Electromagnetic decays of vector mesons

A phenomenological model developed by:

- * Tobias Frederico (ITA, São José dos Campos)
- * Emanuele Pace (University of Roma & INFN Tor Vergata)

...and Silvia Pisano

University of Rome
"La Sapienza"
October 9th, 2007

Outline

- * Electromagnetic decays of vector mesons
- * Light-Front dynamics
- * The model
 - **→** Mandelstam approach
 - → Phenomenological Ansatz for the vector meson Bethe-Salpeter amplitude
 - \rightarrow q- γ vertex
- * Tested wave functions
- * Results
- * Summary and Outlook

Electromagnetic decays of vector mesons

VM $\rightarrow e^+e^-$: the $q\bar{q}$ pair composing the vector meson annihilates in a virtual photon, that produces a lepton pair.

The $q\bar{q}$ vertex is strategic in the Vector Meson Dominance description of the photon propagation:

...where the photon is described through its hadronic component $q \bar{q}$

Useful to study electromagnetic form factors!

Theoretical framework: Light-Front dynamics

Three forms of relativistic dynamics: the Instant-Form, the Point-Form and the Front-Form. We will use the Front-Form dynamics.

Why using the Light Front?

- * largest number of kinematical generators
- * pair-production mechanisms are not allowed, and the *vacuum* of the theory is an exact eigenstate of the full Hamiltonian.
- * ...it open a unique possibility to study the hadronic state, both in the valence and in the non-valence sector

$$|meson\rangle = |q\bar{q}\rangle + |q\bar{q}q\bar{q}\rangle + |q\bar{q}|g\rangle.....$$
 $|baryon\rangle = \underline{|qqq\rangle} + \underline{|qqq|q\bar{q}\rangle + |qqq|g\rangle....}$
valence non-valence

since the Fock expansion is meaningful within LF framework.

Mandelstam Formula for decay constant

The decay constant and the width are defined as:

$$\langle 0|J^{\mu}(0)|P,\lambda\rangle = i\sqrt{2}f_V\epsilon^{\mu}_{\lambda} \equiv \mathcal{V}^{\mu}_{\lambda} \quad \to \quad \Gamma_{e^+e^-} = \frac{8\pi\alpha^2}{3}\frac{|f_V|^2}{M_V^3} \quad (1)$$

It can be approximated \acute{a} la Mandelstam through:

$$\mathcal{V}^{\mu}_{\lambda} = \mathcal{F}_{V} \frac{N_{c}}{(2\pi)^{4}} \int d^{4}k \frac{\Lambda_{V}(k, k - P, m_{1}, m_{2})}{(k^{2} - m_{1}^{2} + i\epsilon) \left[(P - k)^{2} - m_{2}^{2} + i\epsilon \right]} \times$$

$$\text{Tr}[\epsilon_{\lambda}(P) \cdot V (\not k - \not P + m_{2})\gamma^{\mu}(\not k + m_{1})]$$
(2)

Main ingredients: Bethe-Salpeter amplitude for the VM

$$\Lambda_{V}(k, k - P) = \mathcal{N} \left[k^{2} - m_{1}^{2} + (P - k)^{2} - m_{2}^{2} \right] \times \frac{1}{\left[k^{2} - m_{R_{1}}^{2} + \imath \epsilon \right] \left[(P - k)^{2} - m_{R_{1}}^{2} + \imath \epsilon \right]} \times \frac{1}{\left[k^{2} - m_{R_{2}}^{2} + \imath \epsilon \right] \left[(P - k)^{2} - m_{R_{2}}^{2} + \imath \epsilon \right]} \times \frac{1}{\left[k^{2} - m_{R_{3}}^{2} + \imath \epsilon \right]} \frac{1}{\left[(P - k)^{2} - m_{R_{3}}^{2} + \imath \epsilon \right]} \tag{3}$$

 m_{Bi} are free

chosen in order to:

parameters

- * fulfill the right symmetry properties in order to respect the covariance (symmetry with respect to the quark momenta exchange);
- * regularize the integrations.

Main ingredients: $q - \gamma$ vertex

The following vertex function is adopted in the work:

$$V^{\mu} = \frac{M}{M + m_1 + m_2} \left[\gamma^{\mu} + i \frac{1}{M} \sigma^{\mu\nu} P_{\nu} \right]$$
 (4)

In the matrix element the operator V^{μ} is multiplied by the polarization vector $\epsilon^{\mu}_{\lambda}(P)$, orthogonal to P^{μ} , so that:

$$\epsilon_{\lambda}(P) \cdot V = \frac{M}{M + m_1 + m_2} \left[\not\epsilon_{\lambda}(P) - \frac{1}{M} \not\epsilon_{\lambda}(P) \not P \right] =$$

$$= \frac{1}{M + m_1 + m_2} \not\epsilon_{\lambda}(P) \left[M - \not P \right]$$
(5)

The valence component of the BSA

The valence component of the Bethe-Salpeter amplitude for a vector meson is defined as:

$$\Psi_{\lambda}(k,P) = \frac{k + m_1}{k^2 - m_1^2 + i\epsilon} \left[\epsilon_{\lambda}(P) \cdot V(k,k-P) \right]
\times \Lambda_{V}(k,k-P) \frac{k - P + m_2}{(k-P)^2 - m_2^2 + i\epsilon}$$
(6)

where the Dirac structure is chosen in order to reproduce the Melosh rotations for a 3S_1 meson, i.e.

$$(\not k + m_1) \left[\epsilon_{\lambda}(P) \cdot V(k, (k-P)) \right] \left[(\not k - P) + m_2 \right] \tag{7}$$

By:

- * taking out the Dirac structure from $\Psi_{\lambda}(k,P)$
- * integrating over k^- with the constraint $P^+ > k^+ > 0$
- * multiplying by the factor k^+ $(P-k)^+$

one has the definition of the momentum component of the valence wave function...

The momentum component looks like...

$$\phi(k^{+}, \mathbf{k}_{\perp}; M, \vec{0}) = i \int \frac{dk^{-}}{2\pi} \frac{\Lambda_{V}(k, k - P)}{(k^{-} - k_{(1)}^{-}) \left(k_{(2)}^{-} - k^{-}\right)} =$$

$$= \frac{\Lambda_{V}(k, k - P)}{(k_{(2)}^{-} - k^{-})} \bigg|_{k^{-} = k_{(1)}^{-}} + \frac{1}{(k_{R_{1}}^{-} - k_{(1)}^{-})} \left[\frac{(k^{-} - k_{R_{1}}^{-})\Lambda_{V}(k, k - P)}{(k_{(2)}^{-} - k^{-})} \right] \bigg|_{k^{-} = k_{R}^{-}}$$

$$+ \frac{1}{(k_{R_{2}}^{-} - k_{(1)}^{-})} \left[\frac{(k^{-} - k_{R_{2}}^{-})\Lambda_{V}(k, k - P)}{(k_{(2)}^{-} - k^{-})} \right] \bigg|_{k^{-} = k_{R_{2}}^{-}} +$$

$$+ \frac{1}{(k_{R_{3}}^{-} - k_{(1)}^{-})} \left[\frac{(k^{-} - k_{R_{3}}^{-})\Lambda_{V}(k, k - P)}{(k_{(2)}^{-} - k^{-})} \right] \bigg|_{k^{-} = k_{R_{3}}^{-}} =$$

$$= \mathcal{N} \Phi(\xi, \mathbf{k}_{\perp}; P^{+}, \mathbf{P}_{\perp} = \mathbf{0}, R_{1}, R_{2}, R_{3})$$

$$\mathcal{N} \text{ is determined by charge}$$

normalization

Valence component probability

The probability $P_{q\bar{q}}$ of the valence component reads

$$P_{q\bar{q}} = N_c \ I_V \ \mathcal{N}^2 \ \frac{1}{(2\pi)^3} \ \frac{1}{[P^+]^2} \int_0^1 \frac{d\xi}{\xi \ (1-\xi)}$$

$$\int d\mathbf{k}_\perp \ \left\{ M_0^2 + [\epsilon_\lambda(P) \ \cdot (k-P) - \epsilon_\lambda(P) \ \cdot k]^2 \right\} \times$$

$$|\Phi(\xi, \mathbf{k}_\perp; P^+, \mathbf{P}_\perp = \mathbf{0}, R_1, R_2, R_3)|^2 \tag{9}$$

and depends on $\Phi(\xi, \mathbf{k}_{\perp}; P^{+}, \mathbf{P}_{\perp} = \mathbf{0}, R_{1}, R_{2}, R_{3}).$

Tested models

The momentum distributions of three different models are investigated, in particular:

- * A Harmonic-Oscillator-like potential
- * A Godfrey-Isgur potential (PRD 32, 189 (1985))
- * An effective light-front QCD-inspired dynamical model regulated at short-distances (*EPJA* **27** *213* (2006))

The momentum distribution obtained within our model is fitted to these distributions, and the free parameters m_{Ri} are fixed.

Then, the electromagnetic widths are predicted!!

Electromagnetic Widths and Probabilities 1: harmonic oscillator

VM	$m_{VM} \; ({ m MeV})$	$P_{qar{q}}$	$\Gamma_{e^+e^-}^{th} \; (\text{keV})$	$\Gamma_{e^+e^-}^{exp} \; (\text{keV})$
ho	775.5 ± 0.4	0.884	10.328	7.02 ± 0.11
ϕ	1019.460 ± 0.019	0.961	1.582	1.32 ± 0.06
J/ψ	3096.916 ± 0.011	0.787	1.572	$5.55 \pm 0.14 \pm 0.02$

It reproduces quite well the light sector ρ , ϕ , but a reasonable description of heavy mesons is still lacking!

Electromagnetic Widths and Probabilities 2: Godfrey-Isgur

VM	$m_{VM} \; ({ m MeV})$	$P_{qar{q}}$	$\Gamma^{th}_{e^+e^-} \; (\mathrm{KeV})$	$\Gamma_{e^+e^-}^{exp} (\text{keV})$
ρ	775.5 ± 0.4	0.411	18.098	7.02 ± 0.11
ϕ	1019.460 ± 0.019	0.906	3.733	1.32 ± 0.06
J/ψ	3096.916 ± 0.011	0.908	5.911	$5.55 \pm 0.14 \pm 0.02$

Differently from the Harmonic Oscillator case, within the Godfrey-Isgur model the electromagnetic properties for the light sector are overestimated, while a better description of the heavy mesons is obtained.

Electromagnetic Widths and Probabilities 3: QCD model

VM	$m_{VM} \; ({ m MeV})$	$P_{qar{q}}$	$\Gamma_{e^+e^-}^{th} \; (\text{keV})$	$\Gamma_{e^+e^-}^{exp} \; (\text{keV})$
ho	775.5 ± 0.4	0.913	7.548	7.02 ± 0.11
ϕ	1019.460 ± 0.019	0.995	1.294	1.32 ± 0.06
J/ψ	3096.916 ± 0.011	0.726	1.250	$5.55 \pm 0.14 \pm 0.02$

The light sector is reproduced very well, but the heavy sector is absolutely not described.

Summary and Outlook

- * An Ansatz for VM the Bethe-Salpeter amplitude has been tested...
- * ...together with a q- γ vertex;
- * three different models have been investigated, fitting to them the momentum distribution obtained from the valence component of the BSA;
- * the light sector is successfully described with an harmonic oscillator model, while a Godfrey-Isgur model seems more appropriate for the heavy sector.
- ** a new, QCD-inspired model for the mass spectrum is under investigation, in order to mediate between these two regimes.

