

Leptonic decays at BaBar

Emmanuele Salvati
University of Massachusetts, Amherst
XII International conference on hadron spectroscopy
LNF 8-13 October 2007

$$B \rightarrow \tau \nu$$

- Semileptonic tag analysis
- Hadronic tag analysis

$\mathsf{B}\! o\! au u$

$$\mathcal{B}(B \to l\nu)_{SM} = \frac{G_F^2 m_B}{8\pi} m_l^2 \left(1 - \frac{m_l^2}{m_B^2} \right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

$$\mathcal{B}(B \to l\nu) = \mathcal{B}(B \to l\nu)_{SM} \times \left(1 - \tan^2 \beta \frac{m_{B^{\pm}}^2}{m_{H^{\pm}}^2}\right)^2$$

- The Branching Ratio depends on the choice of V_{ub} and f_B
 - using the values $|V_{ub}| = (4.31 \pm 0.30) \times 10^{-3} \ f_B = 0.216 \pm 0.022 \ \mathrm{GeV}$ we get, in the SM $\mathcal{B}(B \to \tau \nu) = (1.6 \pm 0.4) \times 10^{-4}$
- Assuming the SM and using the experimental value of V_{ub}, we can calculate f_B from the BR
- Amplitude mediated by charged Higgs in 2HDM ⇒ shift in the BR (W.Hou, Phys. Rev.D 48, 2342 (1992)
- If we use given values of f_B and V_{ub}, we can constrain the (m_H, tanβ) parameter space
- UTfit collaboration (<u>www.utfit.org</u>) predicts (0.85 \pm 0.14) x 10⁻⁴ using all experimental constraints and determining f_B indirectly

$B \rightarrow \tau \nu$: experimental

- Largest BF among the pure leptonic B decays
 - B→µv and B→ev are easier but SM rate is very low
- about 71 % of the total T decays
- many neutrinos in the signal decays
- weak kinematical constraints
 - need a clean environment
 - reconstruct the other B in the event

Standard Model

$$\mathcal{B}(B \to \tau \nu) \sim 10^{-4}$$
$$\mathcal{B}(B \to \mu \nu) \sim 10^{-7}$$
$$\mathcal{B}(B \to e\nu) \sim 10^{-10}$$

Branching fractions of the τ decays

$B \rightarrow \tau \nu$: tag methods

Semileptonic tag:

- $B^{\pm} \rightarrow D^{(*)0} | v (l=e, \mu)$
- High semileptonic BFs
- only partial reconstruction because of neutrino
- higher statistics but lower purity w.r.t. other method

Hadronic tag:

- B[±]→D^{(*)0} $n_1\pi^{\pm}$, n_2K^{\pm} , n_3K_s , $n_4\pi^0$ ($n_1+n_2\le 5$, $n_3\le 2$, $n_4\le 2$)
- full reconstruction of B decays
- use beam energy constraints to build discriminating variables

$$m_{\rm ES} \equiv \sqrt{(s/2 + \mathbf{p_0} \cdot \mathbf{p_B})^2 / E_0^2 - p_B^2}$$

$$\Delta E \equiv E_B^* - \sqrt{s/2}$$

$B \rightarrow \tau \nu$: semileptonic tag

- Search based on 346 fb⁻¹
- Tag efficiency = 0.66 %
- look at $E_{EXTRA} = \sum E_i$ of tracks and clusters not assigned to a particle
- different signal region for E_{EXTRA} depending on the decay mode of τ: E_{EXTRA} < [0.25 ÷ 0.48] GeV</p>
- Tag efficiency and E_{EXTRA} model validated also with double-tag events
- Expected background evaluated from sideband of E_{EXTRA}

$\overline{\tau}$	Expected background	Observed events
decay mode	events	in on-resonance data
$\tau^+ \to e^+ \nu \overline{\nu}$	44.3 ± 5.2	59
$\tau^+ \to \mu^+ \nu \overline{\nu}$	39.8 ± 4.4	43
$ au^+ o \pi^+ \overline{ u}$	120.3 ± 10.2	125
$ au^+ o \pi^+ \pi^0 \overline{\nu}$	17.3 ± 3.3	18
All modes	221.7 ± 12.7	245

Phys. Rev. D, 76, 052002 (2007)

$B \rightarrow \tau \nu$: hadronic tag

- Search based on 346 fb⁻¹
- Tag efficiency = 0.34 %
- m_{ES} used to discriminate combinatorial background
- Mode dependent selection
- Veto on extra charged tracks
- Particle identification
- $E_{EXTRA} = \sum E_i$ (neutral clusters) in the range $E_{EXTRA} < [0.1 \div 0.29]$ GeV

τ decay mode	Expected background	Observed
$\tau^+ \to e^+ \nu \overline{\nu}$	1.47 ± 1.37	4
$\tau^+ \to \mu^+ \nu \overline{\nu}$	1.78 ± 0.97	5
$\tau^+ \to \pi^+ \overline{\nu}$	6.79 ± 2.11	10
$\tau^+ \to \pi^+ \pi^0 \overline{\nu}$	4.23 ± 1.39	5
All modes	14.27 ± 3.03	24

Submitted to PRD - RC arXiv:0708.2260

$B \rightarrow \tau \nu$: Branching Fraction

- Define likelihood and likelihood ratio
- s_i and b_i are the expected signal and background events
- s_i function of BF
- n_i observed events
- lacksquare \mathcal{Q}_{min} gives the BF
- $\sqrt{-Q}$ is the significance

$$\mathcal{L}(s+b) = \prod_{i=1}^{4} \frac{e^{-(s_i+b_i)}(s_i+b_i)^{n_i}}{n_i}$$

$$Q(\mathcal{B}) = -2\ln\left(\mathcal{L}(s+b)/\mathcal{L}(b)\right)$$

$$s_i = N_B \times \epsilon_i \times \mathcal{B}$$

$$\mathcal{B}(semilep) = (0.9 \pm 0.6 \pm 0.1) \times 10^{-4} [1.3\sigma]$$

$$\mathcal{B}(hadr) = (1.8^{+1.0}_{-0.9} \pm 0.3) \times 10^{-4} [2.2\sigma] \text{ Preliminary}$$

Preliminary

$$\mathcal{B}(B \to \tau \nu) = (1.2 \pm 0.4^{stat} \pm 0.3^{bkg} \pm 0.2^{eff}) \times 10^{-4} [2.6\sigma]$$

$$f_B \cdot |V_{ub}| = (7.2^{+2.0}_{-2.8} \pm 0.2) \times 10^{-4} \text{GeV(semilep)}$$

 $f_B \cdot |V_{ub}| = (10.1^{+2.3+1.2}_{-2.5-1.5}) \times 10^{-4} \text{GeV(hadr)}$

$B \rightarrow \tau \nu$: Results

$$\mathcal{B}(B \to l\nu) = \mathcal{B}(B \to l\nu)_{SM} \times \left(1 - \tan^2 \beta \frac{m_{B^{\pm}}^2}{m_{H^{\pm}}^2}\right)^2$$

- The ratio m_H/tanβ will be measured when B/B_{SM} different from 1
- Constraint on the parameter space shown in the plot
- BaBar + Belle combined
 - Belle: PRL 97, 251802 (2006)

- BaBar-only UTfit constraint on R_B and f_B PDFs
- 68 % probability
- 95 % probability
- See www.utfit.org

$B \rightarrow K \tau \mu$

- Forbidden in the Standard Model
 - Lepton flavor violation
 - b→s flavor changing neutral current

- Permitted in new physics models
 - NP models with extended Higgs sector may introduce tree-level FCNC mediated by new scalar particle
 - See Sher and Yuan, Phys. Rev. D 44, 1461 (1991)
 - Yukawa couplings proportional to

$$\eta_{ij}^{leptons} = \sqrt{m_i m_j} / m_{\tau}$$
 $\eta_{ij}^{quarks} = \sqrt{m_i m_j} / m_b$

■ Transitions involving second and third generations of quarks and leptons are favored in this framework in Grand Unified Theories

$$\eta_{ee} = 0.0003 \quad \eta_{e\mu} = 0.004 \quad \eta_{e\tau} = 0.02 \quad \eta_{\mu\mu} = 0.06 \quad \left(\eta_{\mu\tau} = 0.24 \right)$$

B \rightarrow Kτμ analysis

- First search ever done
- Search based on 346 fb-1
- Look for signal on the recoil of hadronic tag B
- 1-prong τ decay modes (e,μ,π) studied
 - they define three different decay channels
 - signal mode composed of three tracks
- \blacksquare τ four momentum determined using kinematics:

$$\vec{p}_{\tau} = \vec{p}_{B_{sig}} - \vec{p}_K - \vec{p}_{\mu}$$

$$E_{\tau} = E_{\text{beam}} - E_K - E_{\mu}$$

- $B \rightarrow D^0(K\pi)\mu\nu$ data samples has the same final state
 - removed with cut on invariant mass
- No evidence of signal

$$\mathcal{B}(B \to K\tau\mu) < 7.7 \times 10^{-5} @ 90\% \text{ C.L.}$$

Accepted by PRL arXiv:0708.1303

Channel	Sig.events	Exp. bkg
electron	1	0.5 ± 0.3
muon	0	0.6 ± 0.3
pion	2	1.8 ± 0.6

$B \rightarrow |+|-\gamma|$

- FCNC processes
 - suppressed in the SM, BR ~ 10⁻¹⁰
 - Can be enhanced by new physics
- First search ever done
- Search done on 292 fb⁻¹
- Construct B⁰ candidates from two leptons (electrons or muons) and a photon
- Constrain B⁰ candidate to be consistent with the production at the Y(4S) using m_{ES} and ΔE

TM and © Laurent de Brunhoff

B→I+I-γ analysis

- Main backgrounds:
 - ISR High order QCD
 - Rejected by requiring tracks and photon within fiducial region of the detector and by requiring high tracks and clusters multiplicity
 - **Lepton from J/ψ or γ from \pi^0**
 - Rejected by cut on invariant mass
 - Continuum
 - Rejected by cut on topological variables

Mode	n_{obs}	n_{bg}^{exp}	ϵ_{sig} (%)
$e^+e^-\gamma$	1	$1.75 \pm 1.38 \pm 0.36$	7.4 ± 0.3
$\mu^+\mu^-\gamma$	1	$2.66 \pm 1.40 \pm 1.58$	5.2 ± 0.3

- lacktriangle Distributions of ΔE vs m_{ES} shown for the two decays
 - the triangle is the only event in the signal region

$$\mathcal{B}(B \to e^+ e^- \gamma) < 1.2 \times 10^{-7} 90\% \text{ C.L.}$$

 $\mathcal{B}(B \to \mu^+ \mu^- \gamma) < 1.6 \times 10^{-7} 90\% \text{ C.L.}$

Submitted to PRD-RC arXiv:0706.2870

B→|+|'-

$$\mathcal{B}(B \to ll') = \tau(B_d) \frac{G_F^2}{\pi} \left(\frac{\alpha}{4\pi \sin^2 \Theta_W} \right)^2 F_{B_d}^2 m_l^2 m_{B_d}^2 \sqrt{1 - 4m_l^2/m_{B_d}^2} |V_{tb}^* V_{td}|^2 Y^2(x_t)$$

- b→d transition
- very suppressed in the SM
- Search done on 347 fb⁻¹

Decay mode
$$B^0 \to e^+e^- \ B^0 \to \mu^+\mu^- \ B^0 \to e^{\pm}\mu^{\mp}$$

SM prediction $1.9 \times 10^{-15} \ 8.0 \times 10^{-11}$ 0

- ee,μμ and the LFV channel eμ studied
- very sensitive to SM extensions, for example MFV scenarios
 - Buras et al. Nucl. Phys. B 726, 252 (2005)

B→I+I'- analysis

- Look for two charged tracks
- Main backgrounds: pions, kaons and continuum
- Pions and kaons removed with PID selectors
- Three independent Maximum Likelihood fits to distinguish from continuum events
- Background PDF distributions evaluated from fit to π h (h= π ,K)
 - not enough statistics to see the difference between leptonic and hadronic bkg
 - negligible bias introduced
- background sPlot distributions for m_{ES} and ΔE shown in the picture

ee

B→I+I'- results

- UL(BF) estimated with Bayesian approach by integrating the likelihood distribution
- No evidence of signal

$$\int_{0}^{UL(BR)} dBR_{ll} \mathcal{L}(BR_{ll}) = 0.90 \int_{0}^{\infty} dBR_{ll} \mathcal{L}(BR_{ll})$$

	$\epsilon_{ll'}(\%)$	$N_{ll'}$	$\mathrm{UL}(\mathcal{BR}) \times 10^{-8}$
$B^0 \to e^+ e^-$	16.6 ± 0.3	0.6 ± 2.1	11.3
$B^0 \to \mu^+ \mu^-$	15.7 ± 0.2	-4.9 ± 1.4	5.2
$B^0 \to e^{\pm} \mu^{\mp}$	17.1 ± 0.2	1.1 ± 1.8	9.2

Summary

- BaBar very active in Leptonic decays
- we presented the following results:
 - B→τν
 - $B(B \to \tau \nu) = (1.2 \pm 0.4^{stat} \pm 0.3^{bkg} \pm 0.2^{eff}) \times 10^{-4} [2.6\sigma]$
 - Set constraint on new physics parameters
 - B→Kτμ
 - First search ever done
 - No evidence of signal
 - $B(B \to K\tau\mu) < 7.7 \times 10^{-5} @ 90\% \text{ C.L.}$
 - $\blacksquare B \rightarrow ||\gamma|$
 - First search ever done
 - $B(B \to e^+e^-\gamma) < 1.2 \times 10^{-7} 90\% \text{ C.L.}$
 - $B(B \to \mu^+ \mu^- \gamma) < 1.6 \times 10^{-7} 90\% \text{ C.L.}$
 - B→II
 - $B(B \to e^+e^-) < 11.3 \times 10^{-8}$
 - $B(B \to \mu^+ \mu^-) < 5.2 \times 10^{-8}$
 - $B(B \to e^{\pm} \mu^{\mp}) < 9.2 \times 10^{-8}$

Backup slides

Combined BaBar + Belle B→τν

BaBar combined: (preliminary)

$$B(B \to \tau \nu) = (1.2 \pm 0.4^{stat} \pm 0.3^{bkg} \pm 0.2^{eff}) \times 10^{-4} [2.6\sigma]$$

Belle: PRL 97, 251802 (2006)

$$B(B \to \tau \nu) = (1.79^{+0.56+0.46}_{-0.49-0.51}) \times 10^{-4}$$

BaBar + Belle:

$$B(B \to \tau \nu) = (1.41 \pm 0.43) \times 10^{-4}$$

Systematics

Selection criteria

mode	e^+	μ^+	π^+	$\pi^+\pi^0$
$M_{\rm miss}({\rm GeV/c^2})$	[4.6, 6.7]	[3.2, 6.1]	≥ 1.6	≤ 4.6
$p_{ m signal}^*({ m GeV/c})$	≤ 1.5	-	≥ 1.6	≥ 1.7
$R_{ m cont}$	[2.78, 4.0]	> 2.74	> 2.84	> 2.94
$E_{\rm extra}({\rm GeV})$	< 0.31	< 0.26	< 0.48	< 0.25
Efficiency (%)	4.2 ± 0.1	2.4 ± 0.1	4.9 ± 0.1	1.2 ± 0.1

τ decay mode	$e^+ \nu \overline{\nu}$	$\mu^+ \nu \overline{\nu}$	$\pi^+\overline{\nu}$	$\pi^+\pi^0\overline{\nu}$	
Tracking	0.5	0.5	0.5	0.5	
Particle Identification	2.5	3.1	0.8	1.5	
π^0	_	_	_	2.9	
EMC K_L^0	_	_	3.8	_	
$\overline{\text{IFR } K_L^0}$		3	.3		
$E_{ m extra}$		3	.4		
signal B		5	.5		
tag B		3	.6		
$N_{B\overline{B}}$		1	.1		
Total		6	.6		

Selection criteria

Variable	$\tau^+ \to e^+ \nu \overline{\nu} \ \tau^+$	$\rightarrow \mu^+ \nu \overline{\nu} \ \tau^-$	$^{+} \rightarrow \pi^{+} \overline{\nu} \ \tau^{+}$	$\rightarrow \pi^+ \pi^0 \overline{\nu}$
$E_{ m extra}$ (GeV)	< 0.160	< 0.100	< 0.230	< 0.290
π^0 multiplicity	0	0	≤ 2	n.a.
Track multiplicity	1	1	≤ 2	1
$ cos\theta_{TB}^{*} $	≤ 0.9	≤ 0.9	≤ 0.7	≤ 0.7
$p_{\rm trk}^*({\rm GeV}\!/c)$	< 1.25	< 1.85	> 1.5	n.a.
$cos\theta^*_{miss}$	< 0.9	n.a	< 0.5	< 0.55
$p_{\pi^+\pi^0}^*(\mathrm{GeV}/c)$	n.a.	n.a.	n.a.	> 1.5
ρ quality	n.a.	n.a.	n.a.	< 2.0
E_{π^0} (GeV)	n.a.	n.a.	n.a.	> 0.250
Efficiency(%)	3.1±0.2	1.7±0.1	2.9±0.2	2.2 +0.2

% Contributions to the systematic uncertainty on the BF due to signal selection efficiency

MC statistics	3.6
Particle Identification	2.0
π^0	0.6
Tracking	5.5
$E_{ m extra}$	15
Total	16.5

B→Kτμ background

Example of semileptonic background

$$B^{-} \rightarrow D^{0} \mu^{-} \bar{\nu}$$

$$D^{0} \rightarrow K^{-} \pi^{+}$$

$$D^{0} \rightarrow K^{-} l^{+} \nu$$

$$B^- o K^- au^+ \mu^- \ au^+ o \pi^+ ar{
u} \ au^+ o l^+
u ar{
u}$$

- Kill almost all of this background by cutting on the invariant mass of K + (opposite charge track) to be greater than D mass
- To normalize signal BF

Expected background from m_τ sideband (signal/sideband ratio from MC)

B→I+I-γ background

- background prediction taken from data
- signal to sideband ratio extrapolated from Upper and Lower sidebands

