

Evidence for new resonances

in the combined analysis of recent hyperon photoproduction data

V.A. Nikonov (HISKP, Uni-Bonn; PNPI, Gatchina)

- PWA group in HISKP:
A.Anisovich, E.Klempt, V.Nikonov, A.Sarantsev, U.Thoma (http://pwa.hiskp.uni-bonn.de)
- Approach and recent results were presented in the talk of A.Anisovich
- The main task: search for new baryon resonances
- Polarization data are sensitive to weak signals
- Double polarization is necessary for a complete experiment
- CB ELSA double polarization data taking started (talks of U.Thoma and R.Beck)
$N(2070) D_{15}$ was discovered in combined fit of η and π^{0} photoproduction.

The check can be made using double polarization data.

The $P_{11}(1840)$ and $P_{13}(1900)$ states

A relatively narrow resonance is needed in 1850-1900 MeV region
$\gamma p \rightarrow \Lambda K^{+}$: dashed P_{13}, dotted S_{11}, dash-dotted K^{*} exchange.
$\gamma p \rightarrow \Sigma K^{+}$: dashed P_{13}, dash-dotted P_{11}, dotted K exchange.

The main proof is $K^{0} \Sigma^{+}$

dashed P_{11} (1840)
P_{11} gives the best χ^{2}
P_{13} gives the second best χ^{2}
Could be both, but with pure data it is not a proof.

ΛK^{+}(left) and ΣK^{+}(right) recoil polarization (CLAS)
Dotted line is the fit without $P_{11}(1840)$

New C_{x}, C_{z} data:
Evidence for the $N(1900) P_{13}$
No model could describe them.
In our approach we also had no good description of C_{x}, C_{z} with old set of resonances.
Systematic discrepancies were observed.


```
Refit of new data with old resonances. Maximal freedom for non-resonance contributions. Description of other data is much worse than before.
We tried to add new resonances.
As the firsr step, further resonances were introduced as Breit-Wigner amplitudes and different quantum numbers were tested.
The best \(\chi^{2}\) was obtained by introducing the second \(P_{13}\) state.
Solution 1: \(\quad 1885 \pm 15 \mathrm{MeV}\) mass and \(180 \pm 25 \mathrm{MeV}\) width, with \(\Delta \chi^{2}=1540\).
Solution 2: \(\quad 1975 \pm 15 \mathbf{M e V}\) mass and \(200 \pm 20 \mathbf{M e V}\) width.
Replacing:
\(S_{11} \quad \Delta \chi^{2}=950\).
\(D_{15} \Delta \chi^{2}=970\).
\(P_{11} \quad \Delta \chi^{2}=205\).
\(F_{15} \quad \Delta \chi^{2}\) small.
\(P_{33} \quad \Delta \chi^{2}\) smaller by a factor 2 than for a \(P_{13}\).
\(F_{17}, G_{17}\) did not improve the fit.
```

In a final step, the P_{13} was parameterized as 3 -pole 8 -channel K-matrix with $\pi N, \eta N, \Delta(1232) \pi$ (P and F-waves), $N \sigma, D_{13}(1520) \pi$ (S-wave), $K \Lambda$ and $K \Sigma$ channels. This resulted in the fit solutions 1 and 2 which both are compatible with B-W fits.
In addition, both solutions are compatible now with elastic πN scattering.
From the fit, properties of resonances in the P_{13}-wave were derived.
The lowest-mass pole is identified with the established $N(1720) P_{13}$,
the second pole with the badly known $N(1900) P_{13}$.
The third pole is introduced at about 2200 MeV .
It improves the quality of the fit in the high-mass region but its quantum numbers cannot be deduced safely from the present data base.

C_{x} (full circles) and C_{z} (open circles) for $\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^{+}$. The solid and dashed curves are results of our fit obtained with solution 1 (left) and solution 2 (right) for C_{x} and C_{z}.

C_{x} (full circles) and C_{z} (open circles) for $\gamma \mathrm{p} \rightarrow \Sigma \mathrm{K}^{+}$. The solid and dashed curves are results of our fit obtained with solution 1 (left) and solution 2 (right) for C_{x} and C_{z}.

$\sigma_{t o t}\left(\gamma p \rightarrow K^{0} \Sigma^{+}\right)$from CB-ELSA

Red line - $P_{13}(1900)$
Blue line - $P_{11}(1860)$ (improved P in $K \Lambda$ and $K \Sigma$ data)

The total cross section for $\gamma p \rightarrow \Lambda K^{+}$for solution 1 (a) and solution 2 (b). The solid curves are the results of our fits, dashed lines are the P_{13} contribution, dotted lines are the S_{11} contribution and dash-dotted lines are the contribution from K^{*} exchange.

The total cross section for $\gamma p \rightarrow \Sigma K^{+}$for solution 1 (a) and solution 2 (b). The solid curves are the results of our fits, dashed lines are the P_{13} contribution, dash-dotted lines are the P_{11} contribution and dotted lines are the contribution from K exchange.

$\gamma p \rightarrow \Lambda K^{+}$(left) and $\gamma p \rightarrow \Sigma K^{+}$(right). Only energy points where C_{x} and C_{z} were measured are shown. The solution 1 is shown as solid line and solution 2 (hardly visible since overlapping) as a dashed line.

Real (a) and imaginary (b) part of the P_{13} elastic scattering amplitude solution 1 and solution 2

Polarization variables are related as: $C_{x}^{2}+C_{z}^{2} \leq \operatorname{Min}\left(\left(1-\Sigma^{2}\right),\left(1-P^{2}\right)\right)$

$\gamma \mathrm{p} \rightarrow \mathrm{K}^{+} \Lambda$ (left) and $\gamma \mathrm{p} \rightarrow \mathrm{K}^{+} \Sigma^{0}$ (right) from CLAS (open circle) and GRAAL (black circle).
The solid and dashed curves are solution 1 and 2 respectively.

The beam asymmetries as a function of W for $\gamma \mathrm{p} \rightarrow \mathrm{K}^{+} \Lambda$ (left) and $\gamma \mathrm{p} \rightarrow \mathrm{K}^{+} \Sigma$ (right). The solid and dashed curves are the result of our fit obtained with solution 1 and 2 , respectively.

The masses, widths are given in MeV, the branching ratios in \% and helicity couplings in $\mathbf{1 0}^{-3} \mathrm{GeV}^{-1 / 2}$. The helicity couplings and phases were calculated as residues in the pole position.

	Solution 1		Solution 2	
$M_{\text {pole }}$	1640 ± 80	1870 ± 15	1630 ± 60	1960 ± 15
$\Gamma_{\text {tot }}^{\text {ole }}$	480 ± 60	170 ± 30	440 ± 60	195 ± 25
$M_{B W}$	1800 ± 100	1885 ± 15	1780 ± 80	1975 ± 15
$\Gamma_{\text {tot }}^{B W}$	700 ± 100	180 ± 25	680 ± 80	200 ± 25
$A_{1 / 2}$	140 ± 80	$-(15 \pm 15)$	160 ± 40	$-(18 \pm 8)$
$\varphi_{1 / 2}$	$-(10 \pm 15)^{\circ}$	-	$(10 \pm 15)^{\circ}$	$(40 \pm 15)^{\circ}$
$A_{3 / 2}$	150 ± 80	$-(40 \pm 15)$	70 ± 30	$-(35 \pm 12)$
$\varphi_{3 / 2}$	$-(40 \pm 30)^{\circ}$	$-(20 \pm 15)^{\circ}$	$(0 \pm 20)^{\circ}$	$-(40 \pm 15)^{\circ}$
$\operatorname{Br}_{N \pi}$	8 ± 4	5 ± 3	11 ± 4	6 ± 3
$\operatorname{Br}_{N \eta}$	13 ± 4	21 ± 8	5 ± 2	15 ± 3
$\operatorname{Br}_{\Delta \pi(P)}$	48 ± 10	3 ± 2	28 ± 6	7 ± 2
$\operatorname{Br}_{\Delta \pi(F)}$	2 ± 2	4 ± 3	11 ± 4	21 ± 5
$\operatorname{Br}_{K \Lambda}$	15 ± 6	10 ± 5	5 ± 2	12 ± 3
$\operatorname{Br}_{K \Sigma}$	<1	20 ± 8	<1	8 ± 2
$\operatorname{Br}_{D 13} \pi$	10 ± 6	8 ± 3	38 ± 6	5 ± 3
$\operatorname{Br}_{N \sigma}$	4 ± 2	30 ± 12	2 ± 2	26 ± 8

Predictions for T polarization.
Could be possible to choose between three solutions.

Conclusions

- New P_{13} state has found fitting new CLAS C_{x}, C_{z} data
- A qualitatively good description of all fitted observables was obtained.
- The analysis of the first double polarization data on hyperon photoproduction reveals an exciting result.
- Systematic measurements with further single and double polarization observables - as being planned and carried out at several laboratories - are urgently needed.

