

The K-matrix analysis of the meson spectrum: scalar and tensor states below 1.9 GeV

A.V. Sarantsev

Combined Partial Wave Analysis

1. The two pseudoscalar particle final states from pion induced reactions reveal very limited number of states. e.g. CERN-Munich:

$$
\begin{aligned}
& \rho(770), f_{2}(1270), f_{0}(980), \rho_{3}(1690), f_{4}(2050) \\
& \rho(1450) ?, \rho(1700) ?, f_{0}(1500), f_{0}(1750) ? \\
& f_{0}(1370), f_{2}(1560), f_{0}(1710), \rho(1900), f_{2}(1950), f_{2}(2010), f_{0}(2020)
\end{aligned}
$$

2. A large set of the resonances had been discovered in the analysis of the proton-antiproton annihilation and in πN interaction into multi-body final states.
3. In many cases only combined analysis of the reactions with multi-body and two body final states can produce an unambiguous result.

Problem:

The pion induced reactions are not a two particle collision reactions. They are $\pi N \rightarrow \pi \pi N$ reactions which is much more complicated process.

Fitted data: Two body reactions:

Reaction	Experiment	Reaction	Experiment
$\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}$(all waves)	CERN-Münich		
$\pi \pi \rightarrow \pi^{0} \pi^{0}$ (S-wave)	GAMS	$\pi \pi \rightarrow \pi^{0} \pi^{0}$ (S,D,G-waves)	E852
$\pi \pi \rightarrow \eta \eta \quad$ (S-wave)	GAMS	$\pi \pi \rightarrow \eta \eta^{\prime}$ (S-wave)	GAMS
$\pi \pi \rightarrow K \bar{K}$ (S-wave)	BNL	$K^{-} \pi^{+} \rightarrow K^{-} \pi^{+}$(S-wave)	LASS

Fitted data: Three body reactions from Crystal Barrel: (L-liquid, G-gaseous targets).

Reaction	Target	Reaction	Target	Reaction	Target
$\bar{p} p \rightarrow \pi^{0} \pi^{0} \pi^{0}$	(L) H_{2}	$\bar{p} p \rightarrow \pi^{+} \pi^{0} \pi^{-}$	(L) H_{2}	$\bar{p} p \rightarrow K_{S} K_{S} \pi^{0}$	(L) H_{2}
$\bar{p} p \rightarrow \pi^{0} \eta \eta$	(L) H_{2}	$\bar{p} n \rightarrow \pi^{0} \pi^{0} \pi^{-}$	(L) D_{2}	$\bar{p} p \rightarrow K^{+} K^{-} \pi^{0}$	(L) H_{2}
$\bar{p} p \rightarrow \pi^{0} \pi^{0} \eta$	(L) H_{2}	$\bar{p} n \rightarrow \pi^{-} \pi^{-} \pi^{+}$	(L) D_{2}	$\bar{p} p \rightarrow K_{L} K^{ \pm} \pi^{\mp}$	(L) H_{2}
$\bar{p} p \rightarrow \pi^{0} \pi^{0} \pi^{0}$	(G) H_{2}			$\bar{p} n \rightarrow K_{S} K_{S} \pi^{-}$	(L) D_{2}
$\bar{p} p \rightarrow \pi^{0} \eta \eta$	(G) H_{2}			$\bar{p} n \rightarrow K_{S} K^{-} \pi^{0}$	(L) D_{2}
$\bar{p} p \rightarrow \pi^{0} \pi^{0} \eta$	(G) H_{2}				

The data are available from: PWA.HISKP.UNI-BONN.DE

Problems in the analysis of the $\pi N \rightarrow X N$ reactions

The πN reaction with large energy of initial pion should be described by t-exchanges. However:

1. There is no analysis of the data based on the particle exchanges: there are only models.
2. There is no a solid analysis which preserves unitarity and includes all known states in \mathbf{P} and \mathbf{D}-waves. This is should be important at small t where the π exchange is a dominant one and data are close to the unitarity limit.
3. Most of the models have problems at large t where exchanges of particles with large spin play a significant role.

Cross section for the reactions $\pi N \rightarrow \pi \pi N, K K N, \eta \eta N$

$$
d \sigma=\frac{(2 \pi)^{4}|A|^{2}}{8 \sqrt{s_{\pi N}}\left|\vec{p}_{2}\right|} d \Phi\left(p_{1}+p_{2}, k_{1}, k_{2}, k_{3}\right)
$$

$$
d \Phi\left(p_{1}+p_{2}, k_{1}, k_{2}, k_{3}\right)=(2 \pi)^{3} d \Phi\left(P, k_{1}, k_{2}\right) d \Phi\left(p_{1}+p_{2}, P, k_{3}\right) d s
$$

Assuming that amplitude depends only on t and s :

$$
d \Phi\left(p_{1}+p_{2}, P, k_{3}\right)=\frac{1}{(2 \pi)^{5}} \frac{d t}{8\left|\overrightarrow{p_{2}}\right| \sqrt{s_{\pi N}}} \quad t=\left(k_{3}-p_{2}\right)^{2}
$$

and

$$
d \Phi\left(P, k_{1}, k_{2}\right)=\frac{1}{(2 \pi)^{5}} \rho(s) d \Omega \quad \rho(s)=\frac{1}{16 \pi} \frac{2\left|\vec{k}_{1}\right|}{\sqrt{s}}
$$

Then:

$$
d \sigma=\frac{(2 \pi)^{4}|A|^{2}(2 \pi)^{3}}{8\left|\overrightarrow{p_{2}}\right| \sqrt{s_{\pi N}}} \frac{1}{(2 \pi)^{5}} \frac{d t 2 M d M d \Phi\left(P, k_{1}, k_{2}\right)}{8\left|\vec{p}_{2}\right| \sqrt{s_{\pi N}}}=\frac{\left(M|A|^{2} \rho\right) d t d M d \Omega}{(2 \pi)^{3} 32\left|\vec{p}_{2}\right|^{2} s_{\pi N}}
$$

Unitarity relation:

$$
\operatorname{Im} A=\rho(s)|A|^{2}
$$

And the cross section can be expressed in the terms of spherical functions:

$$
\frac{d^{4} \sigma}{d t d M d \Omega}=N \sum_{l}\left(<Y_{l}^{0}>Y_{l}^{0}(\Omega)+\sum_{m=0}^{l} 2<Y_{l}^{m}>\operatorname{Re} Y_{l}^{m}(\Omega)\right)
$$

CERN-Munich approach

The CERN-Munich model was developed for the analysis of the data on $\pi^{-} p \rightarrow \pi^{+} \pi^{-} n$ reaction and based partly on the absorbtion model but mostly on the phenomenological observations.

$$
|A|^{2}=\left|\sum_{J=0} A_{J}^{0} Y_{J}^{0}+\sum_{J=1} A_{J}^{-} R e Y_{J}^{1}\right|^{2}+\left|\sum_{J=1} A_{J}^{+} R e Y_{J}^{1}\right|^{2}
$$

Additional assumptions:

1) helicity 1 amplitudes are equal for natural and unnatural exchanges:

$$
A_{J}^{(-)}=A_{J}^{(+)}
$$

2) The ratio of the $A_{J}^{(-)}$and the A_{J}^{0} amplitudes is a polynomial over mass of the two pion system which does not depend on J up to total normalization.

$$
A_{J}^{(-)}=\frac{A_{J}^{0}}{C_{J} \sum_{n=0}^{3} b_{n} M^{n}}
$$

The amplitude squared can be rewritten via density matrices

$$
\rho_{00}^{n m}=A_{n}^{0} A_{m}^{0 *} \quad \rho_{01}^{n m}=A_{n}^{0} A_{m}^{(-) *}, \quad \rho_{11}^{n m}=2 A_{n}^{(-)} A_{m}^{(-)},
$$

as:

$$
|A|^{2}=\sum_{J=0} Y_{J}^{0}\left(\sum_{n, m} d_{n, m, J}^{0,0,0} \rho_{00}^{n m}+d_{n, m, J}^{1,1,0} \rho_{11}^{n m}\right)+\sum_{J=0} \operatorname{Re} Y_{J}^{1}\left(\sum_{n, m} d_{n, m, J}^{1,0,1} \rho_{10}^{n m}+d_{n, m, J}^{0,1,1}\right.
$$

where

$$
d_{n, m, J}^{i, k, l}=\frac{\int d \Omega \operatorname{Re} Y_{n}^{i}(\Theta, \varphi) \operatorname{Re} Y_{m}^{k}(\Theta, \varphi) \operatorname{Re} Y_{J}^{l}(\Theta, \varphi)}{\int d \Omega \operatorname{Re} Y_{J}^{l}(\Theta, \varphi) \operatorname{Re} Y_{J}^{l}(\Theta, \varphi)}
$$

Substituting such amplitude into cross section one can directly fit the moments $<Y_{J}^{m}>$.

Description of the CERN-Munich data

$$
\begin{aligned}
& \pi^{-} p \rightarrow \pi^{+} \pi^{-} n \\
& A_{1 j}=K_{1 m}(I-i \hat{\rho}(s) \hat{K})_{m j}^{-1}
\end{aligned}
$$

GAMS, VES and BNL approach

The Cern-Munich approach does not work for large t and does not work for many other final states.

The πN data are decomposed as a sum of amplitudes with angular dependence defined by spherical functions:

$$
\left|A^{2}\right|=\left|\sum_{J=0} A_{J}^{0} Y_{J}^{0}+\sum_{J=1} A_{J}^{-} \sqrt{2} R e Y_{J}^{1}\right|^{2}+\left|\sum_{J=1} A_{J}^{+} \sqrt{2} \operatorname{Im} Y_{J}^{1}\right|^{2}
$$

Here the A_{J}^{0} functions are called $S_{0}, P_{0}, D_{0}, F_{0} \ldots$, the A_{J}^{-}functions defined as $P_{-}, D_{-}, F_{-}, \ldots$ and the A_{J}^{+}functions as $P_{+}, D_{+}, F_{+}, \ldots$.
No assumptions that helicity 1 amplitudes with natural and unnatural exchanges are equal each to another.

At small $\mathrm{t}:|t|<0.1$:

At large $\mathrm{t}:|t|>0.4$:

The S-wave has a very prominent structure at large $|t|$.

Reggezied exchanges:

$$
\begin{aligned}
& A_{\pi p \rightarrow \pi \pi n}^{(\text {pion trajectories })}=\sum_{\pi_{j}} A\left(\pi \pi_{j} \rightarrow \pi \pi\right) R_{\pi_{j}}\left(s_{\pi N}, q^{2}\right) \varphi_{n}^{+}\left(\vec{\sigma} \vec{p}_{\perp}\right) \varphi_{p} g_{p n}^{\left(\pi_{j}\right)} \\
& A_{\pi p \rightarrow \pi \pi n}^{\left(a_{1}-\operatorname{trajectories}\right)}=\sum_{a_{1}^{(j)}} A\left(\pi a_{1}^{(j)} \rightarrow \pi \pi\right) R_{a_{1}^{(j)}}\left(s_{\pi N}, q^{2}\right) \varphi_{n}^{+}\left(\vec{\sigma} \vec{n}_{z}\right) \varphi_{p} g_{p n}^{\left(a_{1 j}\right)} \\
& R_{\pi_{j}}\left(s_{\pi N}, q^{2}\right)= \\
& R_{a_{1}^{(j)}}\left(s_{\pi N}, q^{2}\right)=\exp -i \frac{\pi}{2} \alpha_{\pi}^{(j)}\left(q^{2}\right) \frac{\left(s_{\pi N} / s_{\pi N 0}\right)^{\alpha_{\pi}^{(j)}\left(q^{2}\right)}}{\sin \frac{\pi}{2} \alpha_{\pi}^{(j)}\left(q^{2}\right) \Gamma \frac{1}{2} \alpha_{\pi}^{(j)}\left(q^{2}\right)+1} \\
&
\end{aligned}
$$

The π and a_{1} exchanges do not interfere if the polarization of nucleons is not detected. Indeed πN coupling is described by γ_{5} (singlet) while a_{1} coupling is proportional to γ_{μ} (triplet).

$$
S p\left[\left(m_{N}+\hat{k}_{3}\right) \gamma_{5}\left(m_{N}+\hat{p}_{2}\right) \gamma_{\mu}\right]=0
$$

This is true for π and a_{2} exchanges.
It means that

$$
|S|^{2}=\left|S_{\pi}\right|^{2}+\left|S_{a_{1}}\right|^{2}
$$

And D_{p}-wave could only interfere with $S_{a_{1}}$.
Already a_{1} and π exchanges produced a more complicated structure.

Nice features of reggezied a_{1} exchange:

$$
\begin{gathered}
A\left(\pi a_{1}^{(j)} \rightarrow \pi \pi\right)=\sum_{J} \epsilon_{\beta}^{(-)}\left[A_{\pi a_{1}^{(j)} \rightarrow \pi \pi}^{(J+)} X_{\beta \mu_{1} \ldots \mu_{J}}^{(J+1)}+A_{\pi a_{1} \rightarrow \pi \pi}^{(J-)} Z_{\mu_{1} \ldots \mu_{J}}^{\beta}\right] X_{\nu_{1} \ldots \nu_{J}}^{(J)}, \\
A\left(\pi a_{1}^{(k)} \rightarrow \pi \pi\right)=\sum_{J} \alpha_{J}|\vec{p}|^{J-1}|\vec{k}|^{J}\left(W_{0}^{(J)} Y_{J}^{0}(\Theta, \varphi)+W_{1}^{(J)} R e Y_{J}^{1}(\Theta, \varphi)\right.
\end{gathered}
$$

where:

$$
\begin{align*}
W_{0 k}^{(J)} & =-N_{J 0}\left(k_{3 z}-\frac{|\vec{p}|}{2}\right)\left(|\vec{p}|^{2} A_{\pi a_{1}^{(k)} \rightarrow \pi \pi}^{(J+)}-A_{\pi a_{1}^{(k)} \rightarrow \pi \pi}^{(J-)}\right) \tag{1}\\
W_{1 k}^{(J)} & =-\frac{N_{J 1}}{J(J+1)} k_{3 x}\left(|\vec{p}|^{2} J A_{\pi a_{1}^{(k)} \rightarrow \pi \pi}^{(J+)}+(J+1) A_{\pi a_{1}^{(k)} \rightarrow \pi \pi}^{(J-)}\right)
\end{align*}
$$

Then $<Y_{J}^{2}>$ moments in the cross section are $\left(k_{3 x} / k_{3 z}\right)^{2}$.
However the contribution to $\left\langle Y_{J}^{0}>\right.$ could be rather large already at small t.

The exchange which interferes with pion exchange is either π_{2} or double meson exchange.
$A_{\pi p \rightarrow \pi \pi n}^{\left(\pi_{2}\right)}=A_{\alpha \beta}\left(\pi \pi_{2} \rightarrow \pi \pi\right) \varepsilon_{\alpha \beta}^{(a)-} R_{\pi_{2}}\left(s_{\pi N}, q^{2}\right) \varepsilon_{\alpha^{\prime} \beta^{\prime}}^{(a)+} X_{\alpha^{\prime} \beta^{\prime}}^{(2)}\left(p_{2}\right)\left(\varphi_{n}^{+}\left(\vec{\sigma} \vec{p}_{\perp}\right) \varphi_{p}\right) g_{p n}^{\left(\pi_{2}\right)}$.
However leading contribution is taken into account by π-trajectory exchange. Double exchange:

Interferes with π exchange and a_{1} exchange but should be small at large -t-.

K-matrix for S and D-waves.

In the K-matrix form the unitarity condition is satisfied if:

$$
A_{m \rightarrow n}^{J}(s)=\sum_{i} \hat{K}_{m i}^{J}\left(I-i \hat{\rho}^{J}(s) \hat{K}^{J}\right)_{i n}^{-1}
$$

where $\hat{\rho}$ is the diagonal matrix with elements:

$$
\rho_{i i}^{J}(s)=\frac{2 \sqrt{-k_{i \perp}^{2}}}{\sqrt{s}}\left(-k_{i \perp}^{2}\right)^{J} .
$$

In the present work we parameterized the elements of the K-matrix as follows:
$K_{m n}^{J}=\sum_{\alpha} \frac{1}{B_{J}\left(k_{m \perp}^{2}, r_{\alpha}\right)}\left(\frac{g_{m}^{\alpha(J)} g_{n}^{\alpha(J)}}{M_{\alpha}^{2}-s}\right) \frac{1}{B_{J}\left(k_{n \perp}^{2}, r_{\alpha}\right)}+\frac{f_{m n}^{(J)}}{B_{J}\left(k_{m \perp}^{2}, r_{0}\right) B_{J}\left(k_{n \perp}^{2}, r_{0}\right)}$
and P -vector as
$P_{m}^{J}=\sum_{\alpha} \frac{1}{B_{J}\left(k_{m \perp}^{2}, r_{\alpha}\right)}\left(\frac{\Lambda_{\alpha(J)} g_{n}^{\alpha(J)}}{M_{\alpha}^{2}-s}\right) \frac{1}{B_{J}\left(k_{n \perp}^{2}, r_{\alpha}\right)}+\frac{F_{n}^{(J)}}{B_{J}\left(k_{m \perp}^{2}, r_{0}\right) B_{J}\left(k_{n \perp}^{2}, r_{0}\right)}$

S-wave K-matrix: $\mathbf{5}$ poles $\mathbf{5}$ channels: $\pi \pi K \bar{K}, \eta \eta \eta \eta^{\prime}$ and 4π
D-wave K-matrix 4 poles and 5 channels: $\pi \pi, K \bar{K}, \eta \eta, 4 \pi$ and $\omega \omega$.
Under 2 particle threshold we used:

1) analytical continuation of the phase volume
2)subtracted dispersion integral:

$$
\rho\left(s<4 m^{2}\right)=\left(s-4 m^{2}\right) \int_{4 m^{2}}^{\infty} \frac{d s^{\prime}}{\pi} \frac{\rho\left(s^{\prime}\right)}{B^{2}\left(k^{2}, r^{2}\right)\left(s^{\prime}-4 m^{2}\right)\left(s^{\prime}-s\right)}
$$

Masses of the S-wave K-matrix poles:
650, 1210 ($\pi \pi, K \bar{K}$), 1275 ($\pi \pi, 4 \pi$), $\mathbf{1 6 5 0 (~} \pi \pi, K \bar{K}, 4 \pi$), $1800(K \bar{K}, 4 \pi) \mathbf{M e V}$.
Masses of the D-wave K-matrix poles:
$1280(\pi \pi), 1510(K \bar{K}), 1560(\omega \omega, 4 \pi), 1920(\pi \pi, \omega \omega, 4 \pi)$

The description of $p \bar{p} \rightarrow 3 \pi^{0}$ CB-LEAR data

(p $\bar{p}-3 \pi^{0}$ Liquid target)

The description of $p \bar{p} \rightarrow \pi^{0} \pi^{0} \eta$ CB-LEAR data

The description of $p \bar{p} \rightarrow \pi^{0} \eta \eta$ CB-LEAR data
($p \bar{p}-\pi^{0} \eta \eta$ Liquid target)

The description of $\pi N \rightarrow \pi^{0} \pi^{0} N$ (E852)

The description of $\pi N \rightarrow \pi^{0} \pi^{0} N$ (E852)

The description of $\pi N \rightarrow \pi^{0} \pi^{0} N$ (E852)

The S-wave pole position in the complex S-plane

The D-wave pole position in the complex S-plane

S-wave at large $|t|$ due to π and a_{1} exchanges

CONCLUSION

1. The combined K-matrix analysis of proton-antiproton annihilation into three mesons and the $\pi N \rightarrow \pi^{0} \pi^{0} N$ data at different t-intervals shows a good compatibility.
2. The $f_{0}(1370), f_{2}(1560)$ and $f_{2}(1980)$ are needed for the data description.
3. At large $|t|$ the signal from $f_{0}(1370)$ due to a_{1}-exchange is clearly seen. But systematic check of all possibilities is not done yet.
4. The πN interaction provide a very important information about t -channel exchanges. It is very pity that it is not explored systematically.
