Charmless Hadronic B decays at BaBar

Gagan Mohanty
University of Warwick
Representing

XII. INTERNATIONAL CONFERENCE ON HADRON SPECTROSCOPY

8-13 OCTOBER 2007

Laboratori Nazionali di Frascati (Rome)

Outline of the talk

- Theory/Motivation
- Dataset and Detector
- Analysis Strategy
- Results
 - \triangleright Three-body decay $K^+K^-\pi^+$
 - \triangleright Vector-Vector mode $K^*\overline{K}^*$
 - Axialvector-Pseudoscalar modes $(a_1h \text{ and } b_1h, h=K/\pi)$
- Conclusions and Outlook
- ♠ Results are preliminary unless journal reference given

Theory

Diagrams for three-body processes shown for illustration purpose

b \rightarrow s loop (penguin) transition contributes only to the final states with odd number of kaons due to presence s quark e.g. $K\pi\pi$, KKK

Final states with even number of kaons, such as $KK\pi$ get contributions from $b\to u$ tree and $b\to d$ penguin diagrams. Odd number kaon states are further Cabibbo suppressed [~ $\sin\theta_c$]

Motivation

- Interfering tree and penguin amplitudes pood place to search for direct *CP* violation
- Good place to search for new physics since
 NP particles can enter the loop
- Probes flavor sector, particularly by measuring
 - $-\sin(2\beta)$ or just β in the $K_S h^+ h^- (K/\pi)$ Dalitz plot
 - α in the modes: $\pi\pi$, $\rho\pi$, $\rho\rho$ and a_1h
 - $-\gamma$ using flavour symmetries (isospin, U-spin *etc.*)
- Low energy spectroscopy

Klempt et al., arXiv:0708.4016

• Testing ground for pQCD, QCD factorization, SCET...

Dataset and Detector

Main components to tag charmless B decays are tracking, DIRC (PID) and EMC (π^0, η)

- ✓ Run 6 just ended last month
 - Presented results mostly based on data from runs 1-5
- ✓ Final run 7 scheduled to start

WARWICK

Analysis Strategy

- PID is crucial for these analyses
 - Distinguish charged K vs. π
 - Veto the leptons

- Use beam-energy info ξ_{120}^{0140} and (E,\mathbf{p}) conservation ξ_{100}^{0140}
- $m_{\text{ES}} = \sqrt{E_{\text{beam}}^{\star 2} \mathbf{p}_B^{\star 2}}$
- $\Delta E = (E_B^{\star} E_{\text{beam}}^{\star})$

Fivent topology to discriminate spherical signal events from jet-like $q\bar{q}$ continuum background

Resonance mass and angular information wherever appropriate

WARWICK

$B^+ \rightarrow K^+ K^- \pi^+$ inclusive

 $egin{array}{lll} \overline{K}^{*0}(892)K & 1.1 imes 10^{-6} \\ \overline{K}^{*0}_0(1430)K & 2.2 imes 10^{-6} \\ \phi(1020)\pi & 2.4 imes 10^{-7} \\ \end{array} egin{array}{lll} \mbox{arXiv:0708.2248,} \mbox{accepted by PRD(R)} \\ \mbox{accepted by PRD(R)} \\ \mbox{PRD 74, 011102} \\ \end{array}$

☐ Inclusive analysis reveals a large signal yield of (429±43)

$$\mathcal{B}(B^+ \to K^+ K^- \pi^+) : (5.0 \pm 0.5 \pm 0.5) \times 10^{-6}$$

arXiv:0708.0376, accepted by PRL

 \mathcal{A}_{CP} is consistent with zero

$B^+ \rightarrow K^+ K^- \pi^+$ inclusive

- ✓ Half of the events originates from
- ✓ Reminiscent of similar structures seen in $K_SK^+K^-$ and $K^+K^+K^-$
 - ➤ Nature of this state around 1.5GeV/c² is not very clear

✓ Rate reasonably consistent with the Q2B results on $K^{*0}K$

Efficiency-corrected distribution

arXiv:0708.2248, accepted by PRD(R)

$B^0 \rightarrow K^{*0} \overline{K}^{*0}$ and $K^{*0} K^{*0}$

- ✓ First one proceeds through both gluonic and EW penguins; latter heavily suppressed (NP effect)
- ✓ Might provide insights into the polarization puzzle
 - $\rightarrow f_L \sim 0.5 \text{ in } B \rightarrow \varphi K^*$
 - > pQCD prediction 0.9

PRL 98, 051801, arXiv:0705.1798

zuki, 1 KD 00, 034010

arXiv:0708.2248

Channel	$K^{*0}\overline{K}^{*0}$	$K^{*0}K^{*0}$
n_{sig}	$28.8^{+9.1}_{-7.8}$	2.7 ± 3.3
$\mathcal{B}(10^{-6})$	$28.8_{-7.8}^{+9.1} \\ 0.49_{-0.13}^{+0.16} \pm 0.06$	$< 0.18^{\P}$
f_L	$0.81^{+0.10}_{-0.12} \pm 0.06$	_

¶ two orders of magnitude improvement

WARWICK

$B^0 \to K^{*0}(892)h^+h^- (h=K/\pi)$

- * Observation of SM suppressed decay mode $K^{*0}K^{+}\pi^{-}$ at par with $K^{*0}\pi^{+}K^{-}$ sign of new physics
 - Reconstruct K^{*0} via the selftagging mode $K^{+}\pi^{-}$

arXiv:0708.2543, accepted by PRD(R)

$B^0 o Mode$	n_{sig}	$\mathcal{B}(imes 10^{-6})$	\mathcal{A}_{CP}
$K^{*0}K^{+}K^{-}$	984 ± 46	$27.5 \pm 1.3 \pm 2.2$	$0.01 \pm 0.05 \pm 0.02$
$K^{*0}\pi^+K^-$	183 ± 42.4	$4.6 \pm 1.1 \pm 0.8$	$0.22 \pm 0.33 \pm 0.20$
$K^{*0}K^+\pi^-$	18.8 ± 29.4	< 2.2	_
$K^{*0}\pi^{+}\pi^{-}$	2019 ± 108	$54.5 \pm 2.9 \pm 4.3$	$0.07 \pm 0.04 \pm 0.03$

 3.8σ

5.26

5 27

Events / ($2 \, \mathrm{MeV/c}^2$

30

20

10

$B \rightarrow a_1(1260)\pi$

- - Reconstruct via the 3π decay mode

Mode	Yield	$\mathcal{B}(B \to a_1 \pi) \times \mathcal{B}(a_1 \to \pi \pi \pi)$
$a_1^+\pi^0$	459 ± 78	$(13.2 \pm 2.7 \pm 2.1) \times 10^{-6}$
$a_{1}^{\dagger}\pi^{+}$	382 ± 79	$(20.4 \pm 4.7 \pm 3.4) \times 10^{-6}$

✓ Agreement with the factorization model prediction

Laporta et al., PRD 74, 054035 hep-ph/0602243

x Search in the a_0 mode: arXiv:0708.0963

$$\mathcal{B}(B^+ \to a_0^+(980)\pi^0) \times \mathcal{B}(a_0^+ \to \eta \pi^+) < 1.4 \times 10^{-6}$$
₁₁

$B \rightarrow a_1(1260)K$

- **CKM** angle α using SU(3) flavour symmetry **Gronau et al., PRD 73, 057502**
- ☐ Test factorization model predictions

Laporta et al., PRD 74, 054035 hep-ph/0602243

☐ No measurement exists to date

Va	lue	$a_1^+(1260)K^0$	$a_1^-(1260)K^+$
arXiv:0709.4165 n_{si}	g G	241 ± 32	272 ± 44
$\mathcal{B}(\mathcal{A}_{\mathcal{C}})$,	$17.4 \pm 2.5 \pm 2.2$ $.12 \pm 0.11 \pm 0.02$	$8.2 \pm 1.5 \pm 1.2 \ -0.16 \pm 0.12 \pm 0.01$

- ✓ Results in reasonable agreement with theoretical estimates
- **★** No evidence for direct *CP* violation

100 l

50

40

401

20

100 8.9σ

Events / 4 MeV

382M B pairs

$B \to b_1(1235)h \ (h=K/\pi)$

 \square Reconstruct via $b_1 \rightarrow \omega \{ \rightarrow \pi^+ \pi^- \pi^0 \} \pi$

arXiv:0707.4561

Mode	Yield	$\mathcal{B}~(imes 10^{-6})$	\mathcal{A}_{CP}
$b_1^0 \pi^+$	178^{+39}_{-37}	$6.7\pm1.7\pm1.0$	$0.05 \pm 0.16 \pm 0.02$
$-b_1^0K^+$	219_{-36}^{-37}	$9.1\pm1.7\pm1.0$	$-0.46 \pm 0.20 \pm 0.02$
$b_1^{\mp}\pi^{\pm}$	387^{+41}_{-39}	$10.9 \pm 1.2 \pm 0.9$	$-0.05 \pm 0.10 \pm 0.02$
$b_1^-K^+$	$387_{-39}^{+31} \\ 267_{-32}^{+33}$	$7.4\pm1.0\pm1.0$	$-0.07 \pm 0.12 \pm 0.02$

 π modes consistent with naïve factorization

 $\star b_1 K$ values smaller than predicted \longrightarrow need theoretical fine-tuning

Laporta et al., hep-ph/0602243

PRD 74, 054035

$$\mathcal{B}(B^0 \to b^+\pi^-)$$

$$\sqrt{\frac{\mathcal{B}(B^0 \to b^+\pi^-)}{\mathcal{B}(B^0 \to b^-\pi^+)}} = -0.01 \pm 0.12 \quad \text{agrees with G-parity}$$

$$\text{Suppression} \quad \text{Weinberg, PR 112, 1375 (1958)}$$

Conclusions and outlook

- Plenty of new measurements in charmless hadronic B decays
 - $-B^+$ → $K^+K^-\pi^+$ (first observation a three-body final state with even number of kaons)
 - In axialvector (a_1,b_1) and pseudoscalar (K/π) sector, three new measurements and evidence for further three modes
 - Verification of G-parity suppression in a B-meson decay
 - Several results are updated with greater precision
- Probing Standard Model in two orthogonal directions
 - Weak interaction (CKM physics) by measuring angles β, α
 ◆ See the following talk by Sandrine Emery
 - Strong interaction (low energy spectroscopy) in the decays involving $f_{\mathbf{x}}(1500)$ etc.
- Look forward to the last run that along with run 6 would double the dataset crucial for many rare decays