CHARM SPECTROSCOPY
AT BABAR

Vincent Poireau
CNRS-IN2P3, LAPP Annecy
On behalf of the BaBar collaboration
CHARM SPECTROSCOPY AT BABAR

- c\bar{s} mesons
 - $D_{s1}(2536)$: precise measurements
 - $D_{s0}^*(2317)$ and $D_{s1}(2460)$: the first surprises
 - $D_{sJ}^*(2860)$: one more surprise
 - $X(2690)$ and $D_{sJ}(2700)$: last surprises?

- Charmed baryons
 - Observation of Ω_c^0 and discovery of Ω_c^{*0}
 - Discovery of $\Lambda_c(2940)$
 - Observation of $\Xi_c(2980)^+$ and $\Xi_c(3077)^+$
 - Discovery of $\Xi_c(3055)^+$ and $\Xi_c(3123)^+$

- Not mentioned in this talk
 - D, D* mesons

- Charmonium spectroscopy in BaBar is covered by Arafat Mokhtar
 - Talk given on Monday at 14h00, in the session “Quarkonia states”
BABAR: B AND c-FACTORIES

The BaBar Detector
1.5 T solenoid (superconducting)

Calorimeter
6580 CsI(Tl) crystals

Cherenkov Detector
144 quartz bars
11,000 PMTs

e⁻ (9 GeV)

Silicon Vertex Tracker
5 double-sided layers

Drift Chamber
40 layers

Ionized Flux Return
18–19 layers

e⁺ (3.1 GeV)

Peak luminosity: 12.1×10^{33} cm$^{-2}$ s$^{-1}$

477 fb$^{-1}$
c\bar{s} MESONS

WHAT IS NEW FOR D_{sJ} STATES?
CURRENT SITUATION

- **Ds0\(^+(2317)\)**, Apr. 2003: unexpected observation of a narrow resonance in BaBar
- **Ds1\(^+(2460)\)**, May 2003: CLEO, BaBar observed a new narrow resonance
- **DsJ\(^*(2860)\)**, Jul. 2006: new state discovered by BaBar
- **DsJ\(^+(2700)\)**, Jul. 2006: new state discovered by Belle
- **X(2690)**, Jul. 2006: broad enhancement seen in BaBar

Let's go step by step!

- **Ds\(^*\)**, **Ds1\(^+(2536)\)**, **Ds2\(^+(2573)\)**: well known, but **J^P** only inferred (not measured!)
- **Ds0\(^*(2317)\)**, Apr. 2003: unexpected observation of a narrow resonance in BaBar
- **Ds1\(^+(2460)\)**, May 2003: CLEO, BaBar observed a new narrow resonance
- **DsJ\(^*(2860)\)**, Jul. 2006: new state discovered by BaBar
- **X(2690)**, Jul. 2006: broad enhancement seen in BaBar
- **DsJ\(^+(2700)\)**, Jul. 2006: new state discovered by Belle (≡ X(2690)?)
D_{s1}(2536): NEW RESULTS

- High precision measurement of \(D_{s1} \rightarrow D^*K^0_s \) in continuum

- **Mass**
 - \(M = 2534.85 \pm 0.02 \pm 0.40 \text{ MeV} \)

- **First measurement of the width**
 - \(\Gamma = 1.03 \pm 0.05 \pm 0.12 \text{ MeV} \)

- **First observation of \(D_{s1} \) in B decays**
 - \(B \rightarrow D^{(*)}D_{s1} \) (8 modes), \(D_{s1} \rightarrow D^*K \)
 - \(N = 182 \pm 19 \) events, \(12\sigma \)

- **Mass**
 - \(M = 2534.78 \pm 0.31 \pm 0.40 \text{ MeV} \)

- **\(J^P \) quantum number**
 - Statistics **too low** to conclude yet
Ds0*(2317) AND Ds1(2460) UPDATE

- Discovered 4 years ago in e^+e^- \rightarrow c\bar{c} events; subsequently observed in B decays

- Ds0*(2317) and Ds1(2460) very well established and known experimentally
 - Masses and tight upper limits on widths
 - J^P: 0^+ for Ds0*(2317) and 1^+ for Ds1(2460)
 - Decay modes and branching fractions

- Interpretation of these new states still unclear!
 - One possibility: identify these 2 states as the 0^+ and 1^+ c\bar{s} states
 - However strong difficulties within the potential model
 - Other possibilities
 - 4 quark states? DK molecule? Dπ atom? Chiral symmetry?

- Are there some more surprises? Yes!

Belle: Belle-Conf-0461 (2006)
DsJ*(2860): ANOTHER NEW STATE

- Looking in the c\bar{c} continuum: e^+e^- \rightarrow D^0(K^-\pi^+,K^-\pi^+\pi^0)K^+X and e^+e^- \rightarrow D^+(K^-\pi^+\pi^+)K_0^sX

- New state at 2860 MeV/c^2! (fit with a Breit-Wigner)
- Bump at 2690 MeV/c^2? (better fit with a Gaussian than a Breit-Wigner)
D_{sJ}^*(2860) AND... X(2690)?

- **Combining the 3 modes**
 - $M = (2856.6 \pm 1.5 \pm 5.0)$ MeV/c2
 - $\Gamma = (47 \pm 7 \pm 10)$ MeV
 - $J^P = 0^+, 1^-, 2^+, \ldots$
 - Final state is DK, i.e. two pseudoscalars

- **Interpretation of D_{sJ}^*(2860)?**
 - Radial excitation of D_{s0}^*(2317)?
 - $c\bar{s}$ with $J^P = 3^-$?
 - $c\bar{s}$ with $J^P = 0^+$?

- **Another structure at 2690 MeV/c2?**
 - $M = (2688 \pm 4 \pm 3)$ MeV/c2
 - $\Gamma = (112 \pm 7 \pm 36)$ MeV

- **Need confirmation** by other experiments or in other channels…

9 V. Poireau Hadron 07 October 2007

Sum of 3 modes

- $X(2690)$
 - 240 fb$^{-1}$
 - bkg subtracted
- $D_{sJ}^*(2860)$

- $m(DK)$ GeV/c2
EVEN MORE STATES: $D_{sJ}(2700)$

- New resonance decaying to D^0K^+ discovered by Belle in $B^+ \rightarrow \bar{D}^0(D^0K^+)$
 - $D_{sJ}(2700)$
- Same resonance as seen by BaBar in continuum, $X(2690)$?
 - Mass and width consistent, same decay mode
- Study of $B \rightarrow \bar{D}^*(D^*)K$ decays in BaBar
 - Looking at 8 $DK + 8 D^*K$ invariant masses

- Enhancement observed around 2700 MeV/c2 in DK and D^*K
- Full Dalitz plot analysis ongoing
CHARMED BARYONS
CURRENT STATE

- All 9 ground states with $J^P=1/2^+$ observed
- 5 out of 6 ground states with $J^P=3/2^+$ observed
 - only Ω_c^{*0} was missing
STUDY OF Ω_c^0

- Ω_c^0: css charm baryon ground state
- Observed in 4 modes
- First observation of $B \to \Omega_c^0 X$

$B(B \to \Omega_c^0 X) \times B(\Omega_c^0 \to \Omega^- \pi^+) = (5.2 \pm 0.9 \pm 0.5) \times 10^{-6}$

DISCOVERY OF Ω_c^{*0}

- $\Omega_c^{*0} \rightarrow \Omega_c^0 \gamma$, in $\text{e}^+\text{e}^- \rightarrow \Omega_c^{*0} X$
 - css baryon, $J^P = 3/2^+$
- Combining 4 decay modes of Ω_c^0 gives
 - 105 \pm 21 \pm 6 events
 - 5.2σ significance
- Difference of mass $\Delta m = m(\Omega_c^{*0}) - m(\Omega_c^0)$
 - Measured: 70.8 \pm 1.0 \pm 1.1 MeV/c2
 - Predicted range: 50 – 94 MeV/c2
- Branching fraction ratio:
 $$\frac{\sigma(e^+e^- \rightarrow \Omega_c^{0}X, x_p(\Omega_c^{*0}) > 0.5)}{\sigma(e^+e^- \rightarrow \Omega_c^{0}X, x_p(\Omega_c^0) > 0.5)} = 1.01 \pm 0.23 \pm 0.11$$

$\Omega_c^0 \rightarrow \Omega^- \pi^+, \Omega^- \rightarrow \Lambda K^-$
- $\Omega_c^0 \rightarrow \Omega^- \pi^+\pi^0, \Omega^- \rightarrow \Lambda K^-$
- $\Omega_c^0 \rightarrow \Omega^- \pi^+\pi^-\pi^+, \Omega^- \rightarrow \Lambda K^-$
- $\Omega_c^0 \rightarrow \Xi^- K^-\pi^+\pi^+, \Xi^- \rightarrow \Lambda \pi^-$
DISCOVERY OF $\Lambda_c(2940)$

- New baryon: $\Lambda_c(2940) \rightarrow D^0p$
 - First observation of charmed baryons decaying to D meson and light baryon
 - Simplest explanation: udc baryon
- Measurements of M and Γ are consistent

<table>
<thead>
<tr>
<th></th>
<th>M, MeV/c^2</th>
<th>Γ, MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaBar $\Lambda_c(2940)^+$</td>
<td>$2939.8 \pm 1.3 \pm 1.0$</td>
<td>$17.5 \pm 5.2 \pm 5.9$</td>
</tr>
<tr>
<td>Belle $\Lambda_c(2940)^+$</td>
<td>$2938.0 \pm 1.3^{+2.0}_{-4.0}$</td>
<td>13^{+8+27}_{-5-7}</td>
</tr>
<tr>
<td>CLEO $\Lambda_c(2880)^+$</td>
<td>$2882 \pm 1 \pm 2$</td>
<td>$4 \pm 2 \pm 2$</td>
</tr>
<tr>
<td>BaBar $\Lambda_c(2880)^+$</td>
<td>$2881.9 \pm 0.1 \pm 0.5$</td>
<td>$5.8 \pm 1.5 \pm 1.1$</td>
</tr>
<tr>
<td>Belle $\Lambda_c(2880)^+$</td>
<td>$2881.2 \pm 0.2 \pm 0.4$</td>
<td>$5.8 \pm 0.7 \pm 1.1$</td>
</tr>
</tbody>
</table>

- No signals in D^+p for both baryons
 - Isospin = 0
 - Both states are isoscalars (Λ_c not Σ_c)

Confirmed later by Belle in $\Lambda_c^{*+}\pi^+\pi^-$
OBSERVATION OF \(\Xi_c(2980)^+ \) AND \(\Xi_c(3077)^+ \)

- \(\Xi_c(2980)^+ \), \(\Xi_c(3077)^+ \) and \(\Xi_c(3077)^0 \) first observed by Belle
 - Excited \textbf{charm-strange} baryons
- Confirmed by BaBar in
 \(\Lambda_c^+ K^- \pi^+ \), with
 \(\Lambda_c^+ \rightarrow p K^- \pi^+ \)
- BaBar confirmed also \(\Xi_c(3077)^0 \)
- Comparison of \(M \) and \(\Gamma \) measurements

<table>
<thead>
<tr>
<th></th>
<th>(M), MeV/c^2</th>
<th>(\Gamma), MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belle (\Xi_c(2980)^+)</td>
<td>2978.5 ± 2.1 ± 2.0</td>
<td>43.5 ± 7.5 ± 7.0</td>
</tr>
<tr>
<td>BaBar (\Xi_c(2980)^+)</td>
<td>2967.1 ± 1.9 ± 1.0</td>
<td>23.6 ± 2.8 ± 1.3</td>
</tr>
<tr>
<td>Belle (\Xi_c(3080)^+)</td>
<td>3076.7 ± 0.9 ± 0.5</td>
<td>6.2 ± 1.2 ± 0.8</td>
</tr>
<tr>
<td>BaBar (\Xi_c(3080)^+)</td>
<td>3076.4 ± 0.7 ± 0.3</td>
<td>6.2 ± 1.6 ± 0.5</td>
</tr>
<tr>
<td>Belle (\Xi_c(3080)^0)</td>
<td>3082.8 ± 1.8 ± 1.5</td>
<td>5.2 ± 3.1 ± 1.8</td>
</tr>
<tr>
<td>BaBar (\Xi_c(3080)^0)</td>
<td>3079.3 ± 1.1 ± 0.2</td>
<td>5.9 ± 2.3 ± 1.5</td>
</tr>
</tbody>
</table>

Different: BaBar incorporates phase space effects near threshold and decay to \(\Sigma_c^{++} K^- \)

Good agreement

BaBar: hep-ex/0607042
DISCOVERY OF $\Xi_c(3055)^+$ AND $\Xi_c(3123)^+$

- Updated analysis with more statistics
DISCOVERY OF $\Xi_c(3055)^+$ AND $\Xi_c(3123)^+$

- Updated analysis with more statistics
- New state (looking in the $\Sigma_c(2455)^{++}$ band):

<table>
<thead>
<tr>
<th>$\Xi_c(3055)^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (MeV/c²)</td>
</tr>
<tr>
<td>Width (MeV)</td>
</tr>
<tr>
<td>Yield</td>
</tr>
<tr>
<td>Significance</td>
</tr>
</tbody>
</table>

$\Sigma_c(2455)^{++}K^+\rightarrow\Lambda_c^+K^+\pi^+\rightarrow\Xi_c^+(3055)^+$

$\Sigma_c(2455)^{++}K^+\rightarrow\Lambda_c^+K^+\pi^+$

$\Xi_c(2980)^+$

$\Xi_c(3055)^+$

$\Xi_c(3077)^+$

384 fb⁻¹
DISCOVERY OF $\Xi_c(3055)^+$ AND $\Xi_c(3123)^+$

- Updated analysis with more statistics
- New state (looking in the $\Sigma_c(2455)^{++}$ band):

 $\Xi_c(3055)^+$
 Mass (MeV/c^2) 3054.2 ± 1.2 ± 0.5
 Width (MeV) 17 ± 6 ± 11
 Yield 218 ± 53 ± 79
 Significance 6.4σ

- Evidence for (looking in the $\Sigma_c(2520)^{++}$ band):

 $\Xi_c(3123)^+$
 Mass (MeV/c^2) 3122.9 ± 1.3 ± 0.3
 Width (MeV) 4.4 ± 3.4 ± 1.7
 Yield 101 ± 34 ± 9
 Significance 3.6σ
CONCLUSIONS

- Tens of new charmed states have been discovered since 1999, beginning of BaBar!

- $c\bar{s}$ summary:
 - $D_{s0}^*(2317)$, $D_{s1}(2460)$: well determined experimentally, not understood theoretically
 - $D_{sJ}^*(2860)$, $D_{sJ}(2700)$: still unclear experimentally and theoretically

- Charmed baryons
 - Many states studied by BaBar: Ω_c^0, $\Xi_c(2980)^+$ and $\Xi_c(3077)^+$
 - Many new states discovered: Ω_c^{*0}, $\Lambda_c(2940)$, $\Xi_c(3055)^+$ and $\Xi_c(3123)^+$

Experimental status:
- Lots of on-going analyses with the current dataset
 - More decay modes investigated to understand these resonances
- BaBar is taking data till Sept. 2008
- Lots of new data to analyse!
 - We can bet that more surprises will arise!
ADDITIONAL SLIDES
\(D_{s0}^*(2317) \) IN INCLUSIVE DATA

- Study of \(e^+e^- \rightarrow c\bar{c} \) events
 - Resonance in \(D_s^+\pi^0 \)
- Complex kinematics with competing contributions and mutual cross-feed

- Properties
 - \(M = (2319.6 \pm 0.2 \pm 1.4) \text{ MeV}/c^2 \)
 - \(\Gamma < 3.8 \text{ MeV} \) at 95% CL

- No decay to \(D_s^+\pi^0 \) or \(D_s^+\pi^- \)
 - No indication of isospin partners
 - 4 quark model disfavored

\(D_s^+\pi^0 \) final states

\(D_{s0}^*(2317) \) Contribution from \(D_s^*(2112) \)

\(D_{s1}(2460)^+ \rightarrow D_s^+\pi^0 \) No indication

$D_s(2460)$ IN INCLUSIVE DATA

- $D_s(2460)$ observed in 3 decay final states

$D_s^+ \gamma$ final states

$D_s^+ \pi^0 \gamma$ final states

$D_s^+ \pi^+ \pi^-$ final states

- Properties
 - $M = (2460.1 \pm 0.2 \pm 0.8)$ MeV/c^2
 - $\Gamma < 3.5$ MeV at 95% CL

No $D_{s0}^{*}(2317)^+ \rightarrow D_s^+ \gamma$

No search for $D_s^+ \pi^+/\pi^- \pi^0$ isospin partners as yet

EVEN MORE STATES: $D_{sJ}(2700)$

- Study of $B^+ \rightarrow \bar{D}^0D^0K^+$
 - Looking at the Dalitz plot and the D^0K^+ projection
- New resonance decaying to D^0K^+
 - $B^+ \rightarrow \bar{D}^0D_{sJ}, D_{sJ} \rightarrow D^0K^+$
 - $M = (2715 \pm 11^{+11}_{-14})$ MeV/c^2
 - $\Gamma = (115 \pm 20^{+36}_{-32})$ MeV
 - $J^P = 1^-$ favored

- Same resonance as seen by BaBar in continuum, $X(2690)$?
 - Mass and width consistent, same decay mode

Interpretation?
 - cs state 2^3S_1?
 - expected mass at 2720 MeV/c^2
 - Chiral symmetry: $1^+ - 1^-$ doublet paired with $D_{s1}(2536)$?

STUDY OF $\Xi(1530)^0$ AND $\Xi(1690)^0$

$\Xi(1530)^0$ from $\Lambda_c^+ \rightarrow (\Xi^- \pi^+) K^+$
- Use of Legendre polynomial moments to determine the spin
 - Spin $3/2$ clearly established
 - Using previous results: P-wave $3/2^+$
- Showed the presence of an S-wave $\Xi^- \pi^+$ amplitude, with some indication of a $\Xi(1690)$ S-wave contribution

$\Xi(1690)^0$ from $\Lambda_c^+ \rightarrow (\Lambda K^0) K^+$
- Legendre polynomial moments
 - Spin $1/2$ preferred
- Fitting now the whole Dalitz Plot
 - to get more precise (M, Γ) measurements
 - to show the existence of $\Lambda_c^+ \rightarrow \Lambda a^0(980)^+$

Both results to be updated soon!