Measurement of the $\gamma n(p) \rightarrow K^+ \Sigma^-(p)$ reaction at Jefferson Lab

Sergio Anefalos Pereira

Laboratori Nazionali di Frascati (for the CLAS Collaboration)

XII. INTERNATIONAL CONFERENCE ON HADRON SPECTROSCOPY

8-13 OCTOBER 2007

Contents

- Physical Motivation
- CLAS/JLAB
- Analysis Procedure
- Channel Identification
- Preliminary Results
- Summary

Physics Motivation

- Many baryon resonances are predicted studying the channels with π , but very few were established.
- It's important to provide data to investigate the spectrum of baryon (N* and Δ) resonances, with the decay in KY (Y $\equiv \Lambda$ or Σ).
- Although the branching fractions of most resonances to KY final states are small compared to 3-body modes there are some advantages:
 - More often 2-body final states are easier to analyze than 3-body system states,
 - Couplings of nucleon resonances to KY final states will differ from the πN , ηN and $\pi \pi N$ final states.

Goals of this work: study the $\gamma n \to K^+ \Sigma^-$ channel to

- 1) study the baryon resonances not otherwise revealed,
- 2) obtain information about couplings of nucleon resonances to KY final states

Physics Motivation

A comprehensive study of the electromagnetic strangeness production has been undertaken at Thomas Jefferson National Accelerator Facility (Jefferson Lab), using the CLAS detector. The related experiments are:

- γ p \rightarrow (g1) Differential Cross Sections for $\gamma p \rightarrow K^+ Y$ for Λ and Σ^0 hyperons *Phys. Rev. C* 035202 (2006)
- γ p \rightarrow (g1) First Measurement of Beam-Recoil Observables C_x and C_z in Hyperon Photoproduction, *Phys. Rev. C* 75, 035205 (2007),
- $\gamma d \rightarrow (g2)$ Study of $\gamma n \rightarrow K^+ \Sigma^-$ channel (very low statistics), <u>unpublished</u>
- $\gamma d \rightarrow (g10)$ Study of $\gamma n \rightarrow K^+ \Sigma^-$ reaction channel (present work)
- $\gamma d \rightarrow (g13)$ Kaon production on Deuteron using polarized photons

Total cross section $\gamma N \rightarrow K Y$

γp data from ABBHHM, SAPHIR and CLAS

HADRON 07 - October 9th - 2007

Differential Cross Sections

data on γp (CLAS)

 $E\gamma = 1.019 - 2.949 \text{ GeV}$ $\cos \Theta^{\text{CM}} = -0.8 - 0.9$

there are also SAPHIR and ABBHHM collab.

(not shown here)

data on (LEPS)

 $E\gamma = 1.5 - 2.4 \text{ GeV}$

 $\cos \Theta^{CM} = 0.6 - 1.0$

 $\gamma n \rightarrow K^+\Sigma^-$ (blue points)

 $\gamma p \rightarrow K^+ \Sigma^0$ (green squares)

JLab Accelerator CEBAF

Superconducting recirculating electron accelerator

- Continuous Electron Beam
- Energy 0.8-5.7 GeV
- 200µA, polarization 80%
- · Simultaneous delivery to 3Halls

Hall B: Cebaf Large Acceptance Spectrometer + Tagger

Torus magnet

6 superconducting coils

Jefferson Lab **CLAS Detector** **Electromagnetic calorimeters**

Lead/scintillator, 1296 photomultipliers

Broad angular coverage

 $(8^{\circ} \div 140^{\circ})$ in LAB frame)

 Charged particle momentum resolution ~0.5% forward dir

CLAS is designed to measure exclusive reactions with multi-particle final states

Liquid D₂ (H₂)target +

γ start counter; e minitorus

Drift chambers

argon/CO₂ gas, 35,000 cells.

Time-of-flight counters

plastic scintillators, 684 photomultipliers

Gas Cherenkov counters

 e/π separation, 216 PMTs

 $\bullet E_{\gamma} = (20\% - 95\%) E_{e}$

·Tagged photon beam with energy resolution $\delta k/k \sim 0.1\%$

G10 Experiment

Approved experiment for the Pentaquark search on Deuterium

- Data taking March 13 May 16, 2004;
- Tagged photons in the energy range from 0.8 GeV to 3.59 GeV;
- Target 24 cm long liquid deuterium at Z = -25cm;
- Trigger at least two charged particles in CLAS;
- Magnetic field 2 settings of Torus magnet 2250 A (low field) and 3375 A (high field);
- Integrated luminosity ~ 50 pb⁻¹.

Analysis procedure

- Studied channel $\gamma n \to K^+ \Sigma^-$
- Energy range (Eγ): from threshold to 3.59 GeV;
- θ_{K}^{lab} range: from 10 to 140 degrees;

Exclusive measurement:

- detection of $K^+\pi^-$ and n
- proton as a missing particle.

The key points:

- The correct identification of K+
- The correct identification of neutron

K⁺ identification

- Kaon identification cuts:
 - vertex time cut $(\gamma_{time} K^+_{time})$;
 - $\Delta\beta$ cut = $\beta_{TOF} \beta_P$, where β_{TOF} is calculated from time-of-flight detectors and β_P is computed from momentum, $p/\sqrt{(p^2+m_K^2)}$;
 - Kaon momentum cut ($p_k \ge 0.5 \text{ GeV/c}$).

Σ - identification

- The missing particle is identified as $MM(K^+ \pi^- n)$ in $\gamma d \rightarrow K^+ \pi^- n X$.
- \square a cut on the missing particle momentum is then applied (p < 0.25 GeV/c)

after Kaon selection and missing momentum cut, the Σ - is identified as $M(\pi^- n)$ in $\gamma d \to K^+ \pi^- n X$

Background subtraction

 \square the background subtraction was done fitting the Σ - invariant mass distributions, in 100 MeV Eγ bins, with a Gaussian (black curves) + second order polynomial (green curves).

The Gaussian fits the peak and the polynomial fits the background.

The horizontal lines are the 3σ cuts on the Gaussian fit.

The real Σ - events are defined as the number of events within 3σ cut and above the polynomial fit.

Yield and Efficiency calculation

- ☐ after background subtraction, the yield is extracted. Monte Carlo simulation was used to calculate the efficiency.
- \Box the binning for the following results are: 200 MeV in Ey and 0.2 Cos θ^{CM}

HADRON 07 - October 9th - 2007

Normalized Yield

Summary

- ➤ It is very important to investigate baryon resonances which decay into KY in the final state in order to study the lack of the predicted resonances;
- > There are almost no experimental data on neutrons;
- The study of $\gamma n \to K^+ \Sigma^-$ reaction channel using the CLAS G10 data will give a set of results in gamma-neutron interactions in a wide E γ range from 1.1 to 3.6 GeV and angular range from 10 to 140 deg. in laboratory frame;
- > The preliminary results have shown that the studied channel can be well identified;
- ➤ The yield corrected by the efficiency was extracted.

Next steps

- \Box change the binning to 100 MeV in Ey and 0.1 in Cos θ^{CM}
- ☐ show the results in W bins
- a calculate the cross section
- ☐ estimate systematic errors

Backup slides

Neutron detection efficiency (g10 data)

Chosen reaction $\gamma d \rightarrow p n \pi + \pi^{-}$

Applied cuts to isolate this channel:

- missing mass of $\gamma d \rightarrow p \pi + \pi X$
- angle between the direction of expected and measured neutron
- polar angle ⊕ _{miss} between 10° and 45°
- azimuthal angle $\Phi_{\rm miss}$ in the sector reference frame
- background subtraction under missing mass peak

S. Anefalos Pereira

HADRON 07 - October 9th - 2007

Neutron detection efficiency (g10 data)

Applied cut on the Cos $\Theta_{X,n}$

Neutron detection efficiency (MC)

Same reaction $\gamma d \rightarrow p n \pi + \pi^{-}$

Applied cuts to isolate this channel:

- missing mass of $\gamma d \rightarrow p \pi + \pi X$
- angle between the direction of expected and measured neutron
- polar angle ⊕ _{miss} between 10° and 45°
- azimuthal angle $\Phi_{\rm miss}$ in the sector reference frame
- background subtraction under missing mass peak

S. Anefalos Pereira

HADRON 07 - October 9th - 2007

Neutron detection efficiency (MC)

applied cut on the Cos $\Theta_{\mathbf{X},\mathbf{n}}$

Neutron detection efficiency

Background subtraction – high field

Background subtraction – low field

Background subtraction – low field

