D} \sqrt{\frac{x^2 + \delta^2 y^2}{4(1 - \delta^2)}}, \quad |\Gamma_{12}| = \frac{1}{\tau_D} \sqrt{\frac{y^2 + \delta^2 x^2}{1 - \delta^2}}, \quad \sin \Phi_{12} = \frac{|\Gamma_{12}|^2 + 4|M_{12}|^2 - (x^2 + y^2)|q/p|^2/\tau_D^2}{4|M_{12}\Gamma_{12}|}$$

$$\delta = \frac{1 - |q/p|^2}{1 + |x/p|^2}, \quad \phi = \arg(q/p) = \arg(y + i\delta x), \quad A_M = \frac{|q/p|^4 - 1}{|x/p|^4 + 1}, \quad R_M = \frac{x^2 + y^2}{2}, \tag{1}$$

$$\begin{aligned} &|q/p|^2 & |q/p|^2 + 1 & 2 \\ &\left(\begin{array}{c} x'_f \\ y'_f \end{array} \right) = \left(\begin{array}{c} \cos \delta_f & \sin \delta_f \\ -\sin \delta_f & \cos \delta_f \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right), & (x'_{\pm})_f = \left| \frac{q}{p} \right|^{\pm 1} \left(x'_f \cos \phi \pm y'_f \sin \phi \right), & (y'_{\pm})_f = \left| \frac{q}{p} \right|^{\pm 1} \left(y'_f \cos \phi \mp x'_f \sin \phi \right), \\ &y_{\rm CP} = \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \frac{y}{2} \cos \phi - \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \frac{x}{2} \sin \phi, & A_{\Gamma} = \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \frac{y}{2} \cos \phi - \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \frac{x}{2} \sin \phi, \\ &R_D = \frac{\Gamma(D^0 \to K^+ \pi^-) + \Gamma(\bar{D}^0 \to K^- \pi^+)}{\Gamma(D^0 \to K^- \pi^+) + \Gamma(\bar{D}^0 \to K^+ \pi^-)}, & A_D = \frac{\Gamma(D^0 \to K^+ \pi^-) - \Gamma(\bar{D}^0 \to K^- \pi^+)}{\Gamma(D^0 \to K^- \pi^+)}, \end{aligned}$$

Observable	Value	Correlation Coeff.			Reference		
y_{CP}	$(0.866 \pm 0.155)\%$						2, 17-25
A_{Γ}	$(0.022 \pm 0.161)\%$						2 20 23 26
x	$(0.811 \pm 0.334)\%$	1	-0.007	-0.255 α	0.216		3
y	$(0.309 \pm 0.281)\%$	-0.007	1	-0.019 $lpha$	-0.280		3
q/p	$(0.95 \pm 0.22 \pm 0.10)\%$	-0.255 α	-0.019 α	1	-0.128 α		3
ϕ	$(-0.035\pm0.19\pm0.09)$	0.216	-0.280	-0.128 α	1		3
x	$(0.16 \pm 0.23 \pm 0.12 \pm 0.08)\%$	1	0.0615				27
y	$(0.57 \pm 0.20 \pm 0.13 \pm 0.07)\%$	0.0615	1				$\overline{27}$
R_M	$(0.0130 \pm 0.0269)\%$						28 - 32
$(x'_+)_{K\pi\pi^0}$	$(2.48 \pm 0.59 \pm 0.39)\%$	1	-0.69				33
$(y'_+)_{K\pi\pi^0}$	$(-0.07 \pm 0.65 \pm 0.50)\%$	-0.69	1				33
$(x')_{K\pi\pi^0}$	$(3.50 \pm 0.78 \pm 0.65)\%$	1	-0.66				33
$(y')_{K\pi\pi^0}$	$(-0.82\pm0.68\pm0.41)\%$	-0.66	1				33
x^2	$(0.1549 \pm 0.2223)\%$	1	-0.6217	-0.00224	0.3698	0.01567	34
y	$(2.997 \pm 2.293)\%$	-0.6217	1	0.00414	-0.5756	-0.0243	34
R_D	$(0.4118 \pm 0.0948)\%$	-0.00224	0.00414	1	0.0035	0.00978	$\overline{34}$
$2\sqrt{R_D}\cos\delta_{K\pi}$	$(12.64 \pm 2.86)\%$	0.3698	-0.5756	0.0035	1	0.0471	$\overline{34}$
$2\sqrt{R_D}\sin\delta_{K\pi}$	$(-0.5242\pm 6.426)\%$	0.01567	-0.0243	0.00978	0.0471	1	34
R_D	$(0.3030 \pm 0.0189)\%$	1	0.77	-0.87			1
$(x'_+)^2_{K\pi}$	$(-0.024 \pm 0.052)\%$	0.77	1	-0.94			1
$(y'_+)_{K\pi}$	$(0.98\pm 0.78)\%$	-0.87	-0.94	1			1
A_D	$(-2.1 \pm 5.4)\%$	1	0.77	-0.87			1
$(x'_{-})^2_{K\pi}$	$(-0.020 \pm 0.050)\%$	0.77	1	-0.94			1
$(y')_{K\pi}$	$(0.96 \pm 0.75)\%$	-0.87	-0.94	1			1
R_D	$(0.364 \pm 0.018)\%$	1	0.655	-0.834			35
$(x'_+)^2_{K\pi}$	$(0.032\pm0.037)\%$	0.655	1	-0.909			35
$(y'_+)_{K\pi}$	$(-0.12 \pm 0.58)\%$	-0.834	-0.909	1			35
A_D	$(2.3 \pm 4.7)\%$	1	0.655	-0.834			35
$(x'_{-})^2_{K\pi}$	$(0.006 \pm 0.034)\%$	0.655	1	-0.909			35
$(y')_{K\pi}$	$(0.20 \pm 0.54)\%$	-0.834	-0.909	1			$\overline{35}$
CP asymmetry	Value			$\Delta \langle t \rangle / \tau_{D^0}$			Reference
$A_{\rm CP}(D^0 \to K^+ K^-)$	$(-0.24 \pm 0.24)\%$						36 37
$A_{\rm CP}(D^0\to\pi^+\pi^-)$	$(0.11 \pm 0.39)\%$						36 37
$\Delta A_{ m CP}$	$(-0.82 \pm 0.21 \pm 0.11)\%$	$)\% \qquad (9.83 \pm 0.22 \pm 0.19)\%$				9	
$\Delta A_{ m CP}$	$(-0.62 \pm 0.21 \pm 0.10)\%$	$\pm 0.10)\%$ (26 $\pm 1)\%$			10		

Experimental input from B-factories, CLEO-C, TeVatron and LHCb

FIT RESULTS

parameter	result @ 68% prob.	95% prob. range
$ M_{12} \ [1/ps]$	$(6.9 \pm 2.4) \cdot 10^{-3}$	$[2.1, 11.5] \cdot 10^{-3}$
$ \Gamma_{12} \ [1/ps]$	$(17.2 \pm 2.5) \cdot 10^{-3}$	$[12.3, 22.4] \cdot 10^{-3}$
Φ_{12} [°]	(-6 ± 9)	[-37, 13]
x	$(5.6 \pm 2.0) \cdot 10^{-3}$	$[1.4, 9.6] \cdot 10^{-3}$
y	$(7.0 \pm 1.0) \cdot 10^{-3}$	$[5.0, 9.1] \cdot 10^{-3}$
q/p -1	$(5.3 \pm 7.7) \cdot 10^{-2}$	$[-8.5, 25.6] \cdot 10^{-2}$
ϕ [°]	(-2.4 ± 2.9)	[-8.8, 3.7]
A_{Γ}	$(0.7\pm0.8)\cdot10^{-3}$	$[-0.9, 2.3] \cdot 10^{-3}$
A_M	$(11 \pm 14) \cdot 10^{-2}$	$[-15, 44] \cdot 10^{-2}$
R_M	$(4.0 \pm 1.4) \cdot 10^{-5}$	$[1.7, 7.2] \cdot 10^{-5}$
R_D	$(3.27\pm0.08)\cdot10^{-3}$	$[3.10, 3.44] \cdot 10^{-3}$
$\delta_{K\pi}$ [°]	(18 ± 12)	[-14, 40]
$\delta_{K\pi\pi^0}$ [°]	(31 ± 20)	[-11, 73]
$a_{\rm CP}^{\rm dir}(D^0 \to K^+ K^-)$	$(-2.6 \pm 2.2) \cdot 10^{-3}$	$[-7.1, 1.9] \cdot 10^{-3}$
$a_{\rm CP}^{ m dir}(D^0 o \pi^+\pi^-)$	$(4.1 \pm 2.4) \cdot 10^{-3}$	$[-0.8, 9.0] \cdot 10^{-3}$
$\Delta a_{ m CP}^{ m dir}$	$(6.6 \pm 1.6) \cdot 10^{-3}$	$[-9.8, 3.5] \cdot 10^{-3}$

TABLE II. Results of the fit to D mixing data. $\Delta a_{\rm CP}^{\rm dir} = a_{\rm CP}^{\rm dir}(D^0 \to K^+ K^-) - a_{\rm CP}^{\rm dir}(D^0 \to \pi^+ \pi^-).$

2. EFT analysis of
$$\Delta F=2$$
 transitions
The mixing amplitudes $A_q e^{2i\phi_q} = \langle \overline{M}_q | H_{eff}^{\Delta F=2} | M_q \rangle$
 $H_{eff}^{\Delta B=2} = \sum_{i=1}^{5} C_i(\mu) Q_i(\mu) + \sum_{i=1}^{3} \widetilde{C}_i(\mu) \widetilde{Q}_i(\mu)$
 $Q_1 = \overline{q}_L^{\alpha} \gamma_{\mu} b_L^{\alpha} \overline{q}_L^{\beta} \gamma^{\mu} b_L^{\beta}$ (SM/MFV)
 $Q_2 = \overline{q}_R^{\alpha} b_L^{\alpha} \overline{q}_R^{\beta} b_L^{\beta}$ $Q_3 = \overline{q}_R^{\alpha} b_L^{\beta} \overline{q}_R^{\beta} b_L^{\beta}$
 $Q_4 = \overline{q}_R^{\alpha} b_L^{\alpha} \overline{q}_L^{\beta} b_R^{\beta}$ $Q_5 = \overline{q}_R^{\alpha} b_L^{\beta} \overline{q}_L^{\beta} b_R^{\beta}$
 $\widetilde{Q}_1 = \overline{q}_R^{\alpha} \gamma_{\mu} b_R^{\alpha} \overline{q}_R^{\beta} \gamma^{\mu} b_R^{\beta}$
 $\widetilde{Q}_2 = \overline{q}_L^{\alpha} b_R^{\alpha} \overline{q}_L^{\beta} b_R^{\beta}$ $\widetilde{Q}_3 = \overline{q}_L^{\alpha} b_R^{\beta} \overline{q}_L^{\beta} b_R^{\beta}$
 $\widetilde{Q}_2 = \overline{q}_L^{\alpha} b_R^{\alpha} \overline{q}_R^{\beta} \gamma^{\mu} b_R^{\beta}$
 $\widetilde{Q}_2 = \overline{q}_L^{\alpha} b_R^{\alpha} \overline{q}_R^{\beta} b_R^{\beta}$ $\widetilde{Q}_3 = \overline{q}_L^{\alpha} b_R^{\beta} \overline{q}_L^{\beta} b_R^{\beta}$
7 new operators beyond MFV involving
quarks with different chiralities

H_{eff} can be recast in terms of the $C_i(\Lambda)$ computed at the NP scale

- $C_i(\Lambda)$ can be extracted from the data (one by one)

- the associated NP scale Λ can be defined from

$$C_i(\Lambda) = \frac{LF_i}{\Lambda^2}$$

tree/strong interact. NP: L~1 perturbative NP: L ~ a_s^2 , a_w^2

Flavour structures:

MFV $- F_{1} = F_{SM} \sim (V_{tq} V_{tb}^{*})^{2}$ $-F_{i\neq 1}=0$

Frascati, 26/6/2012

next-to-MFV

$$-|F_i| \sim F_{SM}$$

- arbitrary phases

generic - |F_i| ~ 1 - arbitrary phases

present lower bound on the NP scale for L=1 and $F_{i} = 1$: from ε_{κ} : 4.9 10⁵ TeV from D mixing: 1.3 10⁴ TeV from B_d mixing: 3 10³ TeV from B mixing: 8 10² TeV * $\Delta F=2$ chirality-flipping operators are RG enhanced and thus probe larger NP scales * when these operators are allowed, the NP scale is easily pushed beyond the LHC reach * suppression of the 1 <-> 2 transitions strongly weakens the lower bounds Frascati, 26/6/2012 26

DIRECT CPV IN CHARM DECAYS

- Some basic facts known for a long time:
- To obtain a good description of SCS D BR's need:
 - final state interactions and corrections to factorization
 - sizable SU(3) breaking

2) The SM expectation for direct CPV is $\preceq 10^{\text{-3}}$

See for example Buccella et al. '95

EXPERIMENTAL STATUS

- Very recently, LHCb and CDF provided evidence of $\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$
- Combining LHCb, CDF and B-factories:

 $\begin{aligned} a_{\rm CP}^{\rm dir}(D^0 \to K^+ K^-) & (-2.6 \pm 2.2) \cdot 10^{-3} & [-7.1, 1.9] \cdot 10^{-3} \\ a_{\rm CP}^{\rm dir}(D^0 \to \pi^+ \pi^-) & (4.1 \pm 2.4) \cdot 10^{-3} & [-0.8, 9.0] \cdot 10^{-3} \\ \Delta a_{\rm CP}^{\rm dir} & (6.6 \pm 1.6) \cdot 10^{-3} & [-9.8, 3.5] \cdot 10^{-3} \end{aligned}$

well above the 10⁻³ barrier...

THEORY QUESTIONS

 Can we envisage a mechanism to enhance the SM prediction for CPV by one order of magnitude to reproduce the exp result?

> Brod, Kagan & Zupan '11; Pirtskhalava & Uttayarat '11; Bhattacharya, Gronau & Rosner '12; Cheng & Chiang '12; Brod, Grossman, Kagan & Zupan '12

• Can anything analogous to the ΔI =1/2 rule take place in SCS charm decays?

Golden & Grinstein, '89

ISOSPIN & UNITARITY

- Let us start from the basic knowledge:
 - SU(3) breaking is large \Rightarrow use only isospin
 - corrections to factorization are large \Rightarrow use a general parameterization
 - final state interactions are important ⇒
 implement unitarity & external info on
 rescattering

Franco, Mishima & LS '12

ISOSPIN AMPLITUDES

$$\begin{split} A(D^{+} \to \pi^{+} \pi^{0}) &= \frac{\sqrt{3}}{2} \mathcal{A}_{2}^{\pi}, & \mathbf{r}_{\mathsf{CKM}} = 6.4 \ \mathbf{10}^{-4} \\ A(D^{0} \to \pi^{+} \pi^{-}) &= \frac{\mathcal{A}_{2}^{\pi} - \sqrt{2} (\mathcal{A}_{0}^{\pi} + ir_{\mathrm{CKM}} \mathcal{B}_{0}^{\pi})}{\sqrt{6}}, \\ A(D^{0} \to \pi^{0} \pi^{0}) &= \frac{\sqrt{2} \mathcal{A}_{2}^{\pi} + \mathcal{A}_{0}^{\pi} + ir_{\mathrm{CKM}} \mathcal{B}_{0}^{\pi}}{\sqrt{3}}, & \mathbf{A} \ \mathbf{CP} - \mathbf{even} \\ \mathbf{B} \ \mathbf{CP} - \mathbf{odd} \\ A(D^{+} \to K^{+} \bar{K}^{0}) &= \frac{\mathcal{A}_{13}^{K}}{2} + \mathcal{A}_{11}^{K} + ir_{\mathrm{CKM}} \mathcal{B}_{11}^{K}, \\ A(D^{0} \to K^{+} K^{-}) &= \frac{-\mathcal{A}_{13}^{K} + \mathcal{A}_{11}^{K} - \mathcal{A}_{0}^{K} + ir_{\mathrm{CKM}} \mathcal{B}_{11}^{K} - ir_{\mathrm{CKM}} \mathcal{B}_{0}^{K}}{2} \\ A(D^{0} \to K^{0} \bar{K}^{0}) &= \frac{-\mathcal{A}_{13}^{K} + \mathcal{A}_{11}^{K} + \mathcal{A}_{0}^{K} + ir_{\mathrm{CKM}} \mathcal{B}_{11}^{K} + ir_{\mathrm{CKM}} \mathcal{B}_{0}^{K}}{2} \end{split}$$

NUMERICAL RESULTS FROM BR's

 $\begin{aligned} |\mathcal{A}_2^{\pi}| &= (3.08 \pm 0.08) \times 10^{-7} \text{ GeV} \,, \\ |\mathcal{A}_0^{\pi}| &= (7.6 \pm 0.1) \times 10^{-7} \text{ GeV} \,, \\ \arg(\mathcal{A}_2^{\pi}/\mathcal{A}_0^{\pi}) &= (\pm 93 \pm 3)^{\circ} \,. \end{aligned}$

No $\Delta I = 1/2$ rule for D decays, large strong phases

$$|\mathcal{A}_{13}^K - \mathcal{A}_{11}^K - \mathcal{A}_0^K| = (5.0 \pm 0.4) \times 10^{-7} \text{ GeV}$$

Should vanish in the SU(3) limit, but is O(1)!!

UNITARITY CONSTRAINTS

$$S = \begin{pmatrix} D \to D & D \to \pi\pi & D \to KK & \cdots \\ \pi\pi \to D & \pi\pi \to \pi\pi & \pi\pi \to KK & \cdots \\ KK \to D & KK \to \pi\pi & KK \to KK & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \equiv \begin{pmatrix} 1 & -i(T)^T \\ -i\operatorname{CP}(T) & S_S \end{pmatrix}$$

implies

$$T^{R} = S_{S}(T^{R})^{*}, \qquad T^{I} = S_{S}(T^{I})^{*}$$

Elastic case: $S = e^{2i\delta} \Rightarrow$ Watson theorem: T^R=|T^R| $e^{i\delta}$, T^I=|T^I| $e^{i\delta}$

2-CHANNEL UNITARITY

$$\begin{pmatrix} \mathcal{A}_0^{\pi} \\ \mathcal{A}_0^K \end{pmatrix} = \begin{pmatrix} \eta e^{2i\delta_1} & \pm i\sqrt{1-\eta^2} e^{i(\delta_1+\delta_2)} \\ \pm i\sqrt{1-\eta^2} e^{i(\delta_1+\delta_2)} & \eta e^{2i\delta_2} \end{pmatrix} \begin{pmatrix} (\mathcal{A}_0^{\pi})^* \\ (\mathcal{A}_0^K)^* \end{pmatrix}$$

Obtain constraints on magnitudes and phases of amplitudes For η close to 1, magnitudes almost unconstrained but phases close to δ_1 and δ_2

Is the 2-channel S-matrix unitary at the D mass?

 S_{12} has small amplitude and small phase. Is this compatible with measured S_{11} ?

CP ASYMMETRIES

 One can study the CP asymmetries as a function of the upper bound on the size of CPV contributions in the two- and threechannel scenarios. We write

1 40 - 1

$$\begin{split} |\mathcal{B}_{0}^{\pi}| &< \kappa |\mathcal{A}_{0}^{\pi}|, \\ |\mathcal{B}_{0}^{K} - \mathcal{A}_{0}^{K}| &< \kappa |\mathcal{A}_{0}^{K}|, \\ |\mathcal{B}_{11}^{K} - (\mathcal{A}_{11}^{K} - \mathcal{A}_{13}^{K})| &< \kappa |\mathcal{A}_{11}^{K} - \mathcal{A}_{13}^{K}|, \\ \end{split}$$
and consider predictions and fit results for CP asymmetries

CONCLUSIONS FROM UNITARITY

- The prediction does not reach the exp value within 2σ even for κ =8 in the 2-channel case
- Without unitarity constraints, the prediction reaches the exp value at the 2σ level for κ >5, but even for κ =8 it is still 1σ below
- How large can к be?
 - translate fit results into RGI parameters
 - compare with K and B

L. Silvestrini

FROM ISOSPIN AMPLITUDES TO RGI PARAMETERS

• The BR fit results can be translated into results for RGI parameters (aka topologies). Neglecting for simplicity $O(1/N_c^2)$ terms:

 $E_1(\pi) + E_2(\pi) = (1.72 \pm 0.04) \times 10^{-6} e^{i\delta} \text{ GeV},$

 $E_1(\pi) + A_2(\pi) - P_1^{\text{GIM}}(\pi) = (2.10 \pm 0.02) \times 10^{-6} e^{i(\delta \pm (71 \pm 3)^\circ)} \text{ GeV},$ $E_2(\pi) - A_2(\pi) + P_1^{\text{GIM}}(\pi) = (2.25 \pm 0.07) \times 10^{-6} e^{i(\delta \mp (62 \pm 2)^\circ)} \text{ GeV}$

- E_1 does not dominate the amplitudes \Rightarrow we are away from the infinite mass limit
- All amplitudes of same size, w. large phases Frascati, 26/6/2012 L. Silvestrini 40

THE MEANING OF K

• The condition $|\mathcal{B}_0^{\pi}| < \kappa |\mathcal{A}_0^{\pi}|$, means

$$|P_1(\pi)| \le \kappa \left| \frac{2}{3} E_1(\pi) - \frac{1}{3} E_2(\pi) + A_2(\pi) - P_1^{\text{GIM}}(\pi) \right|$$

- κ is the ratio of $|\mathsf{P}_1|$ over all other topologies
- Notice that $P_1 \sim P_b P_s$ while $P_1^{GIM} \sim P_d P_s$
- How large should $|P_1|$ be to reproduce Δa_{CP}^{dir} ?

2-channel

DYNAMICAL ARGUMENTS

- The amplitudes for K, D and B $\rightarrow \pi\pi$ are formally the same, with the obvious flavour and CKM replacements.
- In the Kaon system, one has

 $(P_u - P_c) \sim 3 (P_t - P_c) \sim 25 (E_1 + E_2)$

No enhancement expected for P_u (will be checked on the lattice soon), while P_c and P_t generate local operators with chirally
 Frascati, 26/6/2012

DYNAMICAL ARGUMENTS II

- In charm decays, no chiral enhancement is present, so that one expects $|P_1| = |P_b - P_s| \le |E_1|, |E_2|, |A_1|, |A_2|, |P_1^{GIM}|$
 - i.e. $\kappa \leq 1$.
- In B decays one is much closer to the infinite mass limit so that |E₁| and |E₂| dominate, with all other contractions power suppressed.

Frascati, 26/6/2012

CONCLUSIONS

- The SM UTA has reached high precision and redundancy, allowing to test the SM and search for NP
- Overall picture consistent with the SM, with nonstandard CPV in ΔF =2 possible at the few degrees level in all sectors
- Stringent bounds on the NP scale from $\Delta F\text{=}2$ processes

CONCLUSIONS II

- However, looking more closely there are several (unexpected) deviations from the SM at the 2-3 σ level: sin2 β , B \rightarrow (D^(*)) τv , ΔA_{CP} ,...
- These deviations are not easily accommodated in simple NP models
- Direct searches are also telling us that simple NP models are unnatural
- Wait for more hints in the very near future!

angles vs the others

levels @ 95% Prob

inclusives vs exclusives

 $sin 2\beta_{UTfit} = 0.76 \pm 0.10 \neg$ no semileptonic

Frascati, 26/6/2012