Structure of Mass Gap Between Two Spin Multiplets

Takayuki Matsuki (Tokyo Kasei U.)

with T. Morii (Kobe U.) and K. Sudoh (KEK)

Based on

- Structure of mass gap between two spin multiplets, hep-ph/0710.0325
- Radial Excitations of Heavy-Light System, Eur. Phys. J. C31(2007) 701
- New Heavy-Light Mesons Qqbar, Prog. Theor. Phys. 51 (2007) 1077 (hep-ph/0605019).
- •. 0⁺ and 1⁺ States of *B* and *B_s* Mesons, Phys. Lett. B606 (2005) 329 (hep-ph/0411034).
- Spectroscopy of heavy mesons expanded in $1/m_Q$, Phys. Rev. D56 (1997) 5646.

Motivation1

- Successful prediction/reproduction of *D_s* mass spectra using our semi-relativistic potential model
 - Lowering 0⁺ and 1⁺ of $D_0^{*}(2308)$ and $D_1^{'}(2427)$ compared with other potential models

Hadron07

model (Godfrey & Isgur, PRD43, 1679 (1991)) 2007/10/09 Ha

Other Mass Spectra

Motivation2

- Successful prediction of the mass gap using an effective Lagrangian approach (Bardeen & Hill)
 - $\Delta M(m_c) = 338 \,\mathrm{MeV}$
 - Later corrected to the experimentally observed value by B+Eichten+H using **S(3)**
 - Wonderful agreement with the experiments (349 MeV) !
 - Is this prediction?
 - Is this describing the underling physics?
 - Is an effective theory constructed from a four-fermi theory a true theory?
 - Their prediction has no light quark flavor dependency.
 - BEH tried to predict the mass gap for D as 255 MeV but the experiment gives more than 400 MeV.
 D(0+)-D(0-)=2308-1867=441MeV

D(1+)-D(1-)=2427-2008=419MeV

- Hence there is no way to distinguish their prediction with that for heavy D, B, or Bs mesons
- If finding the mass gap eq. depending on the light quark mass, there might be a hint to get to the true underlying physics.

2007/10/09

Hadron07

D mesons

FIG. 1. Spectroscopy of *D*-meson excitations. The lines show possible single pion transitions.

Belle collab. PR D69 (2004) 112002

Our Model Hamiltonian for $Q\overline{q}$ System

• Start with an effective Hamiltonian for 2-body bound states

$$H = (\vec{\alpha}_{q} \cdot \vec{p}_{q} + \beta_{q}m_{q}) + (\vec{\alpha}_{Q} \cdot \vec{p}_{Q} + \beta_{Q}m_{Q}) + \beta_{q}\beta_{Q}S$$

$$+ \left[1 - \frac{1}{2} \left\{ \vec{\alpha}_{q} \cdot \vec{\alpha}_{Q} + (\vec{\alpha}_{q} \cdot \vec{n})(\vec{\alpha}_{Q} \cdot \vec{n}) \right\} \right]V$$

$$S(r) = \frac{r}{a^{2}} + b, \quad V(r) = -\frac{4}{3}\frac{\alpha_{s}}{r}$$
Semi-relativistic approach to heavy meson
$$- Foldy-Wouthuysen-Tani (FWT) \text{ transformation}$$
to the heavy quark ~1/m_{Q} expansion

• Heavy Meson System (eigenvalue equation): mass of a heavy meson= $m_Q + E^l$

$$H\psi_{l} = E^{l}\psi_{l} \qquad H = H_{\text{FWT}} - m_{Q} = m_{Q}H_{-1} + H_{0} + \frac{1}{m_{Q}}H_{1} + \frac{1}{m_{Q}^{2}}H_{2} + \cdots$$
$$E^{l} = E_{0}^{l} + \frac{1}{m_{Q}}E_{1}^{l} + \frac{1}{m_{Q}^{2}}E_{2}^{l} + \cdots$$
$$\psi_{l} = \psi_{l0} + \frac{1}{m_{Q}}\psi_{l1} + \frac{1}{m_{Q}^{2}}\psi_{l2} + \cdots$$

Effective Hamiltonian Expanded in $1/m_O$

Patterns of Symmetry Breaking

- mass gap between degenerate masses
 - In the heavy quark limit, masses for 0⁻ and 1⁻, and also 0⁺ and 1⁺ are degenerate
 - In the chiral limit, all these four states are degenerate (S has mass dimension)

Numerical Results of ΔM

(without $1/m_0$)

- mass gap between degenerate masses (figure at the lowest order, i.e., without 1/m_Q corrections)
 - In the heavy quark limit, masses for 0^- and 1^- , and also 0^+ and 1^+ are degenerate
 - Light quark mass dependence of $\Delta M(m_q) = M(0^+) M(0^-) = M(1^+) M(1^-)$

2007/10/09

Numerical Formula for ΔM

• First derive numerical mass gap between two spin (degenerate) multiplets

$$\Delta M_0 = M(0^+) - M(0^-) = M(1^+) - M(1^-) \approx \Lambda_0 - m_q$$

 $\Lambda_{Q} = 300 \text{ MeV}$ and m_{q} light quark mass

- More precisely

 $\Delta M_0 = M(0^+) - M(0^-) = M(1^+) - M(1^-) = g_0 \Lambda_Q - g_1 m_q$ $g_0 = 0.984, g_1 = 1.080 \quad \text{for } D/D_s$ $g_0 = 1.017, g_1 = 1.089 \quad \text{for } B/B_s$

• From these equations, the mass gap for a degenerate system is essentially given by (Note negative dependency on m_q)

 $\Delta M_0 = \Lambda_Q - m_q$

Numerical Results of ΔM

(first order)

- mass gap between masses of spin multiplets (figure at the next order, i.e., with 1/m_Q corrections included)
 - Light quark mass dependence is given by the equation

$$\Delta M(m_q) = M(0^+) - M(0^-) \simeq M(1^+) - M(1^-) \simeq g_0 \Lambda_Q - g_1 m_q + \frac{c + d \cdot m_q}{m_Q}$$

11

2007/10/09

Prediction

- mass gap between masses of spin multiplets
 - Light quark mass dependence is given by the equation

$$\Delta M(m_q) = M(0^+) - M(0^-) \simeq M(1^+) - M(1^-) \simeq g_0 \Lambda_Q - g_1 m_q + \frac{c + d \cdot m_q}{m_Q}$$
- where

$$c = 1.28 \times 10^5 \text{ MeV}^2$$

$$d = 4.26 \times 10^2 \text{ MeV}$$

this predicts

 $B(0^+) - B(0^-) \approx B(1^+) - B(1^-) \approx 322 \text{ MeV}$ $B_s(0^+) - B_s(0^-) \approx B_s(1^+) - B_s(1^-) \approx 240 \text{ MeV}$

Numerical Values1

TABLE I: Optimal values of parameters.							
Parameters	α_s^c	b (GeV)					
	$0.261 {\pm} 0.001$	$0.393 {\pm} 0.003$	$1.939 {\pm} 0.002$	0.0749 ± 0.0020			
	$m_{u,d}$ (GeV)	m_s (GeV)	m_c (GeV)	m_b (GeV)			
	$0.0112 {\pm} 0.0019$	$0.0929 {\pm} 0.0021$	$1.032{\pm}0.005$	$4.639 {\pm} 0.005$			
	# of data	# of parameter	total χ^2 /d.o.f				
	18	8	107.55				

TABLE II: Degenerate masses of model calculations and their mass gap between $0^+(1^+)$ and $0^-(1^-)$ for n = 1.

	$M_0(D)$	$M_0(D_s)$	$M_0(B)$	$M_0(B_s)$	
$0^{-}/1^{-}$	1784	1900	5277	5394	Decreasing as
$0^{+}/1^{+}$	2067	2095	5570	5098	D -> Ds
$0^+(1^+) - 0^-(1^-)$	283	195	293	204	(u -> s)

216

171

TABLE III: Model calculations of the mass gap. Values in brackets are taken from the experiments. Units are MeV.

Mas	s gap $(n =$	 ΔM 	(D)	ΔM	(D_s)	ΔM	(B)	$\Delta M(B_s)$
0+ -	- 0-	414 (4	441)	358	(348)	32	2	239
1+ -	- 1-	410 (4	419)	357	(348)	32	0	242
	(n = 2)	$\Delta M(D)$	ΔM	(D_s)	ΔM	(B)	ΔM	(B_s)
	$0^{+} - 0^{-}$	308	2	74	20	6	- 10	60

327

 $1^{+} - 1^{-}$

350

Numerical Values2

$^{2s+1}L_J(J^P)$	$M_{\rm calc}(D)$	$M_{\rm obs}(D)$	$M_{ m calc}(D_s)$	$M_{ m obs}(D_s)$
${}^{1}S_{0}(0^{-})$	1869	1867	1967	1969
${}^{3}S_{1}(1^{-})$	2011	2008	2110	2112
${}^{3}P_{0}(0^{+})$	2283	2308	2325	2317
${}^{n}{}^{3}P_{1}{}^{n}(1^{+})$	2421	2427	2467	2460

TABLE IV: D/D_s meson mass spectra for both the calculated and experimentally observed ones. Units are MeV.

TABLE V: B/B_s meson mass spectra for both the calculated and experimentally observed ones. Units are MeV.

$^{2s+1}L_J(J^P)$	$M_{\rm calc}(B)$	$M_{\rm obs}(B)$	$M_{ m calc}(B_s)$	$M_{\rm obs}(B_s)$
${}^{1}S_{0}(0^{-})$	5270	5279	5378	5369
${}^{3}S_{1}(1^{-})$	5329	5325	5440	-
${}^{3}P_{0}(0^{+})$	5592	_	5617	_
$^{"^{3}}P_{1}"(1^{+})$	5649	-	5682	-

recent experiments find

 $B(1^+) = 5720(5720), B(2^+) = 5737(5745)$

 $B_s(2^+) = 5847(5839)$ MeV

numbers in brackets are from expt.

Explanation due to Effective Theory

• Lets try to explain the light quark dependency of ΔM by using the chiral effective theory with heavy quark symmetry

(Bardeen et al., PRD68 (2003) 054024)

• mass gap is given by

Parity doublets : $\mathcal{H} = (0^-, 1^-), \mathcal{H} = (0^+, 1^+)$

 $L_{mass} = \frac{g_{\pi}}{4} \Big[\operatorname{Tr} \left(\overline{\mathcal{H}}' \widetilde{\sigma} \mathcal{H}' \right) - \operatorname{Tr} \left(\overline{\mathcal{H}} \widetilde{\sigma} \mathcal{H} \right) \Big] \qquad \begin{array}{c} \text{Plus sign instead of} \\ \text{minus sign} \\ \langle \widetilde{\sigma} \rangle = f_{\pi} I_{3} \qquad \widetilde{\sigma} = \sigma \bigoplus m_{q} \end{array}$

• Goldberger-Treiman relation

$$\Delta M(m_q) = M_X(1^+) - M_X(1^-) = M_X(0^+) - M_X(0^-) = g_\pi f_\pi$$

 $\Delta M(m_c) = 349, \Delta M(\infty) = 338 \text{ for } D_s$

349 MeV is an input and cannot be identified to be DsJ

2007/10/09

Hadron07

Discussions and Summary

- Globa Flavor SU(3) Recovery (Dmitrasinovic, PRL 94 (2005) 162002)
 - He tried to explain by tetraquark.

 $M(D(0^+)) = 2308, \quad M(D_s(0^+)) = 2317$

 $M(D(1^+)) = 2427, \quad M(D_s(1^+)) = 2460$

- This can be nicely explained by our mass gap expression, i.e., monotonously decreasing behavior of the mass gap between two spin multiplets.
- Mass gap of Heavy Baryons
 - $QQ = 3^* \rightarrow QQq = 3^* \times 3$ (like a heavy meson)
 - May apply our formula. For instance, $c+d \cdot m$

$$\Delta M = M'(ccq) - M(ccq) = \Lambda_Q - m_q + \frac{c + u'm_q}{m_{Q1} + m_{Q2}}$$

- We have derived an empirical formula for the mass gap between two spin multiplets, i.e., $(0^-, 1^-)$ and $(0^+, 1^+)$, which is given above.
- May give us a hint to find the underlying (true?) physics.

Backups

• Have time, then show these

Intuitive Explanation of ΔM

m_a dependence of the mass gap:

$$\Delta M = M^{1}(0^{+}) - M^{-1}(0^{-}) = M^{1}(1^{+}) - M^{-1}(1^{-})$$

$$= \int \frac{d^{3}x}{4\pi r^{2}} \left\{ \Phi_{1}^{\dagger}(r) \begin{pmatrix} m_{q} + S + V & -\partial_{r} + \frac{1}{r} \\ \partial_{r} + \frac{1}{r} & -m_{q} - S + V \end{pmatrix} \Phi_{1}(r) - \Phi_{-1}^{\dagger}(r) \begin{pmatrix} m_{q} + S + V & -\partial_{r} - \frac{1}{r} \\ \partial_{r} - \frac{1}{r} & -m_{q} - S + V \end{pmatrix} \Phi_{-1}(r) \right\}$$

$$= \int dr \left[\Phi_{1}^{\dagger}(r) K_{1} \Phi_{1}(r) - \Phi_{-1}^{\dagger}(r) K_{-1} \Phi_{-1}(r) \right] + m_{q} \int dr \left[\Phi_{1}^{\dagger}(r) \beta \Phi_{1}(r) - \Phi_{-1}^{\dagger}(r) \beta \Phi_{-1}(r) \right].$$
where
$$\Phi_{k}(r) = \begin{pmatrix} u_{k}(r) \\ v_{k}(r) \end{pmatrix}, \quad K_{k} = \begin{pmatrix} S(r) + V(r) & -\partial_{r} + \frac{k}{r} \\ \partial_{r} + \frac{k}{r} & -S(r) + V(r) \end{pmatrix}$$

$$k=-1(+1) \text{ corresponds to L=0(L=1) \text{ states, then } k=+1 \text{ is more relativisite than } k=-1.$$

k=-1(+1) corresponds to L=0(L=1) states, then k=+1 is more relativisite than k=-1, which means a lower component $v_1(r)$ is larger than

 $\mathbf{v}_{-1}(\mathbf{r}). \quad \text{Hence } (u_1)^2 - (v_1)^2 = \Phi_1^{\dagger}(r)\beta\Phi_1(r) \text{ becomes smaller than } \Phi_{-1}^{\dagger}(r)\beta\Phi_{-1}(r).$

Thus, the coefficient of m_a becomes negative.

	$M_0(D)$	$M_0(D_s)$	$M_0(B)$	$M_0(B_s)$
0-/1-	1784	1900	5277	5394
$0^{+}/1^{+}$	2067	2095	5570	5598
$0^+(1^+) - 0^-(1^-)$	283	195	293	204

TABLE II: Degenerate masses of model calculations and their mass gap between $0^+(1^+)$ and $0^-(1^-)$ for n = 1.

Tetra-quark model

$$\begin{split} |D^0 \subset \bar{\mathbf{3}}_{\mathbf{A}}\rangle &= \frac{1}{2} |c(s(\bar{u}\,\bar{s}\,-\bar{s}\,\bar{u}) - d(\bar{d}\,\bar{u}\,-\bar{u}\,\bar{d}))\rangle, \\ |D^+ \subset \bar{\mathbf{3}}_{\mathbf{A}}\rangle &= \frac{1}{2} |c(s(\bar{d}\,\bar{s}\,-\bar{s}\,\bar{d}) - u(\bar{d}\,\bar{u}\,-\bar{u}\,\bar{d}))\rangle, \\ |D_s^+ \subset \bar{\mathbf{3}}_{\mathbf{A}}\rangle &= \frac{1}{2} |c(u(\bar{u}\,\bar{s}\,-\bar{s}\,\bar{u}) - d(\bar{d}\,\bar{s}\,-\bar{s}\,\bar{d}))\rangle, \end{split}$$

