## Charmless Hadronic B decays at BaBar

Gagan Mohanty University of Warwick Representing


XII. INTERNATIONAL CONFERENCE ON HADRON SPECTROSCOPY


## WARWICK

## Outline of the talk

- Theory/Motivation
- Dataset and Detector
- Analysis Strategy
- Results
> Three-body decay $K^{+} K \cdot \pi^{+}$
$>$ Vector-Vector mode $K^{*} \overline{K^{*}}$
> Axialvector-Pseudoscalar modes $\left(a_{1} h\right.$ and $\left.b_{1} h, h=K / \pi\right)$
- Conclusions and Outlook
\& Results are preliminary unless journal reference given


## WARWICK



## Theory



- Diagrams for three-body processes shown for illustration purpose
$b \rightarrow s$ loop (penguin) transition contributes only to the final states with odd number of kaons due to presence s quark e.g. $K_{\pi \pi}$, KKK

Final states with even number of kaons, such as $K K \pi$ get contributions from $b \rightarrow u$ tree and $b \rightarrow d$ penguin diagrams. Odd number kaon states are further Cabibbo suppressed [ $\sim \sin \theta_{c}$ ]

## WARWICK

## Motivation

- Interfering tree and penguin amplitudes $n \Rightarrow$ good place to search for direct $C P$ violation
- Good place to search for new physics since NP particles can enter the loop
- Probes flavor sector, particularly by measuring
$-\sin (2 \beta)$ or just $\beta$ in the $K_{\mathrm{S}} h^{+} h^{-}(K / \pi)$ Dalitz plot

$-\alpha$ in the modes: $\pi \pi, \rho \pi, \rho \rho$ and $a_{1} h$
- $\gamma$ using flavour symmetries (isospin, U-spin etc.)
- Low energy spectroscopy

Klempt et al., arXiv:0708.4016

- Testing ground for pQCD, QCD factorization, SCET...


## WARWICK

## Dataset and Detector


$>$ Main components to tag charmless $B$ decays are tracking, DIRC (PID) and EMC $\left(\pi^{0}, \eta\right)$
$\checkmark$ Run 6 just ended last month Presented results mostly based on data from runs 1-5
$\checkmark$ Final run 7 scheduled to start


## WARWICK


$>$ Use beam-energy info and $(E, \mathbf{p})$ conservation

- $m_{\mathrm{ES}}=\sqrt{E_{\text {beam }}^{\star 2}-\mathbf{p}_{B}^{\star 2}}$
- $\Delta E=\left(E_{B}^{\star}-E_{\text {beam }}^{\star}\right)$


## Analysis Strategy

- PID is crucial for these analyses
- Distinguish charged $K$ vs. $\pi$
- Veto the leptons

$>$ Event topology to discriminate spherical signal events from jetlike $q \bar{q}$ continuum background

$>$ Resonance mass and angular information wherever appropriate


## WARWICK

## $B^{+} \rightarrow K^{+} K^{-} \pi^{+}$inclusive



arXiv:0708.0376, accepted by PRL
$\checkmark$ Possible contributions from $\mathrm{b} \rightarrow \mathrm{d}$ loop, $\mathrm{b} \rightarrow \mathrm{u}$ tree as well as other processes resulting $\overline{\mathrm{ss}}$ production
$\checkmark$ Q2B analyses have put stringent UL:

$$
\begin{array}{ll|c|}
\hline \dot{\bar{K}}^{* 0}(892) K & 1.1 \times 10^{-6} & \text { arXiv:0708.2248, } \\
\hline \bar{K}_{0}^{* 0}(1430) K & 2.2 \times 10^{-6} & \text { accepted by PRD(R) } \\
\phi(1020) \pi & 2.4 \times 10^{-7} & \text { PRD 74, 011102 }
\end{array}
$$

$\square$ Inclusive analysis reveals a large signal yield of $(429 \pm 43)$

$$
B\left(B^{+} \rightarrow K^{+} K^{-} \pi^{+}\right):(5.0 \pm 0.5 \pm 0.5) \times 10^{-6}
$$

$A_{C P}$ is consistent with zero

## WARWICK

## $B^{+} \rightarrow K^{+} K^{-} \boldsymbol{\pi}^{+}$inclusive

$\checkmark$ Half of the events originates from

$\checkmark$ Reminiscent of similar structures seen in $K_{S} K^{+} K^{-}$and $K^{+} K^{+} K^{-}$
$>$ Nature of this state around $1.5 \mathrm{GeV} / \mathrm{c}^{2}$ is not very clear
arXiv:0708.0376, accepted by PRL




Efficiency-corrected distribution

arXiv:0708.2248,

## WARWICK

## $B^{0} \rightarrow K^{*} 0 \bar{K}^{* 0}$ and $K^{* 0} K^{* 0}$

$\checkmark$ First one proceeds through both gluonic and EW penguins; latter heavily suppressed (NP effect)
$\checkmark$ Might provide insights into the polarization puzzle

$$
>f_{L} \sim 0.5 \text { in } B \rightarrow \varphi K^{*}
$$

PRL 98, 051801, arXiv:0705.1798

$>$ pQCD prediction 0.9
Suzuki, PRD 66, 054018

arXiv:0708.2248

| Channel | $K^{* 0} \bar{K}^{* 0}$ | $K^{* 0} K^{* 0}$ |
| :---: | :---: | :---: |
| $n_{\text {sig }}$ | $28.8^{+9.1}$ | $2.7 \pm 3.3$ |
| $\mathcal{B}\left(10^{-6}\right)$ | $0.49_{-0.13}^{+0.16} \pm 0.06$ | $<0.18^{\mathbb{4}}$ |
| $f_{L}$ | $0.81_{-0.12}^{+0.10} \pm 0.06$ | - |

đ two orders of magnitude improvement

## WARWICK

## $B^{0} \rightarrow K^{\star 0}(\mathbf{8 9 2}) h^{+} h^{-}(h=K / \pi)$



※ Observation of SM suppressed decay mode $K^{*} K^{+} \pi^{-}$at par with $K^{*} \pi^{+} K^{-} \xrightarrow{\longrightarrow}$ sign of new physics
$>$ Reconstruct $K^{* 0}$ via the selftagging mode $\mathrm{K}^{+} \pi^{-}$
arXiv:0708.2543, accepted by PRD(R)

| $B^{0} \rightarrow$ Mode | $n_{\text {sig }}$ | $\mathcal{B}\left(\times 10^{-6}\right)$ | $\mathcal{A}_{C P}$ |
| :---: | :---: | :---: | :---: |
| $K^{* 0} K^{+} K^{-}$ | $984 \pm 46$ | $27.5 \pm 1.3 \pm 2.2$ | $0.01 \pm 0.05 \pm 0.02$ |
| $K^{* 0} \pi^{+} K^{-}$ | $183 \pm 42.4$ | $4.6 \pm 1.1 \pm 0.8$ | $0.22 \pm 0.33 \pm 0.20$ |
| $K^{* 0} K^{+} \pi^{-}$ | $18.8 \pm 29.4$ | $<2.2$ | - |
| $K^{* 0} \pi^{+} \pi^{-}$ | $2019 \pm 108$ | $54.5 \pm 2.9 \pm 4.3$ | $0.07 \pm 0.04 \pm 0.03$ |

## WARWICK

## $B \rightarrow a_{1}(1260) \pi$



## WARWICK

## $B \rightarrow a_{1}(1260) K$


$\square$ CKM angle $\alpha$ using $\operatorname{SU}(3)$ flavour symmetry Gronau et al., PRD 73, 057502
$\square$ Test factorization model predictions

## Laporta et al.,

PRD 74, 054035 hep-ph/0602243

- No measurement exists to date

|  | Value | $a_{1}^{+}(1260) K^{0}$ | $a_{1}^{-}(1260) K^{+}$ |
| :--- | :--- | :---: | :---: |
| arXiv:0709.4165 | $n_{\text {sig }}$ | $241 \pm 32$ | $272 \pm 44$ |
|  | $\mathcal{B}\left(\times 10^{-6}\right)$ | $17.4 \pm 2.5 \pm 2.2$ | $8.2 \pm 1.5 \pm 1.2$ |
|  | $\mathcal{A}_{C P}$ | $0.12 \pm 0.11 \pm 0.02$ | $-0.16 \pm 0.12 \pm 0.01$ |


$\checkmark$ Results in reasonable agreement with theoretical estimates
$\mathbf{x}$ No evidence for direct CP violation

## WARWICK

$B \rightarrow b_{1}(1235) h(h=K / \pi)$
$\square I^{G}=1^{+}$member of $\mathrm{J}^{\mathrm{PC}}=1^{+-}{ }^{1} \mathrm{P}_{1}$ nonet $\downarrow \uparrow$
$\square$ Reconstruct via $b_{1} \rightarrow \omega\left\{\rightarrow \pi^{+} \pi^{-} \pi^{0}\right\} \pi$ arXiv:0707.4561

| Mode | Yield | $\mathcal{B}\left(\times 10^{-6}\right)$ | $\mathcal{A}_{C P}$ |
| :--- | ---: | ---: | ---: |
| $b_{1}^{0} \pi^{+}$ | $178_{-37}^{+39}$ | $6.7 \pm 1.7 \pm 1.0$ | $0.05 \pm 0.16 \pm 0.02$ |
| $b_{1}^{0} K^{+}$ | $219_{-366}^{+38}$ | $9.1 \pm 1.7 \pm 1.0$ | $-0.46 \pm 0.20 \pm 0.02$ |
| $b_{1}^{\mp} \pi^{ \pm}$ | $387_{-39}^{+41}$ | $10.9 \pm 1.2 \pm 0.9$ | $-0.05 \pm 0.10 \pm 0.02$ |
| $b_{1}^{-} K^{+}$ | $267_{-32}^{+33}$ | $7.4 \pm 1.0 \pm 1.0$ | $-0.07 \pm 0.12 \pm 0.02$ |
| $\sqrt{\pi}$ modes consistent with naive factorization |  |  |  |
| $\boldsymbol{x} b_{1} K$ values smaller than predicted $\\|$ need |  |  |  | theoretical fine-tuning

Laporta et al., hep-ph/0602243
PRD 74, 054035


## WARWICK

## Conclusions and outlook

- Plenty of new measurements in charmless hadronic $B$ decays
$-B^{+} \rightarrow K^{+} K^{-} \pi^{+}$(first observation a three-body final state with even number of kaons)
- In axialvector $\left(a_{1}, b_{1}\right)$ and pseudoscalar $(K / \pi)$ sector, three new measurements and evidence for further three modes
- Verification of G-parity suppression in a $B$-meson decay
- Several results are updated with greater precision
- Probing Standard Model in two orthogonal directions
- Weak interaction (CKM physics) by measuring angles $\beta, \alpha$上 See the following talk by Sandrine Emery
- Strong interaction (low energy spectroscopy) in the decays involving $f_{\mathbf{x}}(1500)$ etc.
- Look forward to the last run that along with run 6 would double the dataset ${ }_{\|}$crucial for many rare decays

