CHIRAL SYMMETRY AND STRINGS

L. Ya. Glozman and A. V. Nefediev

Contents of the Talk

Chiral symmetry restoration in excited hadrons.

- Generalized NJL ('t Hooft) Model.

Chiral symmetry restoration and the string picture.
Summary.

Low and high lying baryon spectra.

Low-lying spectrum: spontaneous breaking of chiral symmetry dominates physics.
High-lying spectrum: parity doubling indicates the onset of the new physical regime

- EFFECTIVE chiral symmetry restoration.

Low and high lying meson spectra.

The high-lying mesons are from LEAR. They must be confirmed. Still missing states must be found.

Large symmetry: $N=n+J$ plus chiral symmetry.
An alternative: $N=n+L$ without chiral symmetry is not consistent with the Lorentz symmetry and unitarity.

Low and high lying hadron spectra.

THE MASS GENERATION

 MECHANISMS IN THE LOW- AND HIGH-LYING HADRONS ARE ESSENTIALLY DIFFERENT!
Alternative evidence for chiral restoration. PRL,2007

There is no chiral partner to the nucleon. Hence its mass is entirely from the quark condensate. The chiral-invariant $N N \pi$ vertex is then

$$
\begin{equation*}
\sim \bar{N} e^{i \gamma_{5} \frac{\pi \cdot \vec{\pi}}{f \pi}} N ; \quad N \rightarrow \exp \left(\imath \gamma_{5} \frac{\theta_{A}^{a} \tau^{a}}{2}\right) N \tag{1}
\end{equation*}
$$

The Goldberger-Treiman relation, $g_{N N \pi}=\frac{g_{A} M_{N}}{f_{\pi}}$, translates the nucleon mass into the $N N \pi$ coupling constant. Hence the large $N N \pi$ coupling constant is a natural unit for strong chiral symmetry breaking in a baryon.

Assume that we have a free $I=1 / 2$ chiral doublet B in $(0,1 / 2)+(1 / 2,0)$.

$$
\begin{equation*}
B=\binom{B_{+}}{B_{-}}, \quad B \rightarrow \exp \left(\imath \frac{\theta_{A}^{a} \tau^{a}}{2} \sigma_{1}\right) B, \quad \mathcal{L}_{0}=i \bar{B} \gamma^{\mu} \partial_{\mu} B-m_{0} \bar{B} B \tag{2}
\end{equation*}
$$

Then $g_{+}^{A}=g_{-}^{A}=0$, while the off-diagonal axial charge is $1,\left|g_{+-}^{A}\right|=\left|g_{-+}^{A}\right|=1$. The $\pi B_{ \pm} B_{ \pm}$coupling is 0 .

The chiral-invariant vertex $B_{ \pm} N \pi$ is impossible!

Alternative evidence for chiral restoration. PRL,2007

Predictions of the chiral symmetry restoration scenario: If a state is a member of an approximate chiral multiplet, then its decay into $N \pi$ must be strongly suppressed, $\left(f_{B N \pi} / f_{N N \pi}\right)^{2} \ll 1$. If, on the contrary, this excited hadron has no chiral partner and hence its mass is due to chiral symmetry breaking in the vacuum, then it should strongly decay into $N \pi$ and hence $\left(f_{B N \pi} / f_{N N \pi}\right)^{2} \sim 1$.

Spin	Chiral multiplet	Representation	$\left(f_{B_{+} N \pi} / f_{N N \pi}\right)^{2}-\left(f_{B_{-} N \pi} / f_{N \Lambda}\right.$
$1 / 2$	$N_{+}(1440)-N_{-}(1535)$	$(1 / 2,0) \oplus(0,1 / 2)$	$0.15-0.026$
$1 / 2$	$N_{+}(1710)-N_{-}(1650)$	$(1 / 2,0) \oplus(0,1 / 2)$	$0.0030-0.026$
$3 / 2$	$N_{+}(1720)-N_{-}(1700)$	$(1 / 2,0) \oplus(0,1 / 2)$	$0.023-0.13$
$5 / 2$	$N_{+}(1680)-N_{-}(1675)$	$(1 / 2,0) \oplus(0,1 / 2)$	$0.18-0.012$
$7 / 2$	$N_{+}(?)-N_{-}(2190)$	$?$	$?-0.00053$
$9 / 2$	$N_{+}(2220)-N_{-}(2250)$	$?$	$0.000022-0.0000020$
$11 / 2$	$N_{+}(?)-N_{-}(2600)$	$?$	$?-0.000000064$
$3 / 2$	$N_{-}(1520)$	no chiral partner	2.5

Generalized NJL ('t Hooft) model.

In $1+1$ 't Hooft model the only interaction is the Coulomb (linear) potential.
Le Yaouanc, Oliver, Pene and Raunal, 1983 : Postulate the confining instantaneous Lorentz-vector potential in $3+1$ dim. Proof of chiral symmetry breaking.

Chiral symmetry breaking is via the Schwinger-Dyson (gap) equation:

$$
S=S_{0}+S_{0} \Sigma S
$$

$$
\begin{aligned}
& \text { (D) }-\frac{\Omega}{S_{0}}+\underset{\sim}{\Omega}+\ldots=\frac{\Omega_{\Omega}}{S}
\end{aligned}
$$

Generalized NJL ('t Hooft) model

The gap equation:

$$
i \Sigma(\vec{p})=\hbar \int \frac{d^{4} k}{(2 \pi)^{4}} V_{C O N F}(\vec{p}-\vec{k}) \gamma_{0} \frac{1}{S_{0}^{-1}\left(k_{0}, \vec{k}\right)-\Sigma(\vec{k})} \gamma_{0} .
$$

The self-energy consists of the scalar (chiral symmetry breaking) $M(\vec{p}) \equiv A_{p}$ part and vector B_{p} (chiral symmetric) parts: $\Sigma(\vec{p})=\left[A_{p}-m\right]+(\vec{\gamma} \hat{\vec{p}})\left[B_{p}-p\right]$.
They come entirely from quantum fluctuations - loops!
Then the dispersive law is: $E_{p}=A_{p} \sin \phi_{p}+B_{p} \cos \phi_{p} ; \quad \tan \phi_{p}=\frac{A_{p}}{B_{p}}$

Given the dressed quark Green function, solve the Bethe-Salpeter eq.

Generalized NJL ('t Hooft) model

What should one expect if the chiral symmetry restoration does take place? The multiplets of $S U(2)_{L} \times S U(2)_{R}$.

$$
J=0
$$

$$
\begin{aligned}
& (1 / 2,1 / 2)_{a} \quad: \quad 1,0^{-+} \longleftrightarrow 0,0^{++} \\
& (1 / 2,1 / 2)_{b} \quad: \quad 1,0^{++} \longleftrightarrow 0,0^{-+},
\end{aligned}
$$

$$
\begin{array}{rccc:c}
(0,0) & : & 0, J^{--} \longleftrightarrow 0, J^{++} & (0,0) & : \quad 0, J^{++} \longleftrightarrow 0, J^{--} \\
(1 / 2,1 / 2)_{a} & : & 1, J^{-+} \longleftrightarrow 0, J^{++} & (1 / 2,1 / 2)_{a} & : \\
(1 / 2,1 / 2)_{b} & : & 1, J^{++} \longleftrightarrow 0, J^{+-} \longleftrightarrow 0, J^{-+} & (1 / 2,1 / 2)_{b} & : \\
\left(0,1, J^{--} \longleftrightarrow 0, J^{+-}\right. \\
(0,1) \oplus(1,0) & : & 1, J^{++} \longleftrightarrow 1, J^{--} & (0,1) \oplus(1,0) & :
\end{array} 1, J^{--} \longleftrightarrow 1, J^{++}
$$

The $U(1)_{A}$ multiplets: the opposite spatial parity states with the same isospin from the distinct $(1 / 2,1 / 2)_{a}$ and $(1 / 2,1 / 2)_{b}$ multiplets of $S U(2)_{L} \times S U(2)_{R}$.

UNI
 लित
 Spectra and wave functions: R. Wagenbrunn, L.Ya.G.

$$
J=0
$$

$J=1$

UN!
 Spectra and wave functions R. Wagenbrunn, L.Ya.G.

$$
J=2
$$

$$
J=3
$$

Spectra and wave functions. R. Wagenbrunn, L. Ya. G.

Rates of the symmetry restoration:

Regge trajectories:

At $n \rightarrow \infty$ and/or $J \rightarrow \infty$ one observes a complete degeneracy of all multiplets, i.e. the states fall into $[(0,1 / 2) \oplus(1 / 2,0)] \times[(0,1 / 2) \oplus(1 / 2,0)]$. The loop effects disappear completely and the system becomes classical.

Chiral restoration and the string picture.

What is the ASYMPTOTIC picture for excited hadrons? :
(i) the field in the string is of pure color-electric origin

(ii)the valence quarks have a definite chirality

Then:
(i) The hadrons that belong to the same intrinsic quantum state of the string with quarks falling into the same parity-chiral multiplet must be degenerate.
(ii) The total parity of the hadron is a product of parity of the string and the parity of the specific parity-chiral configuration of the quarks at the ends.
(iii) The spin-orbit interaction of quarks with the fixed chirality is absent
(iv) The tensor interaction is absent $(\vec{\sigma}(i) \cdot \vec{r}(i)=0 ; \quad \vec{\sigma}(i) \cdot \vec{r}(j)=0)$

Symmetry: $S U(2)_{L} \times S U(2)_{R} \times U(1)_{A} \times$ dynamicalsymmetry
Dynamical symmetry of the open string: $N=N_{r o t}+N_{r a d}+N_{t r}$ Hybrids: $N_{t r}>0$

Is Nambu-Goto string consistent with chiral symmetry?

Nambu-Goto string: energy is stored in the rotating string (color-electric flux tube) and is prescribed by L and n. Output - linear orbital and radial Regge trajectories.
No quarks at the ends, no chiral symmetry.
Consider string with chiral quarks at the ends. Then we can construct a unitary transformation from a given chiral representation R to the $\left\{I ;{ }^{2 S+1} L_{J}\right\}$ basis.

$$
\left|R ; I J^{P C}\right\rangle=\sum_{L S} \sum_{\lambda_{q} \lambda_{\bar{q}}} \chi_{\lambda_{q} \lambda_{\bar{q}}}^{R P I} \times \sqrt{\frac{2 L+1}{2 J+1}} C_{\frac{1}{2} \lambda_{q} \frac{1}{2}-\lambda_{\bar{q}}}^{S \Lambda} C_{L 0 S \Lambda}^{J \Lambda}\left|I ;{ }^{2 S+1} L_{J}\right\rangle
$$

Fixed $L: a_{1}:\left|(0,1)+(1,0) ; 11^{++}\right\rangle=\left|1 ;{ }^{3} P_{1}\right\rangle, \quad h_{1}:\left|(1 / 2,1 / 2){ }_{b} ; 01^{+-}\right\rangle=\left|0 ;{ }^{1} P_{1}\right\rangle$. However, there are two kinds of ρ-mesons, fixed L is impossible!

$$
\begin{aligned}
\left|(0,1)+(1,0) ; 11^{--}\right\rangle & =\sqrt{\frac{2}{3}}\left|1 ;{ }^{3} S_{1}\right\rangle+\sqrt{\frac{1}{3}}\left|1 ;{ }^{3} D_{1}\right\rangle \\
\left|(1 / 2,1 / 2)_{b} ; 11^{--}\right\rangle & =\sqrt{\frac{1}{3}}\left|1 ;{ }^{3} S_{1}\right\rangle-\sqrt{\frac{2}{3}}\left|1 ;{ }^{3} D_{1}\right\rangle .
\end{aligned}
$$

Energy cannot be prescribed by L !

Summary.

1. Physics of the lowest-lying and excited hadrons is very different. The low-lying hadrons are strongly affected by the spontaneous breaking of chiral and $U(1)_{A}$ symmetries. Their mass is due to quark condensate of the vacuum. In the high-lying states these chiral symmetry breakings become irrelevant. Most of the mass is manifestly chirally symmetric, i.e. it comes NOT from the quark condensate.
2. A fundamental origin of this phenomenon is that effects of quantum fluctuations (loops) of the quark fields vanish at large n and J.
3. There appears higher degree of degeneracy that includes chiral $U(2)_{L} \times U(2)_{R}$ as a subgroup. An origin of this larger symmetry is unknown!
4. If it is a kind of string, then it is an unusual string. The Nambu-Goto string (electric flux tube) is not compatible with restored chiral symmetry, at least in the known forms.
