

Petersburg Nuclear Physics Institute

Evidence for new resonances in the combined analysis of recent hyperon photoproduction data

V.A. Nikonov (HISKP, Uni-Bonn; PNPI, Gatchina)

• **PWA** group in HISKP:

A.Anisovich, E.Klempt, V.Nikonov, A.Sarantsev, U.Thoma (http://pwa.hiskp.uni-bonn.de)

- Approach and recent results were presented in the talk of A.Anisovich
- The main task: search for new baryon resonances
 - Polarization data are sensitive to weak signals
 - Double polarization is necessary for a complete experiment
 - CB ELSA double polarization data taking started (talks of U.Thoma and R.Beck)

$N(2070)D_{15}$ was discovered in combined fit of η and π^0 photoproduction.

The check can be made using double polarization data.

 $N(2070)D_{15}$ substituted with $1/2^-$ or with a $1/2^+$

The P_{11} (1840) and P_{13} (1900) states

A relatively narrow resonance is needed in 1850-1900 MeV region

$$\gamma p o \Lambda K^+$$
: dashed P_{13} , dotted S_{11} , dash-dotted K^* exchange $\gamma p o \Sigma K^+$: dashed P_{13} , dash-dotted P_{11} , dotted K exchange.

The main proof is $K^0\Sigma^+$

dashed P_{11} (1840)

 P_{11} gives the best χ^2

P_{13} gives the second best χ^2

Could be both, but with pure data it is not a proof.

 ΛK^+ (left) and ΣK^+ (right) recoil polarization (CLAS)

Dotted line is the fit without $P_{11}(1840)$

New C_x , C_z data: Evidence for the $N(1900)P_{13}$

No model could describe them.

In our approach we also had no good description of C_x, C_z with old set of resonances. Systematic discrepancies were observed.

Refit of new data with old resonances. Maximal freedom for non-resonance contributions. Description of other data is much worse than before.

We tried to add new resonances.

As the firsr step, further resonances were introduced as Breit-Wigner amplitudes and different quantum numbers were tested.

The best χ^2 was obtained by introducing the second P_{13} state. Solution 1: 1885 ± 15 MeV mass and 180 ± 25 MeV width, with $\Delta \chi^2 = 1540$. Solution 2: 1975 ± 15 MeV mass and 200 ± 20 MeV width. Replacing:

$$S_{11}$$
 $\Delta\chi^2$ = 950.

$$D_{15}$$
 $\Delta\chi^2$ = 970.

$$P_{11}$$
 $\Delta\chi^2$ = 205.

 F_{15} $\Delta\chi^2$ small.

 P_{33} $\Delta \chi^2$ smaller by a factor 2 than for a P_{13} .

 F_{17} , G_{17} did not improve the fit.

In a final step, the P_{13} was parameterized as 3-pole 8-channel K-matrix with πN , ηN , $\Delta(1232)\pi$ (P and F-waves), $N\sigma$, $D_{13}(1520)\pi$ (S-wave), $K\Lambda$ and $K\Sigma$ channels.

This resulted in the fit solutions 1 and 2 which both are compatible with B-W fits.

In addition, both solutions are compatible now with elastic πN scattering.

From the fit, properties of resonances in the P_{13} -wave were derived.

The lowest-mass pole is identified with the established $N(1720)P_{13}$,

the second pole with the badly known $N(1900)P_{13}$.

The third pole is introduced at about 2200 MeV.

It improves the quality of the fit in the high-mass region but its quantum numbers cannot be deduced safely from the present data base.

 C_x (full circles) and C_z (open circles) for $\gamma p \to \Lambda K^+$. The solid and dashed curves are results of our fit obtained with solution 1 (left) and solution 2 (right) for C_x and C_z .

Evidence for new resonances ...

 C_x (full circles) and C_z (open circles) for $\gamma p \rightarrow \Sigma K^+$. The solid and dashed curves are results of our fit obtained with solution 1 (left) and solution 2 (right) for C_x and C_z .

 $\sigma_{tot}(\gamma p \rightarrow K^0 \Sigma^+)$ from CB-ELSA

Red line – $P_{13}(1900)$ **Blue line** – $P_{11}(1860)$ (improved P in $K\Lambda$ and $K\Sigma$ data)

The total cross section for $\gamma p \to \Lambda K^+$ for solution 1 (a) and solution 2 (b). The solid curves are the results of our fits, dashed lines are the P_{13} contribution, dotted lines are the S_{11} contribution and dash-dotted lines are the contribution from K^* exchange.

The total cross section for $\gamma p \to \Sigma K^+$ for solution 1 (a) and solution 2 (b). The solid curves are the results of our fits, dashed lines are the P_{13} contribution, dash-dotted lines are the P_{11} contribution and dotted lines are the contribution from K exchange.

 $\gamma p \to \Lambda K^+$ (left) and $\gamma p \to \Sigma K^+$ (right). Only energy points where C_x and C_z were measured are shown. The solution 1 is shown as solid line and solution 2 (hardly visible since overlapping) as a dashed line.

Real (a) and imaginary (b) part of the P_{13} elastic scattering amplitude solution 1 and solution 2

Polarization variables are related as: $C_x^2 + C_z^2 \leq Min((1 - \Sigma^2), (1 - P^2))$

 $\gamma p \to K^+ \Lambda$ (left) and $\gamma p \to K^+ \Sigma^0$ (right) from CLAS (open circle) and GRAAL (black circle). The solid and dashed curves are solution 1 and 2 respectively.

The beam asymmetries as a function of W for $\gamma p \to K^+ \Lambda$ (left) and $\gamma p \to K^+ \Sigma$ (right). The solid and dashed curves are the result of our fit obtained with solution 1 and 2, respectively.

The masses, widths are given in MeV, the branching ratios in % and helicity couplings in 10^{-3} GeV $^{-1/2}$. The helicity couplings and phases were calculated as residues in the pole position.

	Solution 1		Solution 2	
M_{pole}	1640 ± 80	1870 ± 15	1630 ± 60	1960 ± 15
Γ_{tot}^{pole}	480 ± 60	170 ± 30	440 ± 60	195 ± 25
M_{BW}	1800 ± 100	1885 ± 15	1780 ± 80	1975 ± 15
Γ^{BW}_{tot}	700 ± 100	180 ± 25	680 ± 80	200 ± 25
$A_{1/2}$	140 ± 80	$-(15 \pm 15)$	160 ± 40	$-(18 \pm 8)$
$arphi_{1/2}$	$-(10 \pm 15)^{\circ}$	-	$(10 \pm 15)^{\circ}$	$(40 \pm 15)^{\circ}$
$A_{3/2}$	150 ± 80	$-(40 \pm 15)$	70 ± 30	$-(35 \pm 12)$
$arphi_{3/2}$	$-(40 \pm 30)^{\circ}$	$-(20 \pm 15)^{\circ}$	$(0\pm 20)^{\circ}$	$-(40 \pm 15)^{\circ}$
$\mathrm{Br}_{N\pi}$	8 ± 4	5 ± 3	11 ± 4	6 ± 3
${ m Br}_{N\eta}$	13 ± 4	21 ± 8	5 ± 2	15 ± 3
$\operatorname{Br}_{\Delta\pi(P)}$	48 ± 10	3 ± 2	28 ± 6	7 ± 2
$\operatorname{Br}_{\Delta\pi(F)}$	2 ± 2	4 ± 3	11 ± 4	21 ± 5
$\mathrm{Br}_{K\Lambda}$	15 ± 6	10 ± 5	5 ± 2	12 ± 3
$\mathrm{Br}_{K\Sigma}$	< 1	20 ± 8	< 1	8 ± 2
$\mathrm{Br}_{D_{13}\pi}$	10 ± 6	8 ± 3	38 ± 6	5 ± 3
$\mathrm{Br}_{N\sigma}$	4 ± 2	30 ± 12	2 ± 2	26 ± 8

Predictions for T polarization.

Could be possible to choose between three solutions.

Conclusions

- New P_{13} state has found fitting new CLAS C_x , C_z data
- A qualitatively good description of all fitted observables was obtained.
- The analysis of the first double polarization data on hyperon photoproduction reveals an exciting result.
- Systematic measurements with further single and double polarization observables – as being planned and carried out at several laboratories – are urgently needed.