Linear mass rules and hadronic shells: the baryons

Paolo Palazzi pp@particlez.org httip:Il/particlez.org

HADRON 07 -- Frascati, 11 October 2007
preprints and published papers on these subjects are available at:
httip:///particlez.org

atomic physics timeline

1808 Dalton: chemistry is atomic

1869 Mendeleyev: periodic table

1885 Balmer: spectral rules
1890 Rydberg: extended spectral rules

1987 Thomson: electron

1907 Lenard: model with (+,-) charges
1904 Nagaoka: planetary model
1913 Bohr: model of the H atom

1925 Heisenberg: matrix (QM)
1926 Schroedinger: equation (QM)
1926 Schroedinger: H atom
1927: Heitler and London, quantum theory explains chemical bonding
1928 Dirac: equation

particle physics timeline

1963 quark-based CKM: accurate, but mixed-up

1961 SU(X) multiplets: plausible but incomplete
lots of data, but no rules:
1962-64 GMO and 1962 Chew-Frauschi plot, m^{2} rules (?), no longer quoted by the PDG

1969 partons (.. = quarks, undeconfinable)

1964 quark "model" evolved from taxonomy, clunky

197x, blessed in 2004: perfect, but ...

A SCHEMATIC MODEL OF BARYONS AND MESONS *
M. GELL-MANN
California Institute of Technology, Pasadena, California

Received 4 January 1964

If we assume that the strong interactions of baryons and mesons are correctly described in terms of the broken "eightfold way" ${ }^{1-3}$), we are tempted to look for some fundamental explanation of the situation. A highly promised approach is the purely dynamical "bootstrap" model for all the strongly interacting particles within which one may try to derive isotopic spin and strangeness conservation and broken eightfold symmetry from self-consistency alone ${ }^{4)}$. Of course, with only strong interactions, the orientation of the asymmetry in the unitary space cannot be specified; one hopes that in some way the selection of specific components of the F spin by electromagnetism and the weak interactions determines the choice of isotopic spin and hypercharge directions.

Even if we consider the scattering amplitudes of strongly interacting particles on the mass shell only and treat the matrix elements of the weak, electromagnetic, and gravitational interactions by means
ber $n_{t}-n_{\bar{t}}$ would be zero for all known baryons and mesons. The most interesting example of such a model is one in which the triplet has spin $\frac{1}{2}$ and $z=-1$, so that the four particles $\mathrm{d}^{-}, \mathrm{s}^{-}, \mathrm{u}^{0}$ and b° exhibit a parallel with the leptons.

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: $\operatorname{spin} \frac{1}{2}, z=-\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members $\mathrm{u}^{3}, \mathrm{~d}^{-\frac{1}{3}}$, and $\mathrm{s}^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks $\overline{\mathrm{q}}$. Baryons can now be constructed from quarks by using the combinations ($\mathrm{q} q \mathrm{q}$), ($\mathrm{q} q \mathrm{qq} \overline{\mathrm{q}}$), etc., while mesons are made out of ($q \bar{q})$, ($q \mathrm{q} \overline{\mathrm{q}} \overline{\mathrm{q}})$, etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration ($\mathrm{q} \overline{\mathrm{q}}$) similarly gives just 1 and 8.
or, in the notation of ref. ${ }^{3}$),

$$
\begin{aligned}
{\left[\mathscr{F}_{1 \alpha}+\mathscr{F}_{1 \alpha}^{5}\right.} & \left.+\mathrm{i}\left(\mathscr{F}_{2 \alpha}+\mathscr{F}_{2 \alpha}^{5}\right)\right] \cos \theta \\
& +\left[\mathscr{F}_{4 \alpha}+\mathscr{F}_{4 \alpha}^{5}+\mathrm{i}\left(\mathscr{F}_{5 \alpha}+\mathscr{F}_{5 \alpha}^{5}\right)\right] \sin \theta .
\end{aligned}
$$

We thus obtain all the features of Cabibbo's picture ${ }^{8)}$ of the weak current, namely the rules $|\Delta I|=1$, $\Delta Y=0$ and $|\Delta I|=\frac{1}{2}, \Delta Y / \Delta Q=+1$, the conserved $\Delta Y=0$ current with coefficient $\cos \theta$, the vector current in general as a component of the current of the F-spin, and the axial vector current transforming under $\operatorname{SU}(3)$ as the same component of another octet. Furthermore, we have ${ }^{3)}$ the equal-time commutation rules for the fourth components of the currents:

$$
\begin{aligned}
{\left[\begin{array}{rl}
\left.\mathscr{F}_{j 4}(x) \pm \mathscr{F}_{j 4}^{5}(x), \mathscr{F}_{k 4}\left(x^{\prime}\right) \pm \mathscr{F}_{k 4}^{5}\left(x^{\prime}\right)\right] & = \\
\quad-2 f_{j k l}\left[\mathscr{F}_{l 4}(x) \pm \mathscr{F}_{l 4}^{5}(x)\right] \delta\left(x-x^{\prime}\right), \\
{\left[\mathscr{F}_{j 4(x)} \pm \mathscr{F}_{j 4}^{5}(x), \mathscr{F}_{k 4}\left(x^{\prime}\right) \mp \mathscr{F}_{k 4}^{5}\left(x^{\prime}\right)\right]} & =0,
\end{array},\right.}
\end{aligned}
$$

$i=1, \ldots 8$, yielding the group $\mathrm{SU}(3) \times \mathrm{SU}(3)$. We can also look at the behaviour of the energy density ${ }^{\theta} 44(x)$ (in the gravitational interaction) under equaltime commutation with the operators $\mathscr{F}_{j 4}\left(x^{\prime}\right) \pm \mathscr{F}_{j 4}{ }^{5}\left(x^{\prime \prime}\right)$. That part which is non-invariant under the group will transform like particular representations of $\operatorname{SU}(3) \times \operatorname{SU}(3)$, for example like $(3, \overline{3})$ and $(\overline{3}, 3)$ if it comes just from the masses of the quarks.
(instead of purely mathematical entities as they would be in the limit of infinite mass). Since charge and baryon number are exactly conserved, one of the quarks (presumably $u^{\frac{1}{3}}$ or $\mathrm{d}^{-\frac{1}{3}}$) would be absolutely stable ${ }^{*}$, while the other member of the doublet would go into the first member very slowly by β-decay or K-capture. The isotopic singlet quark would presumably decay into the doublet by weak interactions, much as Λ goes into N. Ordinary matter near the earth's surface would be contaminated by stable quarks as a result of high energy cosmic ray events throughout the earth's history, but the contamination is estimated to be so small that it would never have been detected. A search for stable quarks of charge $-\frac{1}{3}$ or $+\frac{2}{3}$ and/or stable di-quarks of charge $-\frac{2}{3}$ or $+\frac{1}{3}$ or $+\frac{4}{3}$ at the highest energy accelerators would help to reassure us of the non-existence of real quarks.

These ideas were developed during a visit to Columbia University in March 1963; the author would like to thank Professor Robert Serber for stimulating them.

References

1) M. Gell-Mann, California Institute of Technology Synchrotron Laboratory Report CTSL-20 (1961).
2) Y.Ne'eman, Nuclear Phys. 26 (1961) 222.
3) M. Gell-Mann, Phys.Rev. 125 (1962) 1067.
4) E. G. : R.H.Capps, Phys. Rev. Letters 10 (1963) 312; R.E. Cutkosky, J. Kalckar and P. Tar janne, Physics Letters 1 (1962) 93;
E.Abers, F.Zachariasen and A.C. Zemach, Phys.

	SM
theory	QCD
model	quark
constituents	quarks
mass rules	--
taxonomy	SU(X)
chemistry	CKM

how: systematics of particle properties

Indicazioni di una struttura a shelt delife particelle e conseguenze relative

```
Elaborato presentato al concorso-esame oer 1. Idonelia* al
``` grado di R5 (ricercatore) dell* INFNa
glugno 1975 1973-75 (unpublished)

RIASSUNTO
\[
\begin{aligned}
& \text { Un*ipotesi generale sul contribute del copoonenti } \\
& \text { isconosciutil delle carticelle alla massa tosale, associara ai } \\
& \text { un semplice concetto geometrico di stabilits*, impitica che le } \\
& \text { radici cublche delle nasse delle oarticetie retativarente biu* } \\
& \text { stablll sono equispariate. }
\end{aligned}
\]

La relazione sulndicata e* verificata sullo shetfro di massa, e si predicono ulteriori zone di stabillta* attorno a
4.6 GoV e \(6.8 \mathrm{GeV} \mathrm{B}=5.3, \mathrm{~B}_{\mathrm{c}}=6.5\)

Sl stabilisce un analogia con i nuctei ed i nuneri nagicia
Si fraggono defle conclusioni sut numero del componenti olementari del pione, e si formula go ipotesi che i leptorl! stabili siano i costituenti elementari delis neterlaw Ne derivano alcune oroprieta delio interszicme di lagame, e conseguenze sul significato del nuneri quantici, in oarticolare il numero barlonico.

\section*{two kinds of linear plots}
- mass quantum: mass vs integer: linear-linear \(m\) vs \(P\)
(also mass unit vs integer)

- shells:
\(X^{1 / 3}\) vs integer: cuberoot-linear
\[
m^{1 / 3} \text { vs } i_{s}
\]

\section*{recap on mesons}
- ภselss rulesi are hadrons masses linearly quantized?
(old story)

Table I.
Change of coupling constant from the simple formula (4) and (5).
\begin{tabular}{|c|c|c|c|c|}
\hline Meson Kinetic Energy (Mev) & 40 & 80 & 120 & 160 \\
\hline \(\left(g_{1}{ }^{\text {effective } / g)^{4}}\right.\) & 0.52 & 0.40 & 0.28 & 0.17 \\
\hline \(\left(g_{1 I}{ }^{\text {effective } / g)^{4}}\right.\) & 1.32 & 1.39 & 1.46 & 1.51 \\
\hline
\end{tabular}

Coupling constant was taken \(g_{1}=0.8 \mathrm{~g}\) and the mass of \(V^{\prime}\)-particle to be \(3000 \mathrm{~m}_{e}\). For s't \(I^{\text {effective, }}\) we put \(\epsilon_{0} \sim \epsilon\) in (5), which is not sensitive to the value listed.
considerably in its magnitude, but the above simple arguments permits us to discuss roughly their angular distributions as follows; the normally scattered meson has angular distribution which is nearly the same as in reference 2 , because the effect of \(V^{\prime}\)-particle is only to change the coupling constant. But as to the charge exchange scattering, the angular distribution is more like that of Process II, because this scattering is composed of process I and II and, exact evaluation shows that the process II is predominant \(t^{4}\). Since the angular distribution of scattered meson given in raference 2 is nearly the same for process I and II, and we may roughly expect almost the same angular distribution for normal- and ex-change-scattering.

In conclusion, the writer wishes to express his sincere thanks to Prof. M. Kobayasi and to Mr. S. Takagi for their kind interest taken in this work.
1) For summary of references, see A Pais, preprint.
2) J. Ashkin, A. Simon and R. E. Marshak, Prog. Theor. Phys. 5 (1950), 634.
3) P. J. Issacs, A. M. Sachs and J. Steinberger, Phys. Rev. 85 (1952), 803; Fermi ct al. Phys. Rev. 85 (1952), 934, 935, 936.
4) Owing to the choice of coupling as given in
Fig. 3, for \(\pi^{-}+P \rightarrow \pi^{0}+N\), we have as effective Fig. 3 , for \(\pi+P \rightarrow \pi+N\), we have
coupling constant, in (4) and (5)
\[
\begin{aligned}
& 5^{2} x^{2 \mathrm{eff}}=g g_{N}+\frac{\left[m+m_{1}\right]\left[\left(\boldsymbol{p}_{0}+\boldsymbol{q}_{0}\right)^{2}-m^{2}\right]}{2 m\left[\left(\boldsymbol{p}_{0}+\boldsymbol{q}_{0}\right)^{2}-m_{1}^{2}\right]} g_{1} g_{N_{1}}, \\
& g_{L_{1}}{ }^{2 \mathrm{eff}}=g g_{P}+\frac{\left[m+m_{1}\right]\left[\left(\boldsymbol{p}_{0}-\boldsymbol{q}\right)^{2}-m^{2}\right]}{2 m\left[\left(\boldsymbol{p}_{0}-\boldsymbol{q}\right)^{2}-m_{1}{ }^{2}\right]} g_{1} g_{P_{1}} \\
& =-\left(g g_{v}-\frac{\left[m+m_{1}\right]\left[\left(\boldsymbol{p}_{0}-\boldsymbol{Q}\right)^{2}-m^{2}\right]}{2 m\left[\left(\boldsymbol{p}_{0}-\boldsymbol{q}\right)^{2}-m_{1}^{2}\right]} g_{1} g_{N_{1}}\right)
\end{aligned}
\]
and thus, \(\left(g_{J}{ }^{2 \mathrm{eeff}} / \mathrm{g}_{\mathrm{g}_{N}}\right)^{2}\) is just corresponding quantity in Table I, \(\left(\left(\delta_{1} S_{N}\right)^{1 / 2}=0.8\left(g_{S N}\right)^{1 / 2}\right)\), but \(\left(g_{X} I^{2+f} / g g_{N}\right)^{2}\) is
\begin{tabular}{c|c|c|c}
\hline 40 & 80 & 120 & 160 \\
\hline 0.72 & 0.67 & 0.62 & 0.59 \\
\hline
\end{tabular}

\section*{An Empirical Mass Spectrum of Elementary Particles}

\section*{Y. Nambu}

Osaka City University
\[
\text { May 14, } 1952 \quad 1952
\]

It seems to be a general conviction of current physicists that the theory of elementary particles in its ultimate form could or should give the mass spectrum of these particles just in the same way as quatum mechanics has succeeded in accounting for the regularity of atomic spectra. Even if we disregard any philosophical background in such a postulation of theoretical physics, the recent discovery of many unstable, apparently elementary particles drives us to the efforts towards a systematic comprehenWion of the variety of elementary particles. accumulation of our knowledge, however, it may perhaps be too ambitious and rather unsound to look for an empirical "Balmer's law". Nevertheless we should like here to present one such attempt because it
happens to be extremely simple, and because the significance and utility, if any, of this kind of attempt could best be appreciated at the stage where it awaits more experimental data to prove or disprove itself by its own predictions.

The nature of \(V_{0}\) particles \({ }^{1}\) and \(\tau\) mesons \({ }^{9}\)) has been investigated by several authors. Among other things, we note that their decay \(Q\)-values are rather uniform, i.e. of the same order of magnitude of the rest mass of the daughter \(\pi\)-mesons. This gives us a hint that some regularity might be found if the masses were measured in a unit of the order of the \(\pi\)-meson mass. The \(\pi\)-meson mass, being \(\sim 274=137 \times 2\) electron masses \(\left(m_{e}\right)\), givee \(\cdots\) a second, rather fanciful hint that \(137 m_{e}\) ould be chosen as the unit. The ensuing result is given in the accompanying table. We see
\begin{tabular}{|c|c|c|c|}
\hline particle & mass no.
\(n\) & \(137 \times n\) & \[
\begin{aligned}
& \text { experimental } \\
& \text { mass }
\end{aligned}
\] \\
\hline lepton & 0 & 0 & \(\sim 0\) \\
\hline photon & 0 & 0 & 0 \\
\hline \(\mu\) & 11/2 & 206 & \(210 \pm 3 m\) m \\
\hline \(\pi\) & 2 & 274 & \(276 \pm 3\) (\(\pi^{ \pm}\)) \\
\hline \(V_{02}\) & 6 & 822 & \(800 \pm 30\) \\
\hline \(\tau\) & 7 & 959 & \(966 \pm 10\) \\
\hline \(x\) & & & \(1000 \sim 1500\) \\
\hline nucleon & 131/2 & 1849 & 1837, 1839 \\
\hline \(V_{01} 16\) & , \(161 / 2 \mathrm{C}=\) & \(35,70 \mathrm{Mev}\) & \(35 \pm 5,75 \pm 3 \mathrm{Mev}\) \\
\hline \(\nu^{*}\) & 171/2 & ? \(=280 \mathrm{Mev}\) & \(\sim 280 \mathrm{Mev}\) \\
\hline
\end{tabular}
that the " mass number" of the observed particles is either integer or half-odd, which is generally valid within a deviation of about \(\sim \pm 15 m_{c}\), or \(\sim \pm 1 / 10\) mass unit, for those cases in which the experimental error is also of this order of magnitude. In the above table, we have adopted the view that the heavy \(V_{0}\) particles have two kinds of \(Q\)-values, namely \(\sim 35 \mathrm{Mev}\) (\(1 ; 2\) mass unit) and \(\sim 70 \mathrm{Mev}(1 \mathrm{~m} . \mathrm{u} .)^{3)}\), decaying into a proton and a \(\pi\)-meson. \(V^{*}\) means the nucleon isobar whose existence is being con-
jectured from \(\gamma\) - \(\pi\) reattion and \(\pi\)-proton scattering, \({ }^{5}\)) with \(\lambda^{n}\) excitation of roughly about 280 Mew (4 m.u.).

We can 'make a few comments on the result. (1) As was pointed out by Enatsu"), the adopted mass unit incidentally agrees with Heisenberg's natural unit. (2) Bosons seem to have integral, while fermions halfintegral, mass numbers. (3) The small mass value of the electron cannot be explained by the above rule. But we can take the view that this as well as the protonneutron and \(\pi^{\star}-\pi^{0}\) mass differences correspond to a kind of fine structure. Indeed, their magnitude is just of the order of \(1 / 137 \mathrm{~m} . \mathrm{u}\).

It goes without saying that this rule is purely of an empirical nature, and might turn out to be entirely illusory or accidental in the event of getting more reliable data or establishing the true theory of mass spectrum. But the rather strange distribution of the observed mass numbers might simply mean the lack of our knowledge. Indeed, only those particles which have favorable lives as well as abundances for detection have so far been observed, and we have no grounds at all to exclude the possibility that there exist other particles which are liable to escape direct observation. At any rate, an effective and close-by test of this rule may be provided by more accurate determination of the masses of the observed particles. In particular, the \(k\) meson may be predicted to have any of \(\sim\) \(1030, \sim 1100, \sim 1160, \sim 1230, \sim 1300, \ldots\) electron masses \(\left(7^{1 / 2}, 8,8^{1 / 2}, 9,9 \frac{1 / 2}{2}, \ldots\right.\) m.u.).
1) E. g., R. Armenteros et al., Phil. Mag. 42 (1951), 1113.
2) P. H. Fowler et al., Phil. Mag. 42 (1951),
1040.
3) S. D. Wanlass et al., Bull. Amer. Phys. Soc. 27 (1952), No. 3, 7.
4) Remarks by H. Enatsu at the Tokyo meeting
5) K. A. Brueckner, Bull Amer. Phys. Soc. 27 (1952), No. 1, 50.

Thus the energy we conventionally associate with a photon, \(\hbar \omega\), is here just the electrostatic separation energy, which is by our construction the total cnergy of the photon. The wavelength of a photon is a longitudinal wavelength in the same sense as the de Broglie wavelength discussed above. Hence we have
\[
\begin{equation*}
\lambda=\frac{c}{\omega}, \tag{13}
\end{equation*}
\]
where \(c\) is the velocity of the photon and \(\omega\) is the frequency of rotation of the electron pair. From this, \(\lambda / 2 r=1 / \alpha\).

Although this model for the electron has interesting consequences, can it correspond to reality? The answer at first scems to be clearly no! This is a huge electron, with a radius of \(6.7 \cdot 10^{-11} \mathrm{~cm}\) and with a ring of charge that generates effective quadrupole, octupole, ... moments that appear in typical processes in order \(\alpha^{2}, \alpha^{4}, \ldots\). But a closer examination of this question reveals some interesting facts. There is a general theorem that a spin- \(\frac{1}{2}\) particle cannot have an observable quadrupole moment (\({ }^{7}\)); however this is just a statement of the fact that the sign is the same in the two allowed quantization positions. At high energies, we know experimentally that the electron appears always as a pointlike object in seattering processes. When we treat the spin as an ordinary angular momentum, then, in order to conserve angular momentum in the laboratory frame of reference, it appears necessary to preserve the relationship \(\sqrt{3} \hbar=m R c\) under accelerations.

This model for the electron will also produce observable effects on the atomic level. However a remarkable fact emerges here. If we place the electron in an orbit around a nucleus, the electron spin vector will precess slowly about the normal to the plase of the orbit. If the ring of charge is expanded in Legendre functions, the quadrupole contribution to the energy is proportional to \(P_{2}(\cos \theta)\), where \(\theta\) is the angle betwecs the electron spin axis and the orbit radius vector. If the angle between the electron spin axis and the normal to the plane is \(\psi\), and if \(\varphi\) is the precessional angle, we have \(\cos \theta=\) \(=\sin \psi \cos \varphi\). Hence if the angle \(\psi\) is \(\sin ^{-1} \sqrt{\frac{2}{3}}\), as specified by the quantum-mechanical rules for vectors, then the quadrupole contribution to the energy, which is of order \(\alpha^{4}\), cancels out!

The model for the electron can be extended directly to the muon if we increase \(m\) and \(\omega\) by a factor of 207 and decrease \(R\) by the same amount. The \((g-2)\) experiments show that this scaling law holds to 1 part in \(10^{6}\) for the electron and muon.

This model can be extended to include the production of meson and bayon icson:ances \(\left({ }^{3}\right)\). In fact, it was by noting that the mass of the muon is a natural quantum for elementary particles (\({ }^{3}\)) and by attempting to determine the "size" of a muon that the author was led to the present results. In the mecon recomopooc the association of an energy with the spin is a decisive factor. The quantum \(\mu=70 \mathrm{MeV}\) ppears in mesons in a nonspinning form (e.g. in the \(\eta, \eta^{\prime}\) and kaon), in a fully-relativistic spinning form (e.g. in the nucleon), and in a less-than-fully-rclativistic form (e.g. in the \(\rho\) and \(\left.f^{\prime}\right)\left({ }^{3}\right)\).

\footnotetext{
\({ }^{(7)}\) N. F. Ramsey: Experimental Nuclear Physics, edited by E. Segre, Vol. 1 (New York, 1953),
}

\section*{Experimental Systematics of Particle Lifetimes and Widths (*) (**).}
M. H. Mad Gregor 1974

Lawrence Livermore Laboratory, University of Calijornia - Livermore, Cal.
(ricevuto il 31 Luglio 1973; manoscritto revisionato ricevuto il 15 Gennaio 1974)

Summary. - By comparing the lifetimes of the metastable (\(\tau>10^{-17} \mathrm{~s}\)) elementary particles with one another, we find exponimontally that these lifetimes occur both as ratios of 2 and as ratios of \(\alpha=e^{2} / \pi c\) with supposedly dissimilar partieles grouped together, atru no experimental counterexamples. When short-lived (\(\tau \sim 10^{-22}\) s) meson and baryon resonances are studied, it is found that the width is a key identification symbol. Grouping together resonances that have similar (narrow) widths, we obtain very accurate linear mass intervals. This mapping can be extended to include essentially all of the observed narrow-width meson and baryon resonances in a comprehensive pattern. These results suggest a weak-binding-energy approach to elementary-particle structure. This is the same conclusion that emerges from a broad overview of the successes of the quark model. The empirical level spacings point to the existence of two basic mass quanta, a spinless quantur \(\mu \simeq 70 \mathrm{MeV}\) and a spin- \(\frac{1}{2}\) quantum \(S \simeq 330 \mathrm{MeV}\). Electromagnetic properties or nucleons also indicate the existence of the 330 MeV mass quantum. In reconciling a 330 MeV mass quantum \(S\) with a 939 MeV nucleon mass and a 1795 MeV p\(n\) bound-state mass, we are led to the Fermi and Yang formulation of the nucleon rather than to the formulation of Gell-Mann and Zweig. The observed spectrum of narrow-width meson and baryon resonances can be reproduced by forming suitable combinations of the quanta \(\mu\) and \(S\). Broad-width resonances are interpreted as rotational excitations. Basis states \(3=3 \mu\) and \(4=4 \mu\), initially selected to account for observed level spacings in hyperon resonances, are shown to have significance with respect to strangeness quantum numbers and with respect to basic characteristics of baryon and meson resonances. These basis states can also be used to account phenomenologically for the observed factors of 2 and \(\alpha\) in the lifetimes of the

\footnotetext{
(*) To speed up publication, the author of this paper has agreed to not receive the proofs for correction.
}
(**) Work performed under the auspices of the U.S. Atomic Energy Commission.

MHMG 2007

\section*{The Power of \(\boldsymbol{\alpha}\)}

Electron Elementary Particle Generation with \(\boldsymbol{\alpha}\)-Quantized Lifetimes and Masses

\section*{BY MALCOLM H. MacGREGOR}

\section*{What determines the specific properties of elementary particles?}

THREE \(\alpha\)-LEAP excitation towers.

,he denizens of the subatomic world are sometimes nicknamed "the particle zoo," but this zoo holds many more mysteries than the ordinary kind. One mystery in particular-why do elementary particles have the masses and lifetimes they do?-is left unanswered by the standard model of particle physics. In The Power of \(\alpha\), Malcolm Mac Gregor goes beyond the standard model to propose a solution.

Mac Gregor focuses on the role played by a particular constant in physics, the so-called fine-structure constant \(\alpha\), which characterizes the strength of the electromagnetic interaction and has a numerical value approximately equal to \(1 / 137\). By carefully analyzing the col-

\section*{\(70 \mathrm{MeV} / \mathrm{c}^{2}\) mass unit timeline}
\begin{tabular}{ll}
1952 & Y. Nambu \\
\(1970->2006\) & M. H. Mac Gregor \\
\(1973->2006\) & PP \\
1980 & E. Jensen, no physics but good statistics \\
1980 & A. O. Barut (mention) \\
\(1995->2004\) & D. Akers \\
\(2000->2006\) & E. L. Koschmieder \\
2003 & B. G. Sidharth \\
2004 & S. Giani
\end{tabular}

\section*{Particle Mass-Formulae}

\author{
Simone Giani \\ CERN, European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland Telephone: +41227679972 e-mail: Simone.Giani@cern.ch
}

\begin{abstract}
Important relations among some particle masses are investigated. The eta-prime / eta masses' ratio is noted to be a fraction of integers with high precision. The masses of muon, kaon, eta, and neutron are observed to fit a linear mass formula within an accuracy of 0.25 MeV .
\end{abstract}

\section*{1. Introduction}

Many studies can be found in the literature on calculations of the particle mass spectrum. The complexity of advanced parton models and QCD (PDG 2002, [1]) tries to address the fine structure of particle constituents and their interactions, whereas earlier mathematical studies have been dedicated to outlining the gross correlations between the particle masses of isospin multiplets (Nambu, [2]), (Jensen, [3]), (MacGregor, [4]). The present work focuses on relations between particle masses that are satisfied at a level of precision higher than what should be expected from current theory.

\section*{2. Relation \(\eta^{\prime} \eta\)}

Interesting mathematical relations link the mass values of some elementary particles. One example is given by the formula relating the eta and eta-prime mass values:
\(28 u / 16 u=7 / 4\)
\[
\eta^{\prime} / \eta=7 / 4 . \quad[\mathrm{f} .1]
\]
\(\eta\) mass saga
In fact the ratio of the eta-prime and eta mass expectation values [1] is: 1.750009 , though the error on each of the two masses individually is 0.14 and 0.12 MeV , respectively.

\title{
Patterns in the Meson Mass Spectrum
}

\section*{Paolo Palazzi 2004}

\section*{Abstract}

The conjecture that particle masses are multiples of a unit u of about 35 MeV has been proposed in various forms by several authors: mesons are even multiples of \(u\), leptons and baryons odd multiples. Here this mass quantization is reassessed for all particles with mass below 1 GeV (stable leptons and \(f_{0}(600)\) excluded), and found to be statistically significant. Subsequently all the mesons listed by the PDG are grouped in families defined by quark composition and J \({ }^{\mathrm{PC}}\), and analyzed for even mass multiplicity with a unit close to 35 MeV separately for each group. For all the the families that can be analyzed unambiguously this multiplicity hypothesis is found to be statistically significant. Most scalar and vector families show a dependence of u from the spin, while for pseudoscalars the effect is not present. Only 5 states out of 120 are rejected due to abnormally large fit residuals. The mass units of the various families are quantized on a grid of 12 intervals of about 0.25 MeV , ranging from 33.88 up to 36.86 MeV . Tr location of the values on the u-grid shows an intriguing pattern of the quantum numbers.

Address correspondence to: pp@particler

Download from: http://www.partic
rejectected by PRD
rejected by EPJA
rlacklisted on ar
blacklisted
EPJA
ed 0

ภsJEss ussjit: \(u=35 \mathrm{MeV} / \mathrm{c}^{2}\) to avoid half-integers
מypothesis:
\(m_{i}=u * P_{i}: P \in E\) for mesons
(\(P \in \mathrm{O}\) for baryons and leptons)
procedure:
FOREACH group of mesons / (q-qbar, JPC) DO:
1. discard states with errm>30 MeV/c²
2. maximize \(R^{2}(m, P)\) varying \(u\) around \(35 \mathrm{MeV} / c^{2}\)
3. fit \(u\) with the least squares
4. remove outliers with Chauvenet's criterion
5. check for spin dependence duldJ
6. compute statistical relevance as \(p\left(H_{0}\right)\) by MC

ENDDO

\section*{E(Elusjple: the pions}

1 remove states with large errors

\section*{2 maximize \(R^{2}\) varying \(u\)}

\section*{6 statistical relevance}

\section*{summary}

Summary of mass unit analysis, mesons
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline type & k & u & erru & uw & p-value & du/dJ & PDG & (1) & (2) & (3) & (4) & tot & & rating \\
\hline pi & 3 & 34.69 & 0.051 & 34.68 & 0.997 & N & 11 & 1 & & 1 & 1 & 3 & 8 & **** \\
\hline b & 9 & 36.16 & 0.050 & 36.16 & 0.990 & N & 3 & & & & & & 3 & *** \\
\hline rho & 6 & 35.19 & 0.071 & 35.31 & 0.973 & N & 11 & 2 & & 1 & & 3 & 8 & *** \\
\hline a & & & & & 0.995 & Y & 13 & 2 & & & & 2 & 11 & **** \\
\hline a(0) & 5 & 35.00 & 0.073 & 35.17 & 0.941 & & & & & & & & & \\
\hline K & 6 & 35.34 & 0.073 & 35.39 & 0.943 & N & 11 & & & & 1 & 1 & 10 & *** \\
\hline K* & & & & & 0.882 & Y & 12 & 1 & & 1 & 2 & 4 & 8 & \\
\hline K*(1) & 2 & 34.35 & 0.016 & 34.35 & & & & & & & & & & ** \\
\hline eta & 0 & 33.86 & 0.053 & 33.86 & 0.999 & N & 13 & 4 & & & & 4 & 9 & **** \\
\hline h & 2 & 34.42 & 0.056 & 34.43 & 0.975 & N & 6 & 2 & & & & 2 & 4 & **** \\
\hline omega & & & & & 0.934 & Y & 7 & 1 & & & & 1 & 6 & **** \\
\hline omega(1) & 8 & 35.80 & 0.049 & 35.81 & 0.943 & & & & & & & & & \\
\hline & & & & & 0.732 & Y & 3 & & & & & & 3 & ** \\
\hline phi(1) & 10 & 36.51 & 0.050 & 36.41 & & & & & & & & & & \\
\hline pr & 7 & 35.78 & 0.070 & 35.60 & 0.998 & ? & 33 & 5 & 18 & & & 23 & 10 & *** \\
\hline \(\mathrm{D}^{\text {T}}\) & 3 & 34.67 & 0.016 & 34.66 & 0.997 & N & 5 & & & & & & 5 & **** \\
\hline \(\mathrm{D}^{\circ}\) & & 34.58 & 0.023 & 34.60 & 0.960 & N & 4 & & & & & & 4 & **** \\
\hline D(s) & 5 & 35.16 & 0.021 & 35.15 & 0.997 & N & 6 & & & & & & 6 & **** \\
\hline eta(c) & 0 & 33.89 & 0.022 & 33.87 & & & 2 & & & & & & 2 & ** \\
\hline psi & 12 & 36.84 & 0.034 & 36.87 & 0.959 & & 7 & & & 1 & & 1 & 6 & **** \\
\hline chi(c) & 7 & 35.57 & 0.006 & 35.56 & & Y & 3 & & & & & & 3 & ** \\
\hline B & 3 & 34.74 & 0.005 & 34.73 & & & 3 & & & & 1 & 1 & 2 & * \\
\hline B(s) & 2 & 34.42 & 0.004 & 34.42 & & & 2 & & & & & & 2 & * \\
\hline Y & 6 & 35.29 & 0.009 & 35.30 & 0.985 & & 6 & & & 1 & & 1 & 5 & **** \\
\hline & & avg-> & 0.044 & & 0.949 & & 161 & 18 & 18 & 5 & 5 & 46 & 115 & <-tot \\
\hline leptons & 4 & 34.84 & 0.022 & 34.84 & & & 2 & & & & & & 2 & ** \\
\hline
\end{tabular}

\(m=P^{*} u, D _s\) mesons

meson type \(=\) D_s and \(D_{-} s^{*}\)

\section*{\(D-D^{*}\) and \(D_{s}-D_{s}^{*}\) u-mixing}
\begin{tabular}{|l|l|l|l|l|l|l|r|l|l|l|}
\hline ID & \(*\) & \(\mathbf{q}\) & J & \(\mathbf{x}\) & \(\mathbf{P}\) & \(\mathbf{m}\) & errm & \(\mathbf{u}\) & \(\mathbf{d m}\) & \(\mathbf{d m} / \mathbf{m}\) \\
\hline D_s & 4 & + & 0 & & 56 & 1968.5 & 0.6 & 35.152 & -1.1 & \(-0.05 \%\) \\
D_s* & 4 & + & n & & 60 & 2112.4 & 0.7 & 35.207 & 2.2 & \(0.10 \%\) \\
D_s* \(^{*}(\mathrm{~J})(2317)\) & 4 & 0 & n & & 66 & 2319.0 & 0.4 & 35.136 & -2.3 & \(-0.10 \%\) \\
D_s(J)(2460) & 4 & 0 & \(?\) & & 70 & 2460.0 & 0.6 & 35.143 & -2.0 & \(-0.08 \%\) \\
D_s(1)(2536) & 4 & + & \(1 ?\) & & 72 & 2535.3 & 0.6 & 35.213 & 3.0 & \(0.12 \%\) \\
\hline D_s(2)(2573) & 4 & + & n & & 74 & 2572.4 & 1.5 & 34.762 & 4.7 & \(0.18 \%\) \\
D_s(J)(2632) & slx & + & & & 76 & 2632.6 & 1.6 & 34.639 & -4.5 & \(-0.17 \%\) \\
\hline
\end{tabular}
predictions

\section*{new states}

\section*{quantum numbers determination}

\section*{recap on mesons}
- mass rules
- s'jells; are hadrons shell-structured?

\section*{atomic shells}
\(Z^{1 / 3}\)

\(N_{i}=2,8,20,28,50,82,126:\) magic
\(Z_{i}\) from Segrè plot, max. stability
\[
A_{i}=N_{i}+Z_{i}
\]
plot \(A_{i}^{1 / 3}\) vs \(i\), tag \(=N_{i}\)

nuclear shells

\section*{\(A^{1 / 3}\)}

2 shell lines with interesting properties:
- cross at the first shell, \(\mathrm{He}-4(\delta y<3 \%)\);
- in shells 2 and 3 , line \#2 corresponds to values of \(A\) of 12=6+6 and 28=14+14; 14 recognized long ago as quasi-magic; the "magicity" of 6 is a more recent result;
- the ratio of the cubes of the slopes of the two lines is 1.99 , very close to 2 : the number of nucleons in series \#2 grows from one shell to the next at a rate \(=1 / 2\) the one of series \(\# 1\);
- in line \#1 the "packing fraction" is maximal:
\[
(0.916)^{3}=0.768
\]
\[
\begin{aligned}
A 1(n) & =2^{*}\left[\Sigma(i+1)^{\star} i, i=n, 1,1\right]=2^{*}\left[(n+1)^{*} n+n^{*}(n-1)+. .+2^{*} 1\right] \\
& =4,16,40,80, \ldots . \\
A 2(n) & =2^{\star}\left[\Sigma(i+1)^{*} i, i=n, 1,2\right]=2^{*}\left[(n+1)^{\star} n+(n-1)^{*}(n-2)+. .\right] \\
& =4,12,28,52,88,136,200,280
\end{aligned}
\]

\section*{meson stability}

\section*{Meson stability vs mass}

\section*{meson shells}

\section*{combine meson mass shell plot with mass units:}
\[
35 \text { 㤢 } / / c^{2}=1 \text { parton }
\]
\(M(i):\left(4,14,28,54,84,152,{ }^{*}, 294\right)[i=1,8], \quad y=0.712 * x+0.894, R^{2}=0.9981\) very similar to the corresponding values for the second nuclear line
\(N(i):(4,12,28,52,88,140,208)[i=1,7], \quad y=0.729 * x+0.824, R^{2}=0.9999\)

\section*{sub-shells}
- the \(\boldsymbol{\eta}\) at \(P=16\), analogous of the doubly-magic 0-16
- three clusters around \(1260 \mathrm{MeV} / \mathrm{c}^{2}(P=36), 1420 \mathrm{MeV} / \mathrm{c}^{2}(P=40)\), and 1680 \(\mathrm{MeV} / c^{2}(P=48)\).
- three further clusters with fewer states, \(\sim 1820 \mathrm{MeV} / \mathrm{c}^{2}(P=52), 2030 \mathrm{MeV} / c^{2}\) (\(P=58\)), and \(2310 \mathrm{MeV} / \mathrm{c}^{2}(P=66)\).
\(P=40\) corresponds to shell 3 in the nuclear line \#1, the doubly-magic \(\mathbf{C a}-40\).
the \(P\) distribution for all \((\mathrm{a}, \mathrm{a}),(\mathrm{s}, \mathrm{a})\) and \((\mathrm{s}, \mathrm{s})\) states confirms the three clusters around \(\mathbf{3 6}, 40\) and 48 , as well as at 52,58 and 66 . In the shell interpretation the peaks at \(P=36,48,52,58\) and 56 would correspond to sub-shells (to be developed).
\(P=80\) is the doubly-magic shell \(4 \sim 2800 \mathrm{MeV} / c^{2}\); the histogram is empty from \(P=72\) to 84 : as in nuclei, the doubly-magic-equivalent shell series stops at 3.

- meson shells 1 to 8 corresponds to nuclear shell line \#2, and also doubly-magic shells can be identified:
1) \(\pi\) at \(P=4 \sim \mathrm{He}-4\)
2) \(\eta\) at \(P=16 \sim 0-16\)
3) states at \(P=40 \sim \mathrm{Ca}-40\)
but no states are known near the extrapolated mass values for the following shells in that series, \(\mathrm{P}=80, \ldots\);
- on the main meson shell line, the quark composition progression from shell 1 to 8 is:
aa, sa, ss, ca+cs, cc, ba+bs, bc, bb ;
- intriguing role of the s quark,
- explanation of the mysterious values of quark masses (for whatever it is worth);
- t quark: expect 4 more shells at specific mass values in the range 14-31 GeV/c², none observed;
- is shell 8 the structural limit for this kind of bound states, like 6 for atoms and 7 or 8 for nuclei?
- what are the top events from FNAL?
\[
m(\mathrm{t})=m(\mathrm{~W})+m\left(\mathrm{Z}^{0}\right)
\]

\section*{interpretation}

\section*{- solid-phase \\ - coordnum = 12 \\ - charges}
- constant mass contribution for each parton: solid-phase aggregates, possibly a 3D lattice organization;
- quantization of the mass unit on a grid of 13=12+1 values: related to the coordination number of the lattice;
- mesons spins and charges equal or close to 0 , with a large number of partons: aggregation with alternating up/down spins and +/- charges.
- on a periodic lattice with coordination number \(=12\) (such as the FCC), with spin-1/2 partons of charge \(0,-1\) and +1 , arranged as a partially charged "ionic" lattice, several configurations are possible. For a given node of the lattice, the number of charged neighbors \(k\) can vary from 0 (all neutral) to 12 (all charged), a total of 13 values. Depending on the charge balancing constraints on these lattice variants, some values of \(k\) may not be realized, while other may correspond to more than one configuration; charge balancing constraints might be the reason for the deviation of the value of \(P\) of the shell states from series S2.
- assume that the contribution to the total mass is larger for a charged parton than for a neutral one:
- \(u(0)=33.88 \mathrm{MeV} / c^{2}\), neutral parton,
- \(u(12)=36.84 \mathrm{MeV} / c^{2}\) charged parton;
this assumption agrees with the charges of the final products of the decays of the \(\mu(1\) charged out of \(3=4 / 12, k=4)\) and of the \(\pi^{ \pm}(1\) charged out of \(4=3 / 12, k=3)\) as verified by the position of the corresponding points on the u-grid. This would not be true with the neutral parton heavier than the charged one.

- \(\boldsymbol{\eta}\) and \(\eta_{\mathrm{c}}\) is at \(\boldsymbol{k}=0\) on the u-grid, with all constituents neutral; the specific mass unit of the \(\pi^{0}\) is 33.74 , close to \(u(0)=33.88\), so that 4 neutral constituents can be assumed; the pion is at shell 1 with \(P=4\), while the \(\eta^{\prime}\) is at shell 3 with \(P=28\), and the \(\eta_{c}\) at shell 5 with \(P=88\), right at the nominal values of \(P\) in the series A2(n) \(=4,12,28,52,88, \ldots\).
- with no charged constituents, the \(\boldsymbol{\eta}\) and \(\eta_{c}\) do not need to obey any charge balancing constraints and can sit right at the geometrical shell closure; this should also apply to the \(\eta_{b}\), therefore it is expected that the mass shell line with:
\[
\pi^{0}, \eta^{\prime}, \eta_{c}, \eta_{b} \text { in shells } 1,3,5,8
\]
would show a sharper alignment, as verified by the chart;
- mesons are similar to nuclei and at the same time show indications of a solid-phase FCC structure, and this may be more than a coincidence: FCC nuclei are not new, see the work of N. D. Cook, and his recent book: Models of the Atomic Nucleus (Springer).

\section*{\(\eta\) shells}

[tetrahedrically-truncated tetrahedrons]

\(\mathrm{A} 1(\mathrm{n})=2^{*}\left[\Sigma(\mathrm{i}+1)^{*} \mathrm{i}, \quad \mathrm{i}=\mathrm{n}, 1,1\right]=2^{*}\left[(\mathrm{n}+1)^{*} \mathrm{n}+\mathrm{n}^{*}(\mathrm{n}-1)+. .+2^{*} 1\right]\)
A2(n) \(=2^{*}\left[\Sigma(i+1)^{*} i, \quad i=n, 1,2\right]=2^{*}\left[(n+1)^{*} n+(n-1)^{*}(n-2)+..\right]\)
 of rue ATOMIC NUCLEUS

HADRON 07 logo with 8 tetrahedrical meson shells, 4 partons in the first shell and the hexagonal mesh of the fcc lattice

\section*{recap on mesons}
- mass rules
- shells
- cossitituesjo

> Looking for neutral and charged partons and antipartons with spin \(1 / 2\) and mass less than 30 \(\mathrm{MeV} / c^{2}\), and with more than one type of neutrals, among the known particles there is only one possible choice:

\section*{the stable leptons -->}

\section*{constituents:}

\section*{stable \\ leptons?}
A.O. BARUT

Department of Physics, University of Colorado, Boulder, Colorado 80309

Only absolutely stable indestructible particles can be truly elementary. A simple theory of matter based on the three constituents, proton, electron and neutrino (and their antiparticles), bound together by the ordinary magnetic forces is presented, which allows us to give an intultive picture of all processes of high-energy physics, including strong and weak interactions, and make quantitative predictions.
I. INTRODUCTION
\(\mathrm{SU}(3)\) from permutations
At present, the picture of elementary particle physics mostly used in high-energy phenomenology is becoming admittedly very complicated. Besides leptons (which we see), one introduces families of "quarks", each with different colours, then the so-called "gluons", which are the gauge vector mesons binding the quarks, then there are the socalled "Higgs particles", which give masses to some of the vector mesons (all of which are not seen in the laboratory). One is already beginning to talk about a second generation of more fundamental and simpler objects for these quarks and gluons etc., even though these first generations of "basic" objects have not been seen. This type of framework seems to create more problems than it solves 1).

\section*{the baryons}
sfelss rules

\(m=P^{*} u, N\) baryons

\section*{special baryons}

\section*{\(7 \Theta^{+}\)}
P. Aslanyan

\section*{u vs k}

\section*{the baryons}
- mass rules
- sifells

\section*{baryon stability}

baryon shells

Baryon shells

\section*{baryon} vs meson shells

\section*{Particle shells}

\section*{baryon shells organization, clues:}
- shells 1 and 2 not cohesives
- 1 node in the center
- "density" =1/3 of the full fcc
- more than 4 nodes at shell 1
- P sequence: 27, 47, 71 ...
- compatible with nuclear force
we are sot yet thsere...
further indications of the shell structure of the nucleon

2.2 Elastic scattering

\section*{M. M. Islam et al.}

Figure 2.2: Elastic scattering cross-section, using the model from BSW [9]. The numb right scale corresponds to an integrated luminosity of \(10^{33} \mathrm{~cm}^{-2}\) and \(10^{37} \mathrm{~cm}^{-2}\). The do the highest observable \(t\)-value due to aperture limitation in the high- \(\beta^{*}\) optics

High-energy elastic nucleon scattering represents the collision process in which the over a large energy range at the CERN ISR [3], the SPS collider [4] and the TEVATR gathered. These data have been confronted with various phenomenological models. about the behavior of the phenomenological approaches at very high energies can the help of so-called asymptotic theorems derived from first principles and only val

Figure 1: Nucleon structure emerging from our investigation. Nucleon has an outer cloud of \(q \bar{q}\) condensed ground state analogous to the BCS ground state in superconductivity, an inner core of topological baryonic charge probed by \(\omega\), and a still smaller quark-bag of massless valence quarks. the trends in their high-energy behavior.
In the past, many models describing high-energy elastic hadron scattering have been formulated with different approaches [7]. In many of them the eikonal approach has been used, in analogy to optics. In other models the nucleons consist of a central core with a surrounding meson cloud or of a series of partonic clusters whose interaction is formulated with the help of Glauber's multi-scattering method.
interaction

\section*{Q uantum sure! \\ Chrome \\ no need autoPauli \\ Dynamics}

Barut 1980

FIGURE 1. Schematic form of the effective radial magnetic potential \(V\) as a fuction of the radial distance \(r\) for two different fixed values of energy and angular momentum.

\section*{Q uantum \(M\) agneto S tatic}

\section*{hadrons are}
"elastic solids"
summary and roadmap
\begin{tabular}{|l|c|c|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & SM & magic \\
\hline interaction & QCD & QMS (e.m.) \\
\hline constituents & quarks & stable leptons \\
\hline model & quark & shells (M, B) \\
\hline mass rules & -- & multi-linear \\
\hline taxonomy & SU(X) & SU(X)++ \\
\hline chemistry & CKM & CKM \\
\hline
\end{tabular}

\section*{Fewer parameters: SM \(\geq 26\)}
- quarks are valence properties, so their masses are not defined (-6)
- the W-quark couplings are derived from the expression of the quarks in terms of the constituents (4)
- the muon and the tau leptons are composite, their mass is computed (-2)
- strong interactions are a collective manifestation of electromagnetism, and the strong coupling constant can be computed (-1)

thanks you for your interest !
pp@particlez.org
http://particlez.org```

