

CHARM SPECTROSCOPY AT

Vincent Poireau CNRS-IN2P3, LAPP Annecy On behalf of the BaBar collaboration

CHARM SPECTROSCOPY AT BABAE

• cs mesons

- D_{s1}(2536): precise measurements
- D_{s0}*(2317) and D_{s1}(2460): the first surprises
- D_{sJ}*(2860): one more surprise
- X(2690) and D_{sJ}(2700): last surprises?

Charmed baryons

- Observation of Ω_c^0 and discovery of Ω_c^{*0}
- Discovery of $\Lambda_c(2940)$
- Observation of $\Xi_c(2980)^+$ and $\Xi_c(3077)^+$
- Discovery of Ξ_c(3055)⁺ and Ξ_c(3123)⁺
- Not mentioned in this talk
 - D, D* mesons
- Charmonium spectroscopy in BaBar is covered by Arafat Mokhtar
 - Talk given on Monday at 14h00, in the session "Quarkonia states"

BABAR: B AND c-FACTORIES

As of 2007/09/17 00:00

cs MESONS

WHAT IS NEW FOR D_{sJ} STATES?

4 V. Poireau Hadron 07 October 2007

CURRENT SITUATION

- D_s*, D_{s1}(2536)⁺, D_{s2}(2573)⁺: well known, but J^P only inferred (not measured!)
- D_{s0}*(2317)⁺, Apr. 2003: unexpected observation of a narrow resonance in BaBar
- D_{s1}(2460)⁺, May 2003: CLEO,
 BaBar observed a new narrow resonance
- D_{sJ}*(2860)⁺, Jul. 2006: new state discovered by BaBar
 - X(2690)⁺, Jul. 2006: broad enhancement seen in **BaBar**
 - D_{sJ}(2700)⁺, Jul. 2006: new state discovered by Belle (≡ X(2690)?)

Let's go step by step!

D_{s1}(2536): NEW RESULTS

- High precision measurement of D_{s1}→ D^{*+}K⁰_s in continuum
- Mass
 - M = 2534.85 ± 0.02 ± 0.40 MeV
- First measurement of the width
 Γ = 1.03 ± 0.05 ± 0.12 MeV

- First observation of D_{s1} in B decays
 - $B \rightarrow D^{(*)}D_{s1}$ (8 modes), $D_{s1} \rightarrow D^*K$
 - N = 182 ± 19 events, 12σ
- Mass
 - M = 2534.78 ± 0.31 ± 0.40 MeV
- J^P quantum number
 - Statistics too low to conclude yet

- Discovered 4 years ago in e⁺e⁻ → cc̄ events ; subsequently observed in B decays
- D_{s0}*(2317) and D_{s1}(2460) very well established and known experimentally
 - Masses and tight upper limits on widths
 - **J**^P: 0⁺ for D_{s0}*(2317) and 1⁺ for D_{s1}(2460)
 - decay modes and branching fractions
- Interpretation of these new states still unclear!
 - One possibility: identify these 2 states as the **0**⁺ and **1**⁺ **cs** states
 - However strong difficulties within the potential model
 - Other possibilities
 - 4 quark states? DK molecule? $D\pi$ atom? Chiral symmetry?
- Are there some more suprises? Yes!

Belle: Phys. Rev. Lett. 91 (2003) 262001 BaBar: Phys. Rev. D74 (2006) 032007 Belle: Belle-Conf-0461 (2006) BaBar: Phys. Rev. D74 (2006) 031103

D_{sJ}*(2860): ANOTHER NEW STATE

• Looking in the $c\overline{c}$ continuum: $e^+e^- \rightarrow D^0(\kappa^-\pi^+,\kappa^-\pi^+\pi^0)K^+X$ and $e^+e^- \rightarrow D^+(\kappa^-\pi^+\pi^+)K^0_{s}X$

New state at 2860 MeV/c²! (fit with a Breit-Wigner)
 Bump at 2690 MeV/c²? (better fit with a Gaussian than a Breit-Wigner)

- M = (2688 ± 4 ± 3) MeV/c²
- Γ = (112 ± 7 ± 36) MeV

Need confirmation by other experiments or in other channels...

EVEN MORE STATES: D_s(2700)

- New resonance decaying to D^0K^+ discovered by Belle in $B^+ \rightarrow \overline{D}^0(D^0K^+)$
 - D_{sJ}(2700)
- Same resonance as seen by BaBar in continuum, X(2690)?
 - Mass and width consistent, same decay mode
- Study of $B \rightarrow \overline{D}^{(*)}D^{(*)}K$ decays in BaBar
 - Looking at 8 DK + 8 D*K invariant masses

- Enhancement observed around 2700 MeV/c² in DK and D*K
- Full Dalitz plot analysis ongoing

CHARMED BARYONS

CURRENT STATE

- All 9 ground states with J^P=1/2⁺ observed
- 5 out of 6 ground states with J^P=3/2⁺ observed
 - only Ω_c^{*0} was missing

 $J^{P} = 1/2^{+}$

STUDY OF Ω_c^0

- Ω_c^{0} : css charm baryon ground state
- Observed in 4 modes
- First observation of $B \rightarrow \Omega_c^{0} X$

DISCOVERY OF Ω_{c}^{*0}

- $\Omega_c^{*0} \rightarrow \Omega_c^{0} \gamma$, in e+e- $\rightarrow \Omega_c^{*0} X$ • css baryon, J^P = 3/2⁺
- Combining 4 decay modes of Ω_c^{0} gives
 - 105 ± 21 ± 6 events
 - 5.2σ significance
- Difference of mass
 - $\Delta m = m(\Omega_c^{*0}) m(\Omega_c^{0})$
 - Measured: 70.8 ± 1.0 ± 1.1 MeV/c²
 - Predicted range: 50 94 MeV/c²
- Branching fraction ratio:

$$\frac{\sigma(e^+e^- \to \Omega_c^{*0} X, \mathbf{x}_p(\Omega_c^{*0}) > 0.5)}{\sigma(e^+e^- \to \Omega_c^0 X, \mathbf{x}_p(\Omega_c^0) > 0.5)} = 1.01 \pm 0.23 \pm 0.11$$

- $\Omega_c^0 \to \Omega^- \pi^+, \ \Omega^- \to \Lambda K^-$
- $\Omega_c^0 \to \Omega^- \pi^+ \pi^0, \ \Omega^- \to \Lambda K^-$
- $\Omega_c^0 \to \Omega^- \pi^+ \pi^- \pi^+, \ \Omega^- \to \Lambda K^-$
- $\Omega_c^0 \to \Xi^- K^- \pi^+ \pi^+, \ \Xi^- \to \Lambda \pi^-$

DISCOVERY OF Λ_{c} (2940)

MeV/c²)

3000

- New baryon: $\Lambda_c(2940) \rightarrow D^0p$
 - First observation of charmed baryons decaying to D meson and light baryon
 - Simplest explanation: udc baryon
- Measurements of M and Γ are consistent

、 <i>、</i> , , , , , , , , , , , , , , , , , , ,	$M, \ { m MeV}/c^2$	$\Gamma, {\rm MeV}$
BaBar $\Lambda_c(2940)^+$	$2939.8 \pm 1.3 \pm 1.0$	$17.5 \pm 5.2 \pm 5.9$
Belle $\Lambda_c(2940)^+$	$2938.0 \pm 1.3^{+2.0}_{-4.0}$	13^{+8+27}_{-5-7}
CLEO $\Lambda_c(2880)^+$	$2882 \pm 1 \pm 2$	$4 \pm 2 \pm 2$
BaBar $\Lambda_c(2880)^+$	$2881.9 \pm 0.1 \pm 0.5$	$5.8\pm1.5\pm1.1$
Belle $\Lambda_c(2880)^+$	$2881.2 \pm 0.2 \pm 0.4$	$5.8 \pm 0.7 \pm 1.1$

Λ_c(2880)

2000

 $N = 2280 \pm 310$

> 7

Confirmed later by Belle in $\Lambda_{\rm c}{}^{\scriptscriptstyle +}\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$

- No signals in D⁺p for both baryons
 - Isospin = 0
 - Both states are isoscalars ($\Lambda_c \operatorname{not} \Sigma_c$)

OBSERVATION OF $\Xi_c(2980)^+$ **AND** $\Xi_c(3077)^+$

- $\Xi_{\rm c}(2980)^+$, $\Xi_{\rm c}(3077)^+$ and $\Xi_{\rm c}(3077)^0$ first observed by Belle
 - Excited charm-strange baryons
- Events / (0.003 GeV/c BABAR $\Xi_{\rm c}(3077)^+$ 316 fb⁻¹ preliminary Confirmed by BaBar in $\Lambda_{c}^{+}K^{-}\pi^{+}$, with $\Xi_{c}(2980)^{-1}$ $\Lambda_c^+ \rightarrow p K^- \pi^+$ 3.04 3.08 3.10

2.96

2.98

3.02

3.06

3.12

 $M[(pK\pi^+)K\pi^+]-M(pK\pi^+)+2.286 (GeV/c^2)$

- BaBar confirmed also $\Xi_{c}(3077)^{0}$
- Comparison of M and Γ measurements

				$M, \text{ MeV}_{/}$	c^{2}	Γ, MeV	\checkmark	
	Belle	$\Xi_c(2980$	$)^{+}$	2978.5 ± 2.1	± 2.0	43.5 ± 7.5 =	± 7.0	Different: BaBar incorporates
	BaBar	$\Xi_c(2980$	$)^{+}$	2967.1 ± 1.9	± 1.0	23.6 ± 2.8 =	± 1.3	threshold and decay to Σ_c^{++} K ⁻
	Belle	$\Xi_c(3080$	$)^+$ (3076.7 ± 0.9	± 0.5	$6.2 \pm 1.2 \pm$	0.8	
	BaBar	$\Xi_c(3080$	$)^{+}$:	3076.4 ± 0.7	± 0.3	$6.2 \pm 1.6 \pm$	± 0.5	➢ Good agreement
	Belle	$\Xi_c(3080$	$)^{0}$:	3082.8 ± 1.8	± 1.5	$5.2 \pm 3.1 \pm$	- 1.8	
Poireau	BaBar	$\Xi_c(3080$	$)^0$ (3079.3 ± 1.1	± 0.2	$5.9 \pm 2.3 \pm$	ر 1.5 _	BaBar: hon-ox/0607042

DISCOVERY OF $\Xi_c(3055)^+$ AND $\Xi_c(3123)^+_{ME}$

• Updated analysis with more statistics

DISCOVERY OF $\Xi_c(3055)^+$ AND $\Xi_c(3123)^+_{NEN}$

- Updated analysis with more statistics
- New state (looking in the
 - $\Sigma_{c}(2455)^{++}$ band):

$\Xi_c(3055)^+$	
Mass (MeV/c^2)	$3054.2 \pm 1.2 \pm 0.5$
Width (MeV)	$17\pm 6\pm 11$
Yield	$218\pm53\pm79$
Significance	6.4σ

19

DISCOVERY OF $\Xi_c(3055)^+$ AND $\Xi_c(3123)^+_{NEN}$

Updated analysis with more statistics 384 fb⁻¹ preliminary New state (looking in the $\Sigma_{c}(2455)^{++}$ band): 2.50 $\Xi_c(3055)^+$ Mass (${
m MeV}/c^2$) 3054.2 \pm 1.2 \pm 0.5 $\Sigma_{c}(2455)^{++}K^{-} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}$ Width (MeV) $17\pm 6\pm 11$ $\Xi_{\rm c}(3077)$ ⁸⁰ Ξ_c(2980)⁺ Yield $218 \pm 53 \pm 79$ 70F Significance 6.4σ Evidence for (looking in the $\Sigma_{c}(2520)^{++}$ band): $\Sigma_c(2520)^{++}K^- \rightarrow \Lambda_c^+ K^- \pi^+$ Ξ_c(3077)⁺ $\Xi_c(3123)^+$ B 120 Mass (${
m MeV}/c^2$) 3122.9 \pm 1.3 \pm 0.3 Width (MeV) $4.4\pm3.4\pm1.7$ 80 vents / $101\pm34\pm9$ Yield Significance 3.6σ Ξ_(3123)¹ 20 EVIDENCE 2 95 3.05 3.10 3 00 3 1 5 October 2007 V. Poireau Hadron 07

 $M(\Lambda_c^+ K^- \pi^+) (GeV/c^2)$

BaBar: Preliminary

CONCLUSIONS

- Tens of new charmed states have been discovered since 1999, beginning of BaBar!
- cs summary:
 - D_{s0}*(2317), D_{s1}(2460): well determined experimentally, not understood theoretically
 - D_{sJ}*(2860), D_{sJ}(2700): still unclear experimentally and theoretically
- Charmed baryons
 - Many states studied by BaBar: Ω_c^0 , $\Xi_c(2980)^+$ and $\Xi_c(3077)^+$
 - Many new states discovered: Ω_c^{*0} , $\Lambda_c(2940)$, $\Xi_c(3055)^+$ and $\Xi_c(3123)^+$

Experimental status:

- Lots of on-going analyses with the current dataset
 - More decay modes investigated to understand these resonances
- BaBar is taking data till Sept. 2008
- Lots of new data to analyse!
 - We can bet that more surprises will arise!

ADDITIONAL SLIDES

D_{s0}*(2317) IN INCLUSIVE DATA

- Study of $e^+e^- \rightarrow c\overline{c}$ events
 - Resonance in $D_s^+ \pi^0$
- Complex kinematics with competing contributions and mutual cross-feed
- Properties
 - M = (2319.6 ± 0.2 ± 1.4) MeV/c²
 - Γ < 3.8 MeV at 95% CL
- No decay to $D_s^+\pi^+$ or $D_s^+\pi^-$
 - No indication of isospin partners
 - 4 quark model disfavored

D_{s1}(2460) observed in 3 decay final states

Properties
 M = (2460.1 ± 0.2 ± 0.8) MeV/c²
 Γ < 3.5 MeV at 95% CL

isospin partners as yet

EVEN MORE STATES: D_{sJ}(2700)

• Study of $B^+ \rightarrow \overline{D}{}^0D^0K^+$

- Looking at the Dalitz plot and the D⁰K⁺ projection
- New resonance decaying to D⁰K⁺
 - $\blacksquare \quad B^{+} \rightarrow \overline{D}{}^{0}D_{sJ}, \ D_{sJ} \rightarrow D^{0}K^{+}$
 - M = (2715 ± 11 ⁺¹¹₋₁₄) MeV/c²
 - Γ = (115 ± 20 ⁺³⁶₋₃₂) MeV
 - J^P = 1⁻ favored

Same resonance as seen by BaBar in continuum, X(2690)?

- Mass and width consistent, same decay mode
- Interpretation?
 - $c\bar{s}$ state 2^3S_1 ?
 - expected mass at 2720 MeV/c²
 - Chiral symmetry: 1⁺ 1⁻ doublet paired with D_{s1}(2536)?

Phys.Polon. B 35, 2377 (2004)

STUDY OF Ξ(1530)⁰ AND Ξ(1690)⁰

$\Xi(1530)^{0} \operatorname{from} \Lambda_{c}^{+} \rightarrow (\Xi^{-} \pi^{+}) \operatorname{K}^{+}$

- Use of Legendre polynomial moments to determine the spin
 - Spin 3/2 clearly established
 - Using previous results: P-wave 3/2⁺
- Showed the presence of an S-wave Ξ⁻ π⁺₁δ² amplitude, with some indication of a σ² Ξ(1690) S-wave contribution

 $\Xi(1690)^{0} \text{ from } \Lambda_{c}^{+} \rightarrow (\Lambda \overline{K}^{0}) K^{+} o^{th}$

- Legendre polynomial moments
 - Spin 1/2 preferred
- Fitting now the whole Dalitz Plot
 - to get more precise (**M**,**Γ**) measurements
 - to show the existence of $\Lambda_c^+ \rightarrow \Lambda a^0(980)^+$

