Investigation of Resonance Structure in the System of Two Ks-Mesons in the Mass Region around 1545 MeV

Ekaterina Fadeeva
6-m MIS ITEP Collaboration
Institute for Theoretical and Experimental

Physics,

Moscow, Russia

6-m MIS ITEP Spectrometer Overview

MWSC—tracking detectors; HOD 1,2,3– Hodoscopes;

GS– Gamma-calorimeter;

HC- Hadron calorimeter.

Experimental data

The experimental data on the production of Ks pairs were obtained in $\pi-p$ interaction at 40 GeV by using a neutral trigger.

The system of two *Ks*-mesons that was recorded under the experimental conditions of 6-m spectrometer is produced in the following two reactions:

$$\pi^{-}p \to K_s K_s n$$

$$\pi^{-}p \to K_s K_s n + (n + m\pi^{0}, p + m\pi^{-}, ...)$$

About 40 000 events of these two reactions were accumulated!

In the mass region near 1545 MeV

The efficiency of registered *KsKs*-system is about 45% and The precision of measurement of the effective mass of the *KsKs*-system is better than 3 MeV.

Kinematical variables:

- 1. The effective mass M_{KK} of the pair of K_S -mesons;
- 2. The missing mass squared MM^2 defined as the squared mass of particles that are produced together with the K_SK_S -system and which are not recorded in the spectrometer;
- 3. The 4-momentum transferred from the beam to the system being studied, t;
- 4. The cosine of the Gottfried-Jackson angle, $cos\theta_{GJ}$;
- 5. The Treiman-Yang angle, ϕ_{TY} .

The angles are calculated in the rest frame of the pair of K_S -mesons, the beam axis direction in this system being taken for the polar axis. The plane from which the Treiman-Yang angle is reckoned is spanned by the momenta of the beam and of the target proton in this reference frame.

Effective-mass spectrum of two K_S-mesons

Effective-mass spectrum of two K_S-mesons

X(1545)

Cosine of Gottfried-Jackson angle and

1535<*Mkk*<1555, MeV

1440<*Mkk*<1535, 1555<*Mkk*<1640, MeV

The Method of Maximum Likelihood

 $F(P;\Omega)$ -the probability-density function, where P is the set of the following parameters:

- 1. The amplitude of the resonance,
- 2. The mass M of the resonance,
- 3. The width Γ appearing in the Breit-Wigner function,
- 4. The coefficients of the squared amplitudes of the angular distributions.

Elements of the phase space Ω are

- 1. Effective mass of two K_S -mesons,
- 2. The cosine of the Gottfried-Jackson angle θ_{GJ} ,
- 3. The Treiman-Yang angle ϕ_{TY} .

In order to obtain the most probable values of the parameters, we minimized the functional:

$$L = \int_{\Omega} \epsilon(\Omega) F(P; \Omega) d\Omega - \sum_{i=1}^{N} \ln F(P; \Omega_i).$$
 (1)

where $\epsilon(\Omega)$ is the event-detection recording, N being the number of events. To compare the probabilities of experimental-data description with different parameter set, we calculated χ^2 by the formula:

$$\chi^2 = -2\ln L + const. \tag{2}$$

Different sets of minimization for X(1545)

	Background,			Resonance,				Parameters,		
	N_{events}			N_{events}				MeV		$\chi^2 - N_{d.f.}$
	S	D_0	D_{+}	S	D_0	D_{+}	G_+	$M \pm \Delta M$	$\Gamma \pm \Delta \Gamma$	
1	62	49	82			_		_	_	100
2	51	38	70	12	8	14		$1544.6 {\pm} 3.5$	$10.4\ \pm 3.3$	77
3	60	47	51		_	37		$1544.7{\pm}3.0$	$10.3\ \pm 3.0$	56
4	66	37	58			_	32	$1545.8 {\pm} 3.0$	10.0 ± 3.0	60
5	68	39	47	_	_	23	16	$1545.1 {\pm} 3.1$	$11.0\ \pm3.0$	52

Conclusion

Statistical significance is better than 6 st.dev.

$$M{=}1545.1 \pm 3.1 \; \mathrm{MeV}$$

$$\Gamma$$
=11.0 ±3.0 MeV

$$J^{PC} = 2^{++} \text{ or } 4^{++}$$

$$\sigma \cdot \mathbf{Br}(K_S K_S) \sim \mathbf{6} \text{ nb.}$$

