Dlectromagnetic decays of vector

mesons

A phenomenological model developed by:

* Tobias Frederico (ITA, São José dos Campos)
** Emanuele Pace (University of Roma \& INFN - Tor Vergata)
** Giovanni Salmè (INFN - Roma 1)
...and Silvia Pisano
University of Rome
"La Sapienza"
October $9^{t h}, 2007$

Outline

粦 Electromagnetic decays of vector mesons
粦 Light－Front dynamics
漛 The model
\Rightarrow Mandelstam approach
\Rightarrow Phenomenological Ansatz for the vector meson Bethe－Salpeter amplitude
$\Leftrightarrow \mathrm{q}-\gamma$ vertex
橉 Tested wave functions
粦 Results
＊＊Summary and Outlook

Dlectromagnetic decays of vector mesons

$\mathrm{VM} \rightarrow e^{+} e^{-}: \quad$ the $q \bar{q}$ pair
composing the vector meson
annihilates in a virtual photon,
that produces a lepton pair.

The $q \bar{q}$ vertex is strategic in the Vector Meson Dominance description of the photon propagation:
...where the photon
is described through its hadronic component $q \bar{q}$

Useful to study electromagnetic form factors!

Theoretical framework: Light-Front dynamics

Three forms of relativistic dynamics: the Instant-Form, the Point-Form and the Front-Form. We will use the Front-Form dynamics.

New coordinates:
$x^{\mu}=\left[x^{-}, x^{+}, \mathbf{x}_{\perp}\right]$ where

$$
x^{ \pm}=x^{0} \pm x^{3}
$$

$$
\mathbf{x}_{\perp}=\left(x^{1}, x^{2}\right)
$$

October $9^{t h}$, 2007@Hadron07, Frascati

Why using the Light Front?

漛 largest number of kinematical generators
** pair-production mechanisms are not allowed, and the vacuum of the theory is an exact eigenstate of the full Hamiltonian.

粦 ...it open a unique possibility to study the hadronic state, both in the valence and in the non-valence sector

$$
\begin{gathered}
\mid \text { meson }\rangle=|q \bar{q}\rangle+|q \bar{q} q \bar{q}\rangle+|q \bar{q} g\rangle \ldots \ldots \\
\mid \text { baryon }\rangle=\underbrace{|q q q\rangle}_{\text {valence }}+\underbrace{|q q q q \bar{q}\rangle+|q q q g\rangle \ldots \ldots}_{\text {non-valence }}
\end{gathered}
$$

since the Fock expansion is meaningful within LF framework.

Mandelstam Formula for decay constant

The decay constant and the width are defined as:

$$
\begin{equation*}
\langle 0| J^{\mu}(0)|P, \lambda\rangle=\imath \sqrt{2} f_{V} \epsilon_{\lambda}^{\mu} \equiv \mathcal{V}_{\lambda}^{\mu} \quad \rightarrow \quad \Gamma_{e^{+} e^{-}}=\frac{8 \pi \alpha^{2}}{3} \frac{\left|f_{V}\right|^{2}}{M_{V}^{3}} \tag{1}
\end{equation*}
$$

It can be approximated á la Mandelstam through:

$$
\begin{align*}
& \mathcal{V}_{\lambda}^{\mu}=\mathcal{F}_{V} \frac{N_{c}}{(2 \pi)^{4}} \int d^{4} k \frac{\Lambda_{V}\left(k, k-P, m_{1}, m_{2}\right)}{\left(k^{2}-m_{1}^{2}+\imath \epsilon\right)\left[(P-k)^{2}-m_{2}^{2}+\imath \epsilon\right]} \times \\
& \operatorname{Tr}\left[\epsilon_{\lambda}(P) \cdot V\left(\not k-P+m_{2}\right) \gamma^{\mu}\left(\not k+m_{1}\right)\right] \tag{2}
\end{align*}
$$

Main ingredients: Bethe-Salpeter amplitude for

the VM

$$
\begin{align*}
& \Lambda_{V}(k, k-P)=\mathcal{N}\left[k^{2}-m_{1}^{2}+(P-k)^{2}-m_{2}^{2}\right] \times \\
& \frac{1}{\left[k^{2}-m_{R_{1}}^{2}+\imath \epsilon\right]\left[(P-k)^{2}-m_{R_{1}}^{2}+\imath \epsilon\right]} \times \\
& \frac{1}{\left[k^{2}-m_{R_{2}}^{2}+\imath \epsilon\right]\left[(P-k)^{2}-m_{R_{2}}^{2}+\imath \epsilon\right]} \times \\
& \frac{1}{\left[k^{2}-m_{R_{3}}^{2}+\imath \epsilon\right]} \frac{1}{\left[(P-k)^{2}-m_{R_{3}}^{2}+\imath \epsilon\right]} \tag{3}
\end{align*}
$$

chosen in order to:
$m_{R i}$ are free parameters

* fulfill the right symmetry properties in order to respect the covariance (symmetry with respect to the quark momenta exchange);
* regularize the integrations.

Main ingredients: $q-\gamma$ vertex

The following vertex function is adopted in the work:

$$
\begin{equation*}
V^{\mu}=\frac{M}{M+m_{1}+m_{2}}\left[\gamma^{\mu}+\imath \frac{1}{M} \sigma^{\mu \nu} P_{\nu}\right] \tag{4}
\end{equation*}
$$

In the matrix element the operator V^{μ} is multiplied by the polarization vector $\epsilon_{\lambda}^{\mu}(P)$, orthogonal to P^{μ}, so that:

$$
\begin{align*}
& \epsilon_{\lambda}(P) \cdot V=\frac{M}{M+m_{1}+m_{2}}\left[\not{ }_{\lambda}(P)-\frac{1}{M} \not \oint_{\lambda}(P) P\right]= \\
& =\frac{1}{M+m_{1}+m_{2}} \not \oint_{\lambda}(P)[M-P] \tag{5}
\end{align*}
$$

The valence component of the BSA

The valence component of the Bethe-Salpeter amplitude for a vector meson is defined as:

$$
\begin{align*}
& \Psi_{\lambda}(k, P)=\frac{\not k+m_{1}}{k^{2}-m_{1}^{2}+\imath \epsilon}\left[\epsilon_{\lambda}(P) \cdot V(k, k-P)\right] \\
& \times \Lambda_{V}(k, k-P) \frac{\not k-P+m_{2}}{(k-P)^{2}-m_{2}^{2}+\imath \epsilon} \tag{6}
\end{align*}
$$

where the Dirac structure is chosen in order to reproduce the Melosh rotations for a ${ }^{3} S_{1}$ meson, i.e.

$$
\begin{equation*}
\left(\not k+m_{1}\right)\left[\epsilon_{\lambda}(P) \cdot V(k,(k-P))\right]\left[(k-\not P)+m_{2}\right] \tag{7}
\end{equation*}
$$

By:

* taking out the Dirac structure from $\Psi_{\lambda}(k, P)$
* integrating over k^{-}with the constraint $P^{+}>k^{+}>0$
* multiplying by the factor $k^{+}(P-k)^{+}$
one has the definition of the momentum component of the valence wave function...

The momentum component looks like..

$$
\begin{aligned}
& \phi\left(k^{+}, \mathbf{k}_{\perp} ; M, \overrightarrow{0}\right)=\imath \int \frac{d k^{-}}{2 \pi} \frac{\Lambda_{V}(k, k-P)}{\left(k^{-}-k_{(1)}^{-}\right)\left(k_{(2)}^{-}-k^{-}\right)}= \\
& \left.=\left.\frac{\Lambda_{V}(k, k-P)}{\left(k_{(2)}^{-}-k^{-}\right)}\right|_{k^{-}=k_{(1)}^{-}}+\left.\frac{1}{\left(k_{R_{1}}^{-}-k_{(1)}^{-}\right)}\left[\frac{\left(k^{-}-k_{R_{1}}^{-}\right) \Lambda_{V}(k, k-P)}{\left(k_{(2)}^{-}-k^{-}\right)}\right]\right|_{k^{-}=k_{R}^{-}}\right]\left.\right|_{k^{-}=k_{R_{2}}^{-}}+ \\
& +\frac{1}{\left(k_{R_{2}}^{-}-k_{(1)}^{-}\right)}\left[\left.\frac{\left(k^{-}-k_{R_{2}}^{-}\right) \Lambda_{V}(k, k-P)}{\left(k_{(2)}^{-}-k^{-}\right)}\right|_{k^{-}=k_{R_{3}}^{-}}=\right. \\
& +\frac{1}{\left(k_{R_{3}}^{-}-k_{(1)}^{-}\right)}\left[\left.\frac{\left(k^{-}-k_{R_{3}}^{-}\right) \Lambda_{V}(k, k-P)}{\left(k_{(2)}^{-}-k^{-}\right)}\right|_{\mathcal{N} \text { is determined by charge }} ^{\text {normalization }}\right.
\end{aligned}
$$

Valence component probability

The probability $P_{q \bar{q}}$ of the valence component reads

$$
\begin{align*}
& P_{q \bar{q}}=N_{c} I_{V} \mathcal{N}^{2} \frac{1}{(2 \pi)^{3}} \frac{1}{\left[P^{+}\right]^{2}} \int_{0}^{1} \frac{d \xi}{\xi(1-\xi)} \\
& \int d \mathbf{k}_{\perp}\left\{M_{0}^{2}+\left[\epsilon_{\lambda}(P) \cdot(k-P)-\epsilon_{\lambda}(P) \cdot k\right]^{2}\right\} \times \\
& \left|\Phi\left(\xi, \mathbf{k}_{\perp} ; P^{+}, \mathbf{P}_{\perp}=\mathbf{0}, R_{1}, R_{2}, R_{3}\right)\right|^{2} \tag{9}
\end{align*}
$$

and depends on $\Phi\left(\xi, \mathbf{k}_{\perp} ; P^{+}, \mathbf{P}_{\perp}=\mathbf{0}, R_{1}, R_{2}, R_{3}\right)$.

Tested models

The momentum distributions of three different models are investigated, in particular:

* A Harmonic-Oscillator-like potential
* A Godfrey-Isgur potential (PRD 32, 189 (1985))
* An effective light-front QCD-inspired dynamical model regulated at short-distances (EPJA 27213 (2006))

The momentum distribution obtained within our model is fitted to these distributions, and the free parameters $m_{R i}$ are fixed.

Then, the electromagnetic widths are predicted!!

Momentum distribution for the ρ meson

(a) model vs. harmonic oscillator

(b) ...vs. Godfrey-Isgur

(c) ...and vs. a QCD inspired model

October $9^{t h}$, 2007@Hadron07, Frascati

Momentum distribution for the ϕ meson

(d) model vs. harmonic oscillator

(e) ...vs. Godfrey-Isgur

(f) ...and vs. a QCD inspired model

Momentum distribution for the ψ meson

(g) model vs. harmonic oscillator

(h) ...vs. Godfrey-Isgur

(i) ...and vs. a QCD inspired model

October $9^{t h}$, 2007@Hadron07, Frascati

Dlectromagnetic Widths and Probabilities 1: harmonic oscillator

VM	$m_{V M}(\mathrm{MeV})$	$P_{q \bar{q}}$	$\Gamma_{e^{+}+e^{-}}^{t h}(\mathrm{keV})$	$\Gamma_{e^{+}+e^{-}}^{\exp }(\mathrm{keV})$
ρ	775.5 ± 0.4	0.884	10.328	7.02 ± 0.11
ϕ	1019.460 ± 0.019	0.961	1.582	1.32 ± 0.06
J / ψ	3096.916 ± 0.011	0.787	1.572	$5.55 \pm 0.14 \pm 0.02$

It reproduces quite well the light sector ρ, ϕ, but a reasonable description of heavy mesons is still lacking!

Dlectromagnetic Widths and Probabilities 2: Godfrey-Isgur

VM	$m_{V M}(\mathrm{MeV})$	$P_{q \bar{q}}$	$\Gamma_{e^{+} e^{-}}^{t h}(\mathrm{KeV})$	$\Gamma_{e^{+}+e^{-}}^{\exp }(\mathrm{keV})$
ρ	775.5 ± 0.4	0.411	18.098	7.02 ± 0.11
ϕ	1019.460 ± 0.019	0.906	3.733	1.32 ± 0.06
J / ψ	3096.916 ± 0.011	0.908	5.911	$5.55 \pm 0.14 \pm 0.02$

Differently from the Harmonic Oscillator case, within the Godfrey-Isgur model the electromagnetic properties for the light sector are overestimated, while a better description of the heavy mesons is obtained.

Dlectromagnetic Widths and Probabilities 3: QCD model

VM	$m_{V M}(\mathrm{MeV})$	$P_{q \bar{q}}$	$\Gamma_{e^{+}+e^{-}}^{t h}(\mathrm{keV})$	$\Gamma_{e^{+}+e^{-}}^{\exp }(\mathrm{keV})$
ρ	775.5 ± 0.4	0.913	7.548	7.02 ± 0.11
ϕ	1019.460 ± 0.019	0.995	1.294	1.32 ± 0.06
J / ψ	3096.916 ± 0.011	0.726	1.250	$5.55 \pm 0.14 \pm 0.02$

The light sector is reproduced very well, but the heavy sector is absolutely not described.

Summary and Outlook

* An Ansatz for VM the Bethe-Salpeter amplitude has been tested...
* ...together with a q- γ vertex;
* three different models have been investigated, fitting to them the momentum distribution obtained from the valence component of the BSA;
* the light sector is successfully described with an harmonic oscillator model, while a Godfrey-Isgur model seems more appropriate for the heavy sector.
* a new, QCD-inspired model for the mass spectrum is under investigation, in order to mediate between these two regimes.

