Nucleon spin structure results (from the HERMES experiment)

Michael Düren

Universität Gießen

- XII Conference on Hadron Spectroscopy, Frascati, Oct. 10, 2007 -

EMC 1988: Only $12 \pm 17 \%$ spin of the proton is explained by the spin of the up - and down- quarks

Helicity sum rule:

$\underbrace{\mathrm{S}_{\mathrm{z}}}_{\text {spin proton }}$	valence and sea quark spin	$\underbrace{\Delta \mathrm{G}}_{\begin{array}{c} \text { gluon } \\ \text { Spin } \end{array}}+\underbrace{\Delta \mathrm{L}_{\mathrm{q}}+\Delta \mathrm{L}_{\mathrm{g}}}_{\begin{array}{c} \text { orbital angular } \\ \text { momentum } \end{array}}$
$=1 / 2$	$=\Delta \Sigma$	
$\begin{aligned} & a_{0}=\bar{M}=\Delta \Sigma \\ &=0.330 \pm 0.011 \end{aligned}$	0.025 ± 0.028	Remember: $1 / 3$ of the proton spin comes the from quark spin

The Experiment:

*) proposed in ~ 1988 to solve the spin crisis
${ }^{\dagger}$) plenty of beautiful data are waiting for being analyzed

Novel techniques: longitudinally polarized high energy electron/positron beam at HERA for beam-spin and beam-charge asymmetries

Novel techniques: The longitudinally and transverse hermes polarized internal gas target for double spin asymmetries

Novel techniques: Dual radiator RICH for strangeness

nermes

Novel techniques: Recoil detector for exclusive physics

Silicon Detector

- Inside beam vacuum
- 16 double-sided sensors
- Momentum reconstruction \& PID

Scintillating Fiber Detector

- 2 barrels
- 2×2 parallel and 2×2 stereo layers
- 10° stereo angle

1 Tesla superconducting solenoid
Photon Detector

- 3 layers of tungsten/scintillator
- PID for higher momenta
- detects $\Delta^{+} \rightarrow p \pi^{0}$

Hot topics in spin physics:

- Moments and QCD-fits of PDFs
- Strange sea polarisation; $S U(3)_{f}$
- Gluon spin
- Transverse spin effects (do not appear in the helicity sum rule)
- Orbital angular momentum of quarks: "3-D views" of the proton; GPDs

Polarized structure function $\mathrm{g}_{1}{ }^{\mathrm{p}, \mathrm{d}}(\mathrm{x})$

HERMES data set most precise and complete in valence/sea overlap region

First moment $\Gamma_{1}{ }^{d}$ and $\Delta \Sigma$

Deuteron data alone give $\Delta \Sigma$! \square
$a_{0}=\overline{M S}$
$=0.330 \pm 0.011 \pm 0.025 \pm 0.028$
Most precise result:
Consistent with other experiments

Δq and $\Delta \mathrm{G}$ from inclusive data

$$
g_{1}^{\mathrm{NLO}}(x)=g_{1}^{\mathrm{LO}}+\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{1}{2} \sum_{\mathrm{q}} \mathrm{e}_{\mathrm{q}}^{2}\left[\Delta \mathrm{q}\left(\mathrm{x}, \mathrm{Q}^{2}\right) \otimes C_{\mathrm{q}}+\Delta \mathrm{G}\left(x, \mathrm{Q}^{2}\right) \otimes C_{\mathrm{g}}\right]
$$

- Valence quarks are well determined: $\Delta u_{v}>0, \Delta d_{v}<0$

- Gluons and sea quarks are weakly constrained by data

SU(3) flavor symmetry implicitly assumed!

Important remark on SU(3) ${ }_{\text {f }}$ and the polarization of strange quarks

- The violation of the Ellis-Jaffe sum rule means:
- either the strange quark polarization Δs is negative
- or $S U(3)_{f}$ flavor symmetry is broken
- or low-x region different than assumed in parameterizations
- Most analyses assume explicitly or implicitly SU(3) $)_{f}$ flavor symmetry (e.g. in parameterizations of the PDFs)
- Only semi-inclusive data can measure directly Δs

Kaon asymmetries

on deuterium
allow for the most direct determination of Δs !

Final analysis is in progress.

Flavor separation from semi-inclusive data

HERMES: Only direct 5-flavor separation of polarized PDFs

Results (in short):

- $\Delta u(x)$ is large and positive
- $\Delta \mathrm{d}(x)$ is smaller and negative
- $\Delta s(x)$ is approx. zero
[PRL92(2004), PRD71(2005)]

How does spin flavor separation $\Delta q_{f}(x)$ work?

Principles:

- Helicity conservation in polarized DIS: select specific quark spin orientation
- Hadron tagging: select specific quark flavor
- Matrix inversion brings you back from hadron asymmetries to quark spin flavor distributions Δq_{f} (purity formalism)

How does a direct gluon spin extraction work?

Principle:

- Large p_{T} hadron pairs come from photon gluon fusion processes
- They carry information of the gluon spin

触昆

Measurement of gluon polarisation

HERMES: first measurement of gluon polarisation [PRL 84 (2000)] TOPCITE 50+

Further analysis going on:

- Measurement of high p_{T} pairs
- Separation of the subprocesses
-Two different methods
- Significant reduction of Δg uncertainty
- Still sign ambiguity at low x

by Riccardo FABBRI

Transverse spin effects

There are \pm wo three leading-twist structure functions

$$
\sim \tilde{\psi} \sigma^{\mu \nu} \gamma_{5} \psi \text { Transversity }
$$

Interesting properties of transversity:

- QCD-evolution independent of gluon distribution (to be tested by experiment)
- $1^{\text {st }}$ moment of δq is tensor charge (pure valence object); value predicted by lattice QCD
* Transversity is chiral odd (i.e.does not contribute to inclusive DIS cross section!)

Transverse spin distribution of quarks

- The azimuthal angular distributions of hadrons from a transversely polarized target show two effects:
- Collins asymmetry in $\sin \left(\phi+\phi_{\underline{s}}\right)$
- Sivers asymmetry in $\sin \left(\phi-\phi_{s}\right)$

Transverse spin distribution of quarks

- The azimuthal angular distributions of hadrons from a transversely polarized target show two effects:
- Collins asymmetry in $\sin \left(\phi+\phi_{s}\right)$ transversity distribution $h_{1}(x)$ and the chiral-odd fragmentation function $\mathrm{H}_{1} \perp(z)$ \rightarrow related to the transverse spin distribution of quarks
- Sivers asymmetry in $\sin \left(\phi-\phi_{\underline{s}}\right)$

Transverse spin distribution of quarks

- The azimuthal angular distributions of hadrons from a transversely polarized target show two effects:
- Collins asymmetry in $\sin \left(\phi+\phi_{s}\right)$ Product of the chiral-odd transversity distribution $h_{1}(x)$ and the chiral-odd fragmentation function $\mathrm{H}_{1}{ }^{\perp}(z)$ \rightarrow related to the transverse spin distribution of quarks
- Sivers-Asymmetrie in $\sin \left(\phi-\phi_{\underline{s}}\right)$ Product of the T-odd distribution function $f_{1 T^{1}}(x)$ and the ordinary fragmentation function $D_{1}(z)$ \rightarrow related to the orbital angular momentum of quarks

Sivers function is related to orbital angular momentum of quarks

SSA for pions [PRL94(2005)]

- Significant non zero asymmetries

$$
\cdot A_{\pi+}>0, A_{\pi-}<0
$$

- Evidence of $\mathrm{H}_{1, \text { disf }}^{\perp} \approx-\mathrm{H}_{1, \text { av }}^{\perp}$

First measurement of naïve T-odd distr. fkt. in DIS
en, Univ.

$$
\pi^{+}: \mathrm{A}_{\mathrm{UT}}^{\sin \varphi}>0 \Rightarrow \mathrm{~L}_{\mathrm{q}} \neq 0
$$

SSA for pions and kaons

> For more details see talk
> by Luciano PAPPALARDO
M. Düren, Univ.

Sivers

$$
A_{\text {siv }}\left(K^{+}\right)>A_{\text {siv }}\left(\pi^{+}\right)
$$

Sea quarks may provide important contribution to Sivers function

General Parton Distributions

Quantum phase-space „tomography" of the nucleon

- Wigner introduced the first phase-space distribution in quantum mechanics (1932)

The Wigner function contains the most complete (one-body) info about a quantum system.

- A Wigner operator can be defined that describes quarks in the nucleon; The reduced Wigner distribution is related to GPDs

Quarks in quantum mechanical phase-space

- Elastic form factors \rightarrow charge distribution (space coordinates)
- Parton distributions \rightarrow momentum distribution of quark (momentum space)
- Generalized parton distributions (GPDs) are reduced Wigner functions \rightarrow correlation in phase-space \rightarrow e.g. the orbital momentum of quarks:

$$
L=r \times p
$$

- Angular momentum of quarks can be extracted from GPDs:

Ji sum rule: $J_{q}=\frac{1}{2} \int_{-1}^{1} x d x\left[H_{q}(x, \xi, 0)+E_{q}(x, \xi, 0)\right]$

- GPDs provide a unified theoretical framework for many experimental processes

Exclusive processes: The handbag diagram

- high $Q^{2} \leqslant$ hard regime
- high luminosity $\leftarrow \sigma \sim 1 / Q^{4}, 1 / Q^{6}$
- high resolution \leftarrow exclusivity
\longrightarrow Quantum number of final state selects different GPDs:
Vector mesons $(\rho, \omega, \phi): H \underset{\sim}{\mathrm{E}} \sim$
Pseudoscalar mesons $(\pi, \eta): \underset{\sim}{\mathrm{H}} \underset{\sim}{\mathrm{E}}$
DVCS (γ) depends on H, E, H, E
\rightarrow polarization provides new observables sensitive
to different (combinations of) GPDs

Deeply Virtual Compton Scattering (DVCS)

Hard exclusive meson production

$$
\mathrm{e} p \rightarrow \mathrm{e}^{\prime} \mathrm{n} \pi^{+}
$$

[hep-ex/0405078,
arXiv 07070222 PLB submitted] GPDs predictions:

- Vanderhaeghen, Guichon \& Guidal [PRD 60 (1999)] (LO and LO+ power corrections)

Model calculation:

- Regge formalism, Laget
[PRD 70 (2004)]
- LO predictions + power correction to space like pion form factor in agreement with magnitude of data
- Regge formalism for long. and transv. part of the cross section provides good description of dependence of data
M. Düren, Univ. Giessen
\rightarrow Information on pion form factor, at high Q^{2} and on polarised GPDs

Quark total angular momentum

$A_{U T}$ most sensitive observable to access J_{q} via GPDs

HERMES data 2002-04:

\cdot U: unpolarized beam
-T: transv. pol. Target

- ~50\% of total stat.
$\propto \operatorname{Im}\left[\mathrm{F}_{2} H-F_{1} E\right]$
GPD model by:
[Goeke et al. (2001)]
[Ellinghaus et al. (2005)]

\Rightarrow first model dependent extraction of $J_{u} \& J_{d}$ possible VGG-Code: GPD-model: LO/Regge/D-term=0

The HERMES recoil detector (2006-07)

- Installed Dec 05, commissioned and successfully operated
- Dedicated to exclusive processes:
- Recoil proton detection
- High luminosity:
2006: 7 M DIS events e-
20 M DIS events e+
2007: 20 M DIS events e+

For more details see talk by Tibor KERI

Conclusions

- $1 / 3$ of the proton spin comes from quark spin
- Direct measurements of the strange quark sea could not verify a negative strange polarization. This indicates a SU(3) flavor symmetry breaking or large contributions from low x.
- Analysis of gluon spin from inclusive DIS is difficult and ongoing
- Transversity and Sivers functions are non-zero. Sivers asymmetry for kaon data indicates an orbital angular momentum contribution from sea quarks.
- DVCS beam charge and beam spin asymmetries have been measured. First data of orbital angular momentum (OAM) fits to GPD functions indicate non-zero OAM of up-quarks
- HERMES has the potential of further discoveries in spin physics with the new abundant recoil data!

