Experimental test of the hadron structure in the polarized hadron - hadron elastic scattering
A. I. Machavariani

High Energy Physics Institute of Tbilisi State University, University str. 9, Tbilisi 380086, Georgia

Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia

Institute für Theoretische Physik der Univesität Tübingen, Tübingen D-72076, Germany
e-mail: machavar@theor.jinr.ru

RINGRAZIO TUTTI GLI ORGANIZZATORI DI QUESTA CONFERENZA, IN PARTICICULARE STEFANO BIANCO E PASQUALE DI NEZZA PER L'OPPORTUNITA' DATAMI DI PRENDERE PARTE ALLA CONFERENZA E DI VISITARE DUE CITTA' BELLE E AFFASCINANTI:

FRASCATI \& ROMA.

Present models reproduces binary reactions $N N, \pi N$, $\gamma N, \ldots$ as interaction of the two point-like objects, where every hadron is constructed as point-like object with definite mass, momenta and quantum numbers.

What observables indicate the structure of the nucleon in the $N N$ elastic scattering in the $0.5-2 \mathrm{GeV}$ energy region?

STRUCTURELESS (POINT-LIKE) PROTON is described via the definite mass, spin, isospin and fourmomentum $q_{p}=\left(\sqrt{m_{N}^{2}+\mathbf{q}_{p}{ }^{2}}, \mathbf{q}_{p}\right)$.

$$
\begin{gathered}
f(E, \theta, \phi) \equiv F(s, t, \phi)=a(E, \theta)+b(E, \theta)\left(\mathbf{s}_{\mathbf{1}} \cdot \mathbf{n}\right)\left(\mathbf{s}_{\mathbf{2}} \cdot \mathbf{n}\right) \\
+c(E, \theta)\left(\mathbf{s}_{\mathbf{1}} \cdot \mathbf{m}\right)\left(\mathbf{s}_{\mathbf{2}} \cdot \mathbf{m}\right) \\
+d(E, \theta)\left(\mathbf{s}_{\mathbf{1}} \cdot \mathbf{l}\right)\left(\mathbf{s}_{\mathbf{2}} \cdot \mathbf{l}\right)+e(E, \theta)\left(\left(\mathbf{s}_{\mathbf{1}}+\mathbf{s}_{\mathbf{2}}\right) \cdot \mathbf{n}\right)
\end{gathered}
$$

DEPENDENCE ON THE AZIMUTHAL ANGLE ϕ IS SEPARATED:
the mutually orthogonal unit vectors
$\mathbf{n}=\frac{\left(\mathbf{p}^{\prime} \times \mathbf{p}\right)}{\left(\left(\mathbf{p}^{\prime} \times \mathbf{p}\right) \mid\right.} ;$
$\mathbf{m}=\frac{\left(\mathbf{p}^{\prime}-\mathbf{p}\right)}{\left|\left(\mathbf{p}^{\prime}-\mathbf{p}\right)\right|} ;$
$\mathrm{l}=\frac{\left(\mathrm{p}^{\prime}+\mathbf{p}\right)}{\left|\left(\mathbf{p}^{\prime}+\mathbf{p}\right)\right|}$
and $p=q_{1}=-\mathbf{q}_{2}$.

Polarization observables of the $N N$ elastic scattering are determined by the a, b, c, d, e amplitudes.

CRITERION: What object is point-like?

POINT-LIKE PARTICLE: $|V(1,2)| \ll M_{1}\left(M_{2}\right)$

1

PARTICLE EXCHANGE: $|V(1,2)| \leq M_{1}\left(M_{2}\right)$

OVERLAPPING, CONTACT, QUARK EXCHANGE:

$$
\text { instead of }|V(1,2)| \Longrightarrow
$$

HADRONS AS A COMPOSITE PARTICLES:

OVERLAPPING,
 CONTACT,
 QUARK EXCHANGE TERMS

General dependence on ϕ of the $N N$ scattering amplitude, i.e. nontrivial dependence on the vectors n, m, l and spin variables s_{1}, s_{2} of two nucleons.

$$
\begin{gathered}
f_{\text {composed }}(E, \theta, \phi)=a(E, \theta, \phi)+b(E, \theta, \phi)\left(\mathbf{s}_{\mathbf{1}} \cdot \mathbf{n}\right)\left(\mathbf{s}_{\mathbf{2}} \cdot \mathbf{n}\right) \\
+c(E, \theta, \phi)\left(\mathbf{s}_{\mathbf{1}} \cdot \mathbf{m}\right)\left(\mathbf{s}_{\mathbf{2}} \cdot \mathbf{m}\right)+d(E, \theta, \phi)\left(\mathbf{s}_{\mathbf{1}} \cdot \mathbf{l}\right)\left(\mathbf{s}_{\mathbf{2}} \cdot \mathbf{l}\right) \\
+e(E, \theta, \phi)\left(\left(\mathbf{s}_{\mathbf{1}}+\mathbf{s}_{\mathbf{2}}\right) \cdot \mathbf{n}\right)
\end{gathered}
$$

This expression predicts an essential dependence on ϕ of the $N N$ polarization observables.

Asymptotic particles in quantum mechanic and in quantum field theory are point-like objects.

But quark exchange and overlapping terms can change the spin-orientation of the interacted particles, This generates the azimuthal angle-dependence of the binary hadron-hadron scattering amplitude.
ϕ-dependence lead to the size parameter of interaction, which indicates the nontrivial distribution of the final particles in the different scattering-planes.

TWO-BODY INTERACTION \Longleftrightarrow MANY-BODY INTERACTION

ϕ-dependence and FORM-FACTORS:

Form-factors are depending on the $t=\left(p^{\prime}-p\right)^{2}$ and not on ϕ.

$$
<\mathbf{p}^{\prime}\left|j_{\mu}(0)\right| \mathbf{p}>=\frac{\left(p^{\prime}+p\right)_{\mu}}{2 m_{\pi}} F(t)
$$

The experimental evidence of the proton structure effects can be done by a measurement of the following quantity by the fixed E and θ :

$$
\begin{aligned}
& {\left[\lambda_{ \pm}(\phi)\right]_{\text {fixed } E \text { and } \theta}=\left[A_{\text {nooo }} \frac{d \sigma_{p p \rightarrow p^{\prime} p^{\prime}}}{d \Omega} \pm\left(A_{\text {nooo }} \frac{d \sigma_{p p \rightarrow p^{\prime} p^{\prime}}}{d \Omega}\right)_{\phi=0}\right]_{\text {fixed } E \text { and } \theta}} \\
& =\operatorname{Re}\left(a^{*}(E, \theta, \phi) e(E, \theta, \phi)\right) \pm \operatorname{Re}\left(a^{*}(E, \theta, \phi=0) e(E, \theta, \phi=0)\right)
\end{aligned}
$$

The most promising energy region for determination of the $\lambda(\phi)$ parameter is $E \sim 1-2 G e V$, where the quark structure effects are nowadays indisputable.

CONCLUSION

The experimental evidence of the hadron structure effects can be done by a measurement of the azimuthal ϕ-angle distribution of the scattering planes by the fixed total energy E and scattering angle θ.

The essential dependence on the azimuthal ϕ-angle of the binary scattering observables is necessity condition of the structure effects of the interacted hadrons.

This means that the ϕ independence of the polarized observables of the $1+2 \Longrightarrow 1^{\prime}+2^{\prime}$ reaction indicates the structureless nature of the scattered particles.

