Selected Results and Future Prospects of the COMPASS experiment at CERN

A. Ferrero
Andrea.Ferrero@cern.ch
CERN, Geneva
\section*{HADRON07}
Frascati, October 112007

(9) Physics with muon beam

- Introduction
- Experimental setup
- Inclusive asymmetries
- Direct measurement of $\Delta G / G$
- Transverse spin distribution functions

2 Physics with hadron beams

- Pion Polarizabilities
- Exotic mesons
- Meson spectroscopy @ COMPASS
(3) Conclusions

(1) Physics with muon beam

- Introduction
- Experimental setup
- Inclusive asymmetries
- Direct measurement of $\Delta G / G$
- Transverse spin distribution functions

2 Physics with hadron beams

- Pion Polarizabilities
- Exotic mesons
- Meson spectroscopy @ COMPASS
(3) Conclusions

The spin structure of nucleons

Three DF are necessary to describe the structure of the nucleon at LO

```
Unpolarized distribution functions
\[
F_{1}(x)=u(x)+d(x)+s(x)
\]
```

Measured with high accuracy by unpolarized DIS experiments

The spin structure of nucleons

Three DF are necessary to describe the structure of the nucleon at LO
Unpolarized distribution functions $\quad F_{1}(x)=u(x)+d(x)+s(x)$

Helicity-dependent distribution functions $\quad g_{1}(x)=\Delta u(x)+\Delta d(x)+\Delta s(x)$

Measured with high accuracy by unpolarized DIS experiments

The spin structure of nucleons

Three DF are necessary to describe the structure of the nucleon at LO
Unpolarized distribution functions $\quad F_{1}(x)=u(x)+d(x)+s(x)$

Helicity-dependent distribution functions $\quad g_{1}(x)=\Delta u(x)+\Delta d(x)+\Delta s(x)$

Measured with high accuracy by unpolarized DIS experiments

Only measurable in polarized semi-inclusive DIS
Almost unknown

Where does the spin of the nucleons come from?

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{q}+L_{g}
$$

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{q}+L_{g}
$$

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{q}+L_{g}
$$

$\Delta \Sigma$

- Static quark model:
$\Delta \Sigma=\Delta u+\Delta d=1$
- Weak baryon decays:
$\Delta \Sigma \simeq 0.58(\Delta s=0)$
- QCD NLO fits: $\Delta \Sigma \simeq 0.3$
- Why such a discrepancy?
- Δs large and <0 ?
- axial anomaly ($\Delta G \simeq 1.5-2$)?

$\Delta G ?$

- Fit to $g_{1}(x)$ data
- Open charm
- High- p_{T} pair production

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{q}+L_{g}
$$

$\Delta \Sigma$

- Static quark model:

$$
\Delta \Sigma=\Delta u+\Delta d=1
$$

- Weak baryon decays:
$\Delta \Sigma \simeq 0.58(\Delta s=0)$
- QCD NLO fits: $\Delta \Sigma \simeq 0.3$
- Why such a discrepancy?
- Δs large and <0 ?
- axial anomaly ($\Delta G \simeq 1.5-2$)?

$\Delta G ?$

- Fit to $g_{1}(x)$ data
- Open charm
- High- p_{T} pair production

$$
L_{q, g} ?
$$

- Generalized PDF

The COMPASS Experimental Setup (2004 Layout)

```
LAS:
p<60 GeV/c
Int. mag. field: 1 T m
Part. ident.: RICH1, muF1
muF1
```


SAS:

p > $10 \mathrm{GeV} / \mathrm{c}$
Int. mag. field: 4.4 T m
Part. ident.: muF2
μ filter 2

Detailed description in NIM A577 (2007) 455-518

The Polarized Target

- 2 (3 from 2006) cells oppositely polarized
- Acceptance: 70 mrad (180 mrad from 2006)
- ${ }^{6}$ LiD or NH_{3} target materials
- ${ }^{6}$ LiD polarization $>50 \%$
- 2.5 T solenoid or 0.5 T dipole fields
- Polarization reversal by field rotation every ~ 8 hours
- Unpolarized scattering by averaging over target cells

Measurement of the inclusive asimmetry A_{1}^{d}

Very good agreement with previous measurements - most accurate data at low x

The structure function g_{1}^{d}

$$
g_{1}^{d}\left(x, Q^{2}\right) \approx A_{1}^{d}\left(x, Q^{2}\right) \frac{F_{2}^{d}\left(x, Q^{2}\right)}{2 x\left(1+R\left(x, Q^{2}\right)\right)},
$$

F_{2}^{d} from SMC parameterization, R from SLAC parameterization

- Fit to world $g_{1}(x)$ data leads to two solutions:
- $\Delta \Sigma \simeq 0.28$ for $\Delta G>0, \quad \Delta \Sigma \simeq 0.32$ for $\Delta G<0 \quad(|\Delta G| \simeq 0.2-0.3)$
- Present $g_{1}(x)$ data not very sensitive to $\Delta G \rightarrow$ need for a direct measurement

The structure function g_{1}^{N}

$$
g_{1}^{N}\left(x, Q^{2}\right)=\left(g_{1}^{p}+g_{1}^{n}\right) / 2=g_{1}^{d}\left(x, Q^{2}\right) /\left(1-1.5 \omega_{D}\right), \quad \omega_{D}=0.05 \pm 0.01
$$

old fit without COMPASS data

- Previous parametrizations do not reproduce COMPASS data at $x \rightarrow 0$
- New COMPASS points at low x constrain ΔG to small values $(|\Delta G| \simeq 0.2-0.3)$

$\Delta G / G$ measurement via $\gamma g \rightarrow q \bar{q}$

Direct measurement of $\Delta G / G$ in μN scattering though the photon-gluon fusion process

$\Delta G / G$ measurement via $\gamma g \rightarrow q \bar{q}$

Direct measurement of $\Delta G / G$ in μN scattering though the photon-gluon fusion process

High- p_{T} hadron pairs

\Uparrow Large statistics
\Downarrow Physical backgrounds

- Two options:
- $Q^{2}<1(\mathrm{GeV})^{2}$
- $Q^{2}>1(\mathrm{GeV})^{2}$

$\Delta G / G$ measurement via $\gamma g \rightarrow q \bar{q}$

Direct measurement of $\Delta G / G$ in μN scattering though the photon-gluon fusion process

High- p_{T} hadron pairs

\Uparrow Large statistics
\Downarrow Physical backgrounds

- Two options:
- $Q^{2}<1(\mathrm{GeV})^{2}$
- $Q^{2}>1(\mathrm{GeV})^{2}$

Open charm production

\Uparrow Direct tagging via D^{0} / D^{*} production
\Downarrow Small cross-section
\Downarrow Combinatorial background

- Challenging experiment

COMPASS results for $\triangle G / G$

COMPASS results for $\Delta G / G$

- NLO QCD fits and direct measurements point to a small value of $\Delta G \approx 0.2-0.3$
- $\Delta G \ll 2 \rightarrow$ axial anomaly contribution small $\left(a_{0} \simeq \Delta \Sigma\right) \rightarrow$ two extreme scenarios?

$$
\begin{aligned}
\Delta \Sigma & \Delta G \quad L_{q} \quad L_{g} \\
1 / 2 & =1 / 2 \times 0.30+0.35+0+0 \\
1 / 2 & =1 / 2 \times 0.30+0+0.35
\end{aligned}
$$

Transverse spin distribution functions

Collins effect: a quark moving "horizontally" and polarized "upwards" would emit the leading meson preferentially on the "left" side of the jet

Transverse spin distribution functions

Collins effect: a quark moving "horizontally" and polarized "upwards" would emit the leading meson preferentially on the "left" side of the jet

Sivers effect: intrinsic asymmetry in the parton transverse momentum distribution induced by the nucleon spin

Transverse spin distribution functions

Collins effect: a quark moving "horizontally" and polarized "upwards" would emit the leading meson preferentially on the "left" side of the jet

Sivers effect: intrinsic asymmetry in the parton transverse momentum distribution induced by the nucleon spin

$\phi_{S^{\prime}}$: azimuthal angle of spin vector of fragmenting quark
ϕ_{h} : azimuthal angle of hadron momentum
$\phi_{C}=\phi_{h}-\phi_{S^{\prime}}$: Collins angle
$\Phi_{S}=\phi_{h}-\phi_{S}$: Sivers angle

Transverse spin distribution functions

Collins effect: a quark moving "horizontally" and polarized "upwards" would emit the leading meson preferentially on the "left" side of the jet

Sivers effect: intrinsic asymmetry in the parton transverse momentum distribution induced by the nucleon spin

$\phi_{S^{\prime}}$: azimuthal angle of spin vector of fragmenting quark
ϕ_{h} : azimuthal angle of hadron momentum
$\phi_{C}=\phi_{h}-\phi_{S^{\prime}}:$ Collins angle
$\Phi_{S}=\phi_{h}-\phi_{S}$: Sivers angle

Collins asymmetry

$$
\begin{aligned}
& N_{h}^{ \pm}\left(\Phi_{C}\right)=N_{h}^{0} \cdot\left\{1 \pm A_{C}^{h} \sin \Phi_{C}\right\} \\
& A_{\text {Coll }}=\frac{1}{f \cdot P_{T} \cdot D_{n n}} \cdot A_{C}^{h}=\frac{\sum_{a} e_{a}^{2} \Delta_{T} q_{a} \Delta D_{a}^{h}}{\sum_{a} e_{a}^{2} q_{a} D_{a}^{h}}
\end{aligned}
$$

Sivers asymmetry

$$
\begin{aligned}
& N_{h}^{ \pm}\left(\Phi_{S}\right)=N_{h}^{0} \cdot\left\{1 \pm A_{S}^{h} \sin \Phi_{S}\right\} \\
& A_{S i v}=\frac{1}{f \cdot P_{T}} \cdot A_{S}^{h}=\frac{\sum_{a} e_{a}^{2} \Delta_{0}^{T} q_{a} D_{a}^{h}}{\sum_{a} e_{a}^{2} q_{a} D_{a}^{h}}
\end{aligned}
$$

Collins and Sivers asymmetries from Deuteron target

- leading positive hadrons o leading negative hadrons

Published in Nucl. Phys. B765 (2007) 31-70
No significant deviation from zero in deuteron data \rightarrow proton-neutron cancellation?

Collins and Sivers asymmetries from Deuteron target

- leading positive hadrons - leading negative hadrons

Published in Nucl. Phys. B765 (2007) 31-70
No significant deviation from zero in deuteron data \rightarrow proton-neutron cancellation?

Comparison of COMPASS and HERMES data

left: leading positive hadrons right: leading negative hadrons
(Sign of Hermes points changed due to different angles convention in COMPASS)

Non-zero values are measured in proton data at large $x \rightarrow$ COMPASS 2007

Physics with muon beam

- Introduction
- Experimental setup
- Inclusive asymmetries
- Direct measurement of $\Delta G / G$
- Transverse spin distribution functions

2 Physics with hadron beams

- Pion Polarizabilities
- Exotic mesons
- Meson spectroscopy @ COMPASS
(3) Conclusions
- The polarizabilities $\alpha_{\pi}, \beta_{\pi}$ characterize the rigidity of the meson in an external E.M. field
- The polarizabilities $\alpha_{\pi}, \beta_{\pi}$ characterize the rigidity of the meson in an external E.M. field
- Theoretical predictions:
- χ-PT (2-loop): $\quad \alpha_{\pi}+\beta_{\pi}=0.16 \cdot 10^{-4} \mathrm{fm}^{3}, \alpha_{\pi}-\beta_{\pi}=(5.7 \pm 1.0) \cdot 10^{-4} \mathrm{fm}^{3}$
- QCM:
$\alpha_{\pi}+\beta_{\pi}=0.23 \cdot 10^{-4} \mathrm{fm}^{3}, \alpha_{\pi}-\beta_{\pi}=7.05 \cdot 10^{-4} \mathrm{fm}^{3}$
- QCD sum rules: $\alpha_{\pi}=(5.6 \pm 0.5) \cdot 10^{-4} \mathrm{fm}^{3}$
- Disp. sum rules: $\alpha_{\pi}+\beta_{\pi}=(0.166 \pm 0.024) \cdot 10^{-4} \mathrm{fm}^{3}, \alpha_{\pi}-\beta_{\pi}=(13.60 \pm 2.15) \cdot 10^{-4} \mathrm{fm}^{3}$
- The polarizabilities $\alpha_{\pi}, \beta_{\pi}$ characterize the rigidity of the meson in an external E.M. field
- Theoretical predictions:
- χ-PT (2-loop): $\quad \alpha_{\pi}+\beta_{\pi}=0.16 \cdot 10^{-4} \mathrm{fm}^{3}, \alpha_{\pi}-\beta_{\pi}=(5.7 \pm 1.0) \cdot 10^{-4} \mathrm{fm}^{3}$
- QCM:
$\alpha_{\pi}+\beta_{\pi}=0.23 \cdot 10^{-4} \mathrm{fm}^{3}, \alpha_{\pi}-\beta_{\pi}=7.05 \cdot 10^{-4} \mathrm{fm}^{3}$
- QCD sum rules: $\alpha_{\pi}=(5.6 \pm 0.5) \cdot 10^{-4} \mathrm{fm}^{3}$
- Disp. sum rules: $\alpha_{\pi}+\beta_{\pi}=(0.166 \pm 0.024) \cdot 10^{-4} \mathrm{fm}^{3}, \alpha_{\pi}-\beta_{\pi}=(13.60 \pm 2.15) \cdot 10^{-4} \mathrm{fm}^{3}$
- Large discrepancies between theoretical models
- The polarizabilities $\alpha_{\pi}, \beta_{\pi}$ characterize the rigidity of the meson in an external E.M. field
- Theoretical predictions:
- χ-PT (2-loop): $\quad \alpha_{\pi}+\beta_{\pi}=0.16 \cdot 10^{-4} \mathrm{fm}^{3}, \alpha_{\pi}-\beta_{\pi}=(5.7 \pm 1.0) \cdot 10^{-4} \mathrm{fm}^{3}$
- QCM:

$$
\alpha_{\pi}+\beta_{\pi}=0.23 \cdot 10^{-4} \mathrm{fm}^{3}, \alpha_{\pi}-\beta_{\pi}=7.05 \cdot 10^{-4} \mathrm{fm}^{3}
$$

- QCD sum rules: $\alpha_{\pi}=(5.6 \pm 0.5) \cdot 10^{-4} \mathrm{fm}^{3}$
- Disp. sum rules: $\alpha_{\pi}+\beta_{\pi}=(0.166 \pm 0.024) \cdot 10^{-4} \mathrm{fm}^{3}, \alpha_{\pi}-\beta_{\pi}=(13.60 \pm 2.15) \cdot 10^{-4} \mathrm{fm}^{3}$
- Large discrepancies between theoretical models
- α_{π} and β_{π} can be measured in different ways:

Measurement of α_{π} and β_{π} in Primakoff Scattering

$$
\frac{d \sigma_{\gamma \pi}^{2}}{d E_{\gamma^{*}} d \cos \theta}=Z^{2}\left\{F_{\gamma \pi}^{p t}(\theta)+\frac{m_{\pi} E_{\gamma^{*}}}{\alpha} \cdot \frac{\alpha_{\pi}\left(1+\cos ^{2} \theta\right)+\beta_{\pi} \cos \theta}{\left[1+E_{\gamma^{*}} / m_{\pi}(1-\cos \theta)\right]^{3}}\right\}
$$

$E_{\gamma^{*}}$ and θ given in the anti-laboratory system
In the hypothesis of $\alpha_{\pi}=-\beta_{\pi}, \beta_{\pi}$ can be extracted from the ratio $R(\omega)=\frac{d \sigma_{e x p}}{d \sigma_{M C}^{p t}} \approx 1+\frac{3}{2} \frac{m_{\pi}^{2}}{\alpha} \frac{\omega^{2}}{1-\omega} \beta_{\pi} \quad\left(\omega=E_{\gamma} / E_{\text {beam }}\right.$ in labo. $)$

Measurement of α_{π} and β_{π} in Primakoff Scattering

$\frac{d \sigma_{\gamma \pi}^{2}}{d E_{\gamma^{*}} d \cos \theta}=Z^{2}\left\{F_{\gamma \pi}^{p t}(\theta)+\frac{m_{\pi} E_{\gamma^{*}}}{\alpha} \cdot \frac{\alpha_{\pi}\left(1+\cos ^{2} \theta\right)+\beta_{\pi} \cos \theta}{\left[1+E_{\gamma^{*}} / m_{\pi}(1-\cos \theta)\right]^{3}}\right\}$
$E_{\gamma^{*}}$ and θ given in the anti-laboratory system
In the hypothesis of $\alpha_{\pi}=-\beta_{\pi}, \beta_{\pi}$ can be extracted from the ratio $R(\omega)=\frac{d \sigma_{e x p}}{d \sigma_{M C}^{p t}} \approx 1+\frac{3}{2} \frac{m_{\pi}^{2}}{\alpha} \frac{\omega^{2}}{1-\omega} \beta_{\pi} \quad\left(\omega=E_{\gamma} / E_{\text {beam }}\right.$ in labo. $)$

- Measured at COMPASS with $190 \mathrm{GeV} \pi^{-}$beam and 3 mm thick Pb target
- Additional data collected with $190 \mathrm{GeV} \mu^{-}$beam
\rightarrow point-like projectile to check systematics UNIQUE
- Denominator of $R(\omega)$ is calculated from MonteCarlo simulations
- Radiative corrections are applied to the experimental measurements to calculate $R(\omega)$
- Vacuum polarization
- Compton vertex
- Multiple photon exchange
- Screening by atomic electrons

Measurement of α_{π} and β_{π} in Primakoff Scattering

$$
\frac{d \sigma_{\gamma \pi}^{2}}{d E_{\gamma^{*}} d \cos \theta}=Z^{2}\left\{F_{\gamma \pi}^{p t}(\theta)+\frac{m_{\pi} E_{\gamma^{*}}}{\alpha} \cdot \frac{\alpha_{\pi}\left(1+\cos ^{2} \theta\right)+\beta_{\pi} \cos \theta}{\left[1+E_{\gamma^{*}} / m_{\pi}(1-\cos \theta)\right]^{3}}\right\}
$$

$E_{\gamma^{*}}$ and θ given in the anti-laboratory system
In the hypothesis of $\alpha_{\pi}=-\beta_{\pi}, \beta_{\pi}$ can be extracted from the ratio $R(\omega)=\frac{d \sigma_{e x p}}{d \sigma_{M C}^{p t}} \approx 1+\frac{3}{2} \frac{m_{\pi}^{2}}{\alpha} \frac{\omega^{2}}{1-\omega} \beta_{\pi} \quad\left(\omega=E_{\gamma} / E_{\text {beam }}\right.$ in labo. $)$

COMPASS 2004π-data

COMPASS $2004 \mu^{-}$data

Measurement of α_{π} and β_{π} in Primakoff Scattering

$$
\frac{d \sigma_{\gamma \pi}^{2}}{d E_{\gamma^{*}} d \cos \theta}=Z^{2}\left\{F_{\gamma \pi}^{p t}(\theta)+\frac{m_{\pi} E_{\gamma^{*}}}{\alpha} \cdot \frac{\alpha_{\pi}\left(1+\cos ^{2} \theta\right)+\beta_{\pi} \cos \theta}{\left[1+E_{\gamma^{*}} / m_{\pi}(1-\cos \theta)\right]^{3}}\right\}
$$

$E_{\gamma^{*}}$ and θ given in the anti-laboratory system
In the hypothesis of $\alpha_{\pi}=-\beta_{\pi}, \beta_{\pi}$ can be extracted from the ratio $R(\omega)=\frac{d \sigma_{e x p}}{d \sigma_{M C}^{p t}} \approx 1+\frac{3}{2} \frac{m_{\pi}^{2}}{\alpha} \frac{\omega^{2}}{1-\omega} \beta_{\pi} \quad\left(\omega=E_{\gamma} / E_{\text {beam }}\right.$ in labo. $)$

COMPASS 2004π-data

COMPASS 2004 μ^{-}data

Preliminary result: $\alpha_{\pi}=-\beta_{\pi}=\left(2.5 \pm 1.7_{\text {stat }} \pm 0.6_{\text {sys }}\right) \cdot 10^{-4} \mathrm{fm}^{3}$

Measurement of α_{π} and β_{π} in Primakoff Scattering

$$
\frac{d \sigma_{\gamma \pi}^{2}}{d E_{\gamma^{*}} d \cos \theta}=Z^{2}\left\{F_{\gamma \pi}^{p t}(\theta)+\frac{m_{\pi} E_{\gamma^{*}}}{\alpha} \cdot \frac{\alpha_{\pi}\left(1+\cos ^{2} \theta\right)+\beta_{\pi} \cos \theta}{\left[1+E_{\gamma^{*}} / m_{\pi}(1-\cos \theta)\right]^{3}}\right\}
$$

$E_{\gamma^{*}}$ and θ given in the anti-laboratory system
In the hypothesis of $\alpha_{\pi}=-\beta_{\pi}, \beta_{\pi}$ can be extracted from the ratio $R(\omega)=\frac{d \sigma_{e x p}}{d \sigma_{M C}^{p t}} \approx 1+\frac{3}{2} \frac{m_{\pi}^{2}}{\alpha} \frac{\omega^{2}}{1-\omega} \beta_{\pi} \quad\left(\omega=E_{\gamma} / E_{\text {beam }}\right.$ in labo. $)$

COMPASS $2004 \pi^{- \text {-data }}$

COMPASS $2004 \mu^{-}$data

For details, see J. Friedrich's talk this afternoon

Mesons beyond the NQM

- COMPASS will start the meson spectroscopy program in $2008 \rightarrow$ glueballs and hybrids

Mesons beyond the NQM

- COMPASS will start the meson spectroscopy program in $2008 \rightarrow$ glueballs and hybrids

- The NQM only predicts mesons composed of $q \bar{q}$

Mesons beyond the NQM

- COMPASS will start the meson spectroscopy program in $2008 \rightarrow$ glueballs and hybrids

- The NQM only predicts mesons composed of $q \bar{q}$
- However, gluons carry color charge and can appear as valence constituents:
- Glueballs: states with only valence gluons ($g g, g g g$)
- Hybrids: $q \bar{q}$-systems with one additional valence gluon

Mesons beyond the NQM

- COMPASS will start the meson spectroscopy program in $2008 \rightarrow$ glueballs and hybrids

- The NQM only predicts mesons composed of $q \bar{q}$
- However, gluons carry color charge and can appear as valence constituents:
- Glueballs: states with only valence gluons ($g g, g g g$)
- Hybrids: $q \bar{q}$-systems with one additional valence gluon
- quarks can also form $q \bar{q} q \bar{q}$ bound states and meson-meson molecules

Mesons beyond the NQM

- COMPASS will start the meson spectroscopy program in $2008 \rightarrow$ glueballs and hybrids

- The NQM only predicts mesons composed of $q \bar{q}$
- However, gluons carry color charge and can appear as valence constituents:
- Glueballs: states with only valence gluons ($g g, g g g$)
- Hybrids: $q \bar{q}$-systems with one additional valence gluon
- quarks can also form $q \bar{q} q \bar{q}$ bound states and meson-meson molecules
- non- $q \bar{q}$ mesons can have exotic $J^{P C}$ combinations:

$$
J^{P C}=0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, \ldots
$$

Mesons beyond the NQM

- COMPASS will start the meson spectroscopy program in $2008 \rightarrow$ glueballs and hybrids

- The NQM only predicts mesons composed of $q \bar{q}$
- However, gluons carry color charge and can appear as valence constituents:
- Glueballs: states with only valence gluons ($g g, g g g$)
- Hybrids: $q \bar{q}$-systems with one additional valence gluon
- quarks can also form $q \bar{q} q \bar{q}$ bound states and meson-meson molecules
- non- $q \bar{q}$ mesons can have exotic $J^{P C}$ combinations:

$$
J P C=0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, \ldots
$$

- The unabiguous experimental identification of such states represents a fundamental test of non-perturbative QCD

Glueballs mass spectrum

Lattice calculations (numerical solution of the QCD Lagrangian over a space-time grid) provide the most accurate predictions for the glueballs spectrum
C. Morningstar and M. Peardon,

- Lower mass glueballs:
- $J^{P C}=0^{++}$scalar $M \sim 1700 \mathrm{MeV} / \mathrm{c}^{2}$
- $J^{P C}=2^{++}$tensor $M \sim 2400 \mathrm{MeV} / \mathrm{c}^{2}$
4

0

Glueballs mass spectrum

Lattice calculations (numerical solution of the QCD Lagrangian over a space-time grid) provide the most accurate predictions for the glueballs spectrum
C. Morningstar and M. Peardon,

- Lower mass glueballs:
- $J^{P C}=0^{++}$scalar $M \sim 1700 \mathrm{MeV} / \mathrm{c}^{2}$
- $J^{P C}=2^{++}$tensor $M \sim 2400 \mathrm{MeV} / \mathrm{c}^{2}$
- The light glueballs have conventional $J^{P C}$
mixing with nearby $q \bar{q}$ mesons

0

Glueballs mass spectrum

Lattice calculations (numerical solution of the QCD Lagrangian over a space-time grid) provide the most accurate predictions for the glueballs spectrum
C. Morningstar and M. Peardon,

- Lower mass glueballs:
- $J^{P C}=0^{++}$scalar $M \sim 1700 \mathrm{MeV} / \mathrm{c}^{2}$
- $J^{P C}=2^{++}$tensor $M \sim 2400 \mathrm{MeV} / \mathrm{c}^{2}$
- The light glueballs have conventional JPC
mixing with nearby $q \bar{q}$ mesons
- The lightest exotic glueball $\left(2^{+-}\right)$is above $4 \mathrm{GeV} / \mathrm{c}^{2}$

Central production and diffractive scattering @ COMPASS

COMPASS will collect central production and diffractive scattering data IN PARALLEL, using pion and kaon projectiles (UNIQUE)

Central production and diffractive scattering @ COMPASS

COMPASS will collect central production and diffractive scattering data IN PARALLEL, using pion and kaon projectiles (UNIQUE)

Central production

WA76, WA91, NA12/2, WA102 and E690

- Large rapidity gap between scattered beam and X
- Beam particle looses
$\sim 10 \%$ of its energy
- Particles at large angles from X decays
- Possible source of glueballs

Central production and diffractive scattering @ COMPASS

COMPASS will collect central production and diffractive scattering data IN PARALLEL, using pion and kaon projectiles (UNIQUE)

Central production

WA76, WA91, NA12/2, WA102 and E690

Diffractive scattering

VES and E852

- Large rapidity gap between scattered beam and X
- Beam particle looses
$\sim 10 \%$ of its energy
- Particles at large angles from X decays
- Possible source of glueballs
- Foward kinematics
- Large cross-section (~mbarn)
- Need to separate particles at very small angles
- Study of $J^{P C}$-exotic mesons

The 2008 COMPASS experimental apparatus

$190 \mathrm{GeV} \pi^{-}$beam
Beam PID with CEDAR counters
Fast DAQ \& high trigger rate

The 2008 COMPASS experimental apparatus

$190 \mathrm{GeV} \pi^{-}$beam
Beam PID with CEDAR counters
Fast DAQ \& high trigger rate

40 cm long liquid H 2 target cell
high precision silicon microstrip telescopes
$\pm 180 \mathrm{mrad}$ acceptance

The 2008 COMPASS experimental apparatus

$190 \mathrm{GeV} \pi^{-}$beam
Beam PID with CEDAR counters
Fast DAQ \& high trigger rate

40 cm long liquid H 2 target cell
high precision silicon microstrip telescopes

Electromagnetic calorimetry
$\pm 180 \mathrm{mrad}$ acceptance

The 2008 COMPASS experimental apparatus

$190 \mathrm{GeV} \pi^{-}$beam
Beam PID with CEDAR counters
Fast DAQ \& high trigger rate

40 cm long liquid H 2 target cell
high precision silicon microstrip telescopes $\pm 180 \mathrm{mrad}$ acceptance

Electromagnetic calorimetry

Outline

(1) Physics with muon beam

- Introduction
- Experimental setup
- Inclusive asymmetries
- Direct measurement of $\Delta G / G$
- Transverse spin distribution functions

2 Physics with hadron beams

- Pion Polarizabilities
- Exotic mesons
- Meson spectroscopy @ COMPASS
(3) Conclusions

- COMPASS has extended the measured range of $g_{1}^{d}(x)$ down to ~ 0.002
- Statistical error on $\Delta \Sigma$ improved by a factor 2
- 98% of Γ_{1}^{N} obtained from data (was 50% in SMC)
- Small $\Delta G(\ll 2)$ more and more likely
- axial anomaly contribution small $\left(a_{0} \simeq \Delta \Sigma\right)$
- two extreme scenarios?

$$
\begin{aligned}
& \Delta \Sigma \Delta G \quad L_{q} \quad L_{g} \\
& 1 / 2=1 / 2 \times 0.30+0.35+0+0 \\
& 1 / 2=1 / 2 \times 0.30+0+0.35
\end{aligned}
$$

- Data on semi-inclusive asymmetries will provide additional knowledge on the quark polarization \rightarrow measurement on proton in 2007
- Collins and Sivers effects found to be compatible with zero on Deuteron \rightarrow measurement on proton in 2007
- Preliminary measurement of pion polarizabilities from 2004 hadron beam data
- A wide and challenging meson spectroscopy program will start in 2008

