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Physics with muon beam Introduction

The spin structure of nucleons
Three DF are necessary to describe the structure of the nucleon at LO

Unpolarized distribution functions F1(x) = u(x) + d(x) + s(x)

q(x)q
Measured with high accuracy
by unpolarized DIS experiments

Helicity-dependent distribution functions g1(x) = ∆u(x) + ∆d(x) + ∆s(x)

∆q(x)q q
Measured in polarized DIS
Rather well known

Transversity distribution functions h1(x) = ∆T u(x) + ∆T d(x) + ∆T s(x)

∆ q(x)Tq q

Only measurable in polarized
semi-inclusive DIS
Almost unknown
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Physics with muon beam Introduction

Where does the spin of the nucleons come from?

1
2 = 1

2∆Σ + ∆G + Lq + Lg

COMPASS experiment
Gluon Polarization
G G at COMPASS

Nucleon spin puzzle
Direct measurement of gluon polarization

Nucleon spin

1

2

1

2
G Lq Lg

Konrad Klimaszewski Measurement of G/G at COMPASS

∆Σ

Static quark model:
∆Σ = ∆u +∆d = 1

Weak baryon decays:
∆Σ ' 0.58 (∆s = 0)

QCD NLO fits: ∆Σ ' 0.3
Why such a discrepancy?

∆s large and < 0?
axial anomaly (∆G ' 1.5−2)?

∆G?

Fit to g1(x) data

Open charm

High-pT pair production

Lq,g?

Generalized PDF
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Physics with muon beam Experimental setup

The COMPASS Experimental Setup (2004 Layout)

    7 000 channelsCalorimeters
    1 280 channelsSciFi
  90 000 channelsSilicon detectors + MSGC
  76 000 channelsWire chambers (straw, DC, MWPC, ...)

  69 000 channelsRICH1

Total: ~250 000 channels

filter 2µ

filter 1µ

0 m

50 m

SAS:
p > 10 GeV/c
Int. mag. field: 4.4 T m
Part. ident.: muF2

LAS:
p < 60 GeV/c
Int. mag. field: 1 T m
Part. ident.: RICH1, muF1

RICH1

HCAL1

ECAL2
HCAL2

SM1

SM2

polarized
target

Detailed description in NIM A577 (2007) 455-518
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Physics with muon beam Experimental setup

The Polarized Target

F.Kunne, Saclay

superconductive
Solenoid (2.5 T )

3He – 4He Dilution
refrigerator (T~50mK)

Dipole (0.5 T)

COMPASS polarized target

2 (3 from 2006) cells
oppositely polarized

Acceptance: 70 mrad
(180 mrad from 2006)
6LiD or NH3 target materials
6LiD polarization > 50%

2.5 T solenoid or
0.5 T dipole fields

Polarization reversal by field
rotation every ∼ 8 hours

Unpolarized scattering by
averaging over target cells
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Physics with muon beam Inclusive asymmetries

Measurement of the inclusive asimmetry Ad
1

Ad
1 ≈ 1

fDPBPT

N↑⇑−N↑⇓

N↑⇑+N↑⇓

x   
-210 -110 1

COMPASS

SMC

E143

E155

HERMES

   d 1
A

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x   
-210

   
   

d 1A

-0.06

-0.04

-0.02

0

0.02

Published in Phys. Lett. B647 (2007) 8-17

Very good agreement with previous measurements - most accurate data at low x
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Physics with muon beam Inclusive asymmetries

The structure function gd
1

gd
1 (x ,Q2) ≈ Ad

1(x ,Q2)
F d

2 (x ,Q2)

2x(1+R(x ,Q2))
,

F d
2 from SMC parameterization, R from SLAC parameterization

x    
-210 -110

(x
)

d 1
xg

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03
COMPASS
SMC

G>0∆fit with 

G<0∆fit with 

Fit to world g1(x) data leads to two solutions:
∆Σ' 0.28 for ∆G > 0, ∆Σ' 0.32 for ∆G < 0 (|∆G| ' 0.2−0.3)

Present g1(x) data not very sensitive to ∆G → need for a direct measurement
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Physics with muon beam Inclusive asymmetries

The structure function gN
1

gN
1 (x ,Q2) = (gp

1 +gn
1)/2 = gd

1 (x ,Q2)/(1−1.5ωD), ωD = 0.05± 0.01

x    
-210 -110 1

(x
)

N 1
g

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

-0

0.05

0.1

0.15

0.2

G>0∆ evolved by fit with N
1

g

G<0∆ evolved by fit with N
1

g

 evolved with LSS,GRSV,BBN
1

g

G>0∆QCD fit with 

G<0∆QCD fit with 
QCD fit of LSS, GRSV, BB

old fit without COMPASS data

Previous parametrizations do not reproduce COMPASS data at x → 0

New COMPASS points at low x constrain ∆G to small values (|∆G| ' 0.2−0.3)
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Physics with muon beam Direct measurement of ∆G/G

∆G/G measurement via γg → qq

Direct measurement of ∆G/G in µN scattering though the photon-gluon fusion process

High-pT hadron pairs

⇑ Large statistics

⇓ Physical backgrounds
Two options:

Q2 < 1 (GeV )̧2

Q2 > 1 (GeV )̧2

Open charm production

⇑ Direct tagging via D0/D∗ production

⇓ Small cross-section

⇓ Combinatorial background

Challenging experiment
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Physics with muon beam Direct measurement of ∆G/G

COMPASS results for ∆G/G

x -210 -110

G
/G

 
∆
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-0
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0.8

2=3(GeV/c)2 scheme, QMSG>0,  ∆fit with  
2=3(GeV/c)2 scheme, QMSG<0,  ∆fit with  
, prel.2=13(GeV/c)2µCOMPASS, open charm, 

, prel.2<1(GeV/c)2, Q
T

COMPASS, high p
, prel.2>1(GeV/c)2, Q

T
COMPASS, high p

2>1(GeV/c)2, Q
T

SMC, high p
, published (2000).2, all Q

T
HERMES, high p

, prel.2, all Q
T

HERMES, high p

NLO fits, LO data

NLO QCD fits and direct measurements point to a small value of ∆G ≈ 0.2−0.3
∆G � 2 → axial anomaly contribution small (a0 '∆Σ) → two extreme scenarios?

∆Σ ∆G Lq Lg

1/2 = 1/2×0.30 + 0.35 + 0 + 0

1/2 = 1/2×0.30 + 0 + 0.35
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Physics with muon beam Transverse spin distribution functions

Transverse spin distribution functions

Collins effect: a quark moving “horizontally” and polarized “upwards” would emit
the leading meson preferentially on the “left” side of the jet

Sivers effect: intrinsic asymmetry in the parton transverse momentum distribution
induced by the nucleon spin

s
s’

µ
µ’

z

y

h

γ*
x

pT
h

φh
φsΦC

ΦS φs’

φS′ : azimuthal angle of spin vector
of fragmenting quark

φh: azimuthal angle of
hadron momentum

ΦC = φh −φS′ : Collins angle

ΦS = φh −φS : Sivers angle

Collins asymmetry

N±
h (ΦC) = N0

h · {1±Ah
C sinΦC}

AColl = 1
f ·PT ·Dnn

·Ah
C =

∑
a

e2
a ∆T qa ∆Dh

a

∑
a

e2
a qa Dh

a

Sivers asymmetry

N±
h (ΦS) = N0

h · {1±Ah
S sinΦS}

ASiv = 1
f ·PT

·Ah
S =

∑
a

e2
a ∆T

0 qa Dh
a

∑
a

e2
a qa Dh

a
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Physics with muon beam Transverse spin distribution functions

Collins and Sivers asymmetries from Deuteron target

• leading positive hadrons ◦ leading negative hadrons

C
ol

l
A

-0.05

0

0.05

0.1

x 

-210 -110

Si
v

A

-0.1

-0.05

0

0.05

z 
0.2 0.4 0.6 0.8

 (GeV/c)h
T

p
0.5 1 1.5

Published in Nucl. Phys. B765 (2007) 31-70

No significant deviation from zero in deuteron data → proton-neutron cancellation?
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Physics with muon beam Transverse spin distribution functions

Comparison of COMPASS and HERMES data

left: leading positive hadrons right: leading negative hadrons

(Sign of Hermes points changed due to different angles convention in COMPASS)

x
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C
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l
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-0.1

0

0.1

 (D)+COMPASS 2003/4 h
 (p)+πHERMES 

x

-210 -110

 (D)-COMPASS 2003/4 h
 (p)-πHERMES 

Non-zero values are measured in proton data at large x → COMPASS 2007
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Physics with hadron beams Pion Polarizabilities

π Polarizabilities - Theoretical Predictions and Experimental Tools

The polarizabilities απ , βπ characterize the rigidity of the meson in an external E.M. field

Theoretical predictions:
χ-PT (2-loop):

QCM:

QCD sum rules:

Disp. sum rules:

απ +βπ = 0.16 ·10−4 fm3, απ −βπ = (5.7±1.0) ·10−4 fm3

απ +βπ = 0.23 ·10−4 fm3, απ −βπ = 7.05 ·10−4 fm3

απ = (5.6±0.5) ·10−4 fm3

απ +βπ = (0.166±0.024) ·10−4 fm3, απ −βπ = (13.60±2.15) ·10−4 fm3

Large discrepancies between theoretical models

απ and βπ can be measured in different ways:

e+e− collisions
γγ → π+π−

π+

π−

e+

e−

γ*

γ*

radiative π photoprod.
γp → γπ+n

π+

p n

γγ

Primakoff scattering
π(A,Z ) → πγ(A,Z )

(A,Z) (A,Z)

π

γ
γ*

π
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Theoretical predictions:
χ-PT (2-loop):

QCM:

QCD sum rules:

Disp. sum rules:

απ +βπ = 0.16 ·10−4 fm3, απ −βπ = (5.7±1.0) ·10−4 fm3

απ +βπ = 0.23 ·10−4 fm3, απ −βπ = 7.05 ·10−4 fm3

απ = (5.6±0.5) ·10−4 fm3

απ +βπ = (0.166±0.024) ·10−4 fm3, απ −βπ = (13.60±2.15) ·10−4 fm3

Large discrepancies between theoretical models

απ and βπ can be measured in different ways:

e+e− collisions
γγ → π+π−

π+

π−

e+

e−

γ*

γ*

radiative π photoprod.
γp → γπ+n

π+

p n

γγ

Primakoff scattering
π(A,Z ) → πγ(A,Z )

(A,Z) (A,Z)

π

γ
γ*
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Physics with hadron beams Pion Polarizabilities

Measurement of απ and βπ in Primakoff Scattering

dσ
2
γπ

dEγ∗d cosθ
= Z 2

{
F pt

γπ(θ)+
mπ Eγ∗

α · απ(1+cos2
θ)+βπ cosθ[

1+Eγ∗/mπ(1−cosθ)
]3

}
Eγ∗ and θ given in the anti-laboratory system

In the hypothesis of απ =−βπ , βπ can be extracted from the ratio

R(ω) =
dσexp
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MC

≈ 1+ 3
2
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α
ω

2

1−ω
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Measured at COMPASS with 190 GeV π− beam and 3mm thick Pb target

Additional data collected with 190 GeV µ− beam
→ point-like projectile to check systematics UNIQUE

Denominator of R(ω) is calculated from
MonteCarlo simulations

Radiative corrections are applied to the
experimental measurements to calculate R(ω)
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Multiple photon exchange
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For details, see J. Friedrich’s talk this afternoon
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Physics with hadron beams Exotic mesons

Mesons beyond the NQM

COMPASS will start the meson spectroscopy program in 2008 → glueballs and hybrids

⇑

⇑ ⇑ ⇑ ⇑
The NQM only predicts mesons composed of qq

However, gluons carry color charge and can appear as valence constituents:
Glueballs: states with only valence gluons (gg, ggg)

Hybrids: qq-systems with one additional valence gluon

quarks can also form qqqq bound states and meson-meson molecules

non-qq mesons can have exotic JPC combinations:

JPC = 0−−, 0+−, 1−+, 2+−, . . .

The unabiguous experimental identification of such states represents a fundamental
test of non-perturbative QCD
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Physics with hadron beams Exotic mesons

Glueballs mass spectrum

Lattice calculations (numerical solution of the QCD Lagrangian over a space-time grid)
provide the most accurate predictions for the glueballs spectrum

C. Morningstar and M. Peardon,

Phys. Rev. D 73 (2006) 014516
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Physics with hadron beams Meson spectroscopy @ COMPASS

Central production and diffractive scattering @ COMPASS
COMPASS will collect central production and diffractive scattering data IN PARALLEL,
using pion and kaon projectiles (UNIQUE)

Central production
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WA76, WA91, NA12/2, WA102 and E690

Large rapidity gap between
scattered beam and X

Beam particle looses
∼ 10% of its energy

Particles at large angles
from X decays

Possible source of glueballs

Diffractive scattering

t

X

π,K

p

VES and E852

Foward kinematics

Large cross-section (∼mbarn)

Need to separate particles at
very small angles

Study of JPC -exotic mesons
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Physics with hadron beams Meson spectroscopy @ COMPASS

The 2008 COMPASS experimental apparatus
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Conclusions

Conclusions

COMPASS has extended the measured range of gd
1 (x) down to ∼ 0.002

Statistical error on ∆Σ improved by a factor 2

98% of ΓN
1 obtained from data (was 50% in SMC)

Small ∆G (� 2) more and more likely

axial anomaly contribution small (a0 '∆Σ)

two extreme scenarios?

∆Σ ∆G Lq Lg

1/2 = 1/2×0.30 + 0.35 + 0 + 0

1/2 = 1/2×0.30 + 0 + 0.35

Data on semi-inclusive asymmetries will provide additional knowledge on the quark
polarization → measurement on proton in 2007

Collins and Sivers effects found to be compatible with zero on Deuteron
→ measurement on proton in 2007

Preliminary measurement of pion polarizabilities from 2004 hadron beam data

A wide and challenging meson spectroscopy program will start in 2008
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