XII International Conference on Hadron Spectroscopy

Laboratori
Nazionali
di Frascati (Roma)

09-10-2007

Light scalar mesons at KLOE

Federico Nguyen
Università degli Studi and Sezione INFN Roma TRE
ROMA TRE
Università degli studi for the KLOE Collaboration

Outline

> Motivations
$>$ The spectrum from

$$
\mathrm{f}_{\mathbf{0}}(\mathbf{9 8 0}) \rightarrow \pi^{+} \pi^{-}
$$

$>$ Dalitz plot from decay

$$
f_{0}(\mathbf{9 8 0}) \rightarrow \pi^{0} \pi^{0}
$$

$>$ Analyses of the decay

$$
\mathbf{a}_{0}(\mathbf{9 8 0}) \rightarrow \eta \pi^{0}
$$

> Conclusions and perspectives

Motivations: open issues

- Is $\sigma(600)$ the lightest scalar meson?
- Do $\sigma, a_{0}(980)$ and $f_{0}(980)$ belong to the same $q \bar{q}{ }^{3} P_{0}$ nonet?
- If so, why is the mass spectrum inverted?
- If not, is their structure nonconventional?

Alternative hypotheses: $q q \bar{q} \bar{q}$ states (Jaffe, Achasov et al., Maiani et al.) $\mathrm{K} \overline{\mathrm{K}}$ molecules (Weinstein-Isgur, Close et al., Kalashnikova et al.)
ϕ-factory \Rightarrow study of $f_{0}(980)[+\sigma(600)]$ and $a_{0}(980)$
from radiative ϕ decays

Models for the observed spectra

1) Kaon Loop [KL]

[N.N.Achasov, V.N.Ivanchenko, NPB315 (1989) 465]
[N.N.Achasov, V.V.Gubin, PRD 56 (1997) 4084]

dipole transition $\left(\propto \mathbf{E}_{\gamma}{ }^{3}\right)$ damped by loop function, propagator accounts for opening of KK channel

2) "No Structure" [NS]

[G.Isidori, L.Maiani, M.Nicolaci, S.Pacetti, JHEP 0605 (2006) 049]

dipole transition $\left(\propto \mathbf{E}_{\gamma}{ }^{3}\right)$ damped by polynomial terms, propagator accounts for opening of KK channel
is the $\sigma(600)$ needed to describe the mass spectra?

The $\mathrm{f}_{\mathbf{0}}(\mathbf{9 8 0}) \rightarrow \pi^{+} \pi^{-}$analysis

published: PLB 634 (2006) 148

event selection:
2 tracks with $\theta>45^{\circ}$; missing momentum matching photon direction, with $\theta_{\gamma}>45^{\circ}$;
$e^{+} e^{-} \gamma$ events rejection on calorimetric basis;
$\mu^{+} \mu^{-} \gamma$ and $\pi^{+} \pi^{-} \pi^{0}$ suppressed by means of
kinematics;

Results for the $\mathrm{f}_{0}(\mathbf{9 8 0}) \rightarrow \pi^{+} \pi^{-}$analysis

fitting function:

$$
\begin{aligned}
\frac{d N}{d m}= & L_{\mathrm{int} \epsilon(m)}\left(\frac{d \sigma_{\mathrm{ISR}}}{d m}+\frac{d \sigma_{\mathrm{FSR}}}{d m}+\frac{d \sigma_{\rho \pi}}{d m}\right. \\
& \left.+\frac{d \sigma_{\mathrm{scal}}}{d m} \pm \frac{d \sigma_{\mathrm{scal}+\mathrm{FSR}}^{\mathrm{INT}}}{d m}\right)
\end{aligned}
$$

\checkmark peak at $\mathrm{M}_{\pi \pi} \sim 980 \mathrm{MeV}$ due to $\phi \rightarrow \mathrm{f}_{0}(980) \gamma$, with negative interf. with FSR
\checkmark in both models the $f_{0}(980)$ is strongly coupled to kaons and to the ϕ
\checkmark introduction of the $\sigma(600)$ does not improve the fit
both fits are satisfactory in describing the $f_{0}(980)$ structure

The $\mathrm{f}_{\mathbf{0}}(\mathbf{9 8 0}) \rightarrow \pi^{0} \pi^{0}$ analysis

a) 5 photons from the interaction point
b) $1^{\text {st }}$ kinematic fit with 4 -momentum conservation
c) $2^{\text {nd }}$ kinematic fit also with constraints
published: EPJ C49 (2007) 473
$\mathbf{M}_{\pi \pi}$ vs. $\mathbf{M}_{\pi \gamma}$ Dalitz Plot Fit,
bin widths: $10 \mathrm{MeV}\left(\mathrm{M}_{\pi \pi}\right) \times \mathbf{1 2 . 5} \mathbf{~ M e V}\left(\mathrm{M}_{\pi \gamma}\right)$

Results for the $\mathrm{f}_{\mathbf{0}}(\mathbf{9 8 0}) \rightarrow \pi^{0} \pi^{0}$ analysis

$\pi \pi /$ KK scattering phases and $\sigma(600)$ fixed ($\mathrm{m} \in[400,710] \mathrm{MeV}, \Gamma \in[240,490] \mathrm{MeV}$) from fits to published KLOE ϕ decays and to existing $\pi \pi$ scattering data [Achasov \& Kiselev,
PRD73(2006)054029] $\rightarrow 10$ model variants

```
KL:
\chi}\mp@subsup{}{\mathrm{ min }}{2}/\mathrm{ dof = 2754/2676
P}(\mp@subsup{\chi}{}{2}>\mp@subsup{\chi}{}{2}\mp@subsup{}{\mathrm{ min }}{})=14.5
```

KL (in particular):
\checkmark the 6 fit variants with $P\left(x^{2}\right)>1 \%$ are kept \checkmark best fit result \rightarrow central value \checkmark maximum variation among fits
\rightarrow model dependence uncertainty

$$
\frac{d \sigma^{S}}{d M_{\pi \pi} d M_{\pi \gamma}}+\frac{d \sigma^{V}}{d M_{\pi \pi} d M_{\pi \gamma}} \pm \frac{d \sigma^{I}}{d M_{\pi \pi} d M_{\pi \gamma}}
$$

Summary table and comparison

KL fit results:
$\pi^{0} \pi^{0}: \sigma(600)$ [but with fixed values] needed to describe data, $\pi^{+} \pi^{-}$: not sensitive to $\sigma(600)$
both channels: $\mathrm{f}_{\mathbf{0}} \mathbf{(9 8 0)}$ strongly coupled to KK

NS fit results:
both channels: only $\mathrm{f}_{0}(\mathbf{9 8 0})$
sufficient to describe data
$\pi^{0} \pi^{0}$ wrt $\pi^{+} \pi^{-}$: larger $g_{\phi f 0 \gamma}$ but weaker KK coupling

> confidence intervals are given by exp. systematics, except for KL in the $\pi^{0} \pi^{0}$ channel: model dependence

-	Parameter	$\pi^{+} \pi \tau^{-\gamma}$	$\pi^{0} \pi^{0} \gamma$	
-	$\mathrm{M}_{\mathrm{f} 0}(\mathrm{MeV})$	980-987	$976.8 \pm 0.3_{-0.6}^{+0.9}$	+10.1
E	$\mathrm{g}_{\text {fokk }}(\mathrm{GeV})$	5.0-6.3	$3.76 \pm 0.04{ }_{-0.0}^{+0.1}$	${ }_{8}^{\text {S }}$-0.48
¢	$\mathrm{g}_{\text {f0ax }}(\mathrm{GeV})$	3.0-4.2	$-1.43 \pm 0.01_{-0}^{+0}$	${ }_{06}^{1+0.03}$
\wedge	$\mathrm{g}_{\text {fokk }}^{2} / \mathrm{g}_{\text {four }}^{2}$	2.2-2.8	$6.9 \pm 0.1_{-0 .}^{+0 .}$	${ }_{-3.9}^{+0.3}$

marginal agreement

News for the $\mathrm{f}_{0}(\mathbf{9 8 0}) \rightarrow \pi^{0} \pi^{0}$ analysis

2 changes in σ couplings with respect to Achasov paper [PRD73(2006)054029]:

- $\mathrm{C}_{\mathrm{f} 0 \sigma}=-0.047 \mathrm{GeV}^{2} \quad$ (was $+0.047 \mathrm{GeV}^{2}$) [private communication]
- $\mathrm{g}_{\text {वлл }}=2.1 \mathrm{GeV} \quad($ was $-2.1 \mathrm{GeV}) \quad[\mathrm{PRD} 74$ (2006) 059902(E)]
published result \longrightarrow
preliminary update $\quad \begin{aligned} & \mathbf{M}_{\mathrm{f} 0}=\left(976.8 \pm 0.3_{\text {fit }}+0.9 /-0.6_{\text {syst }}+10.1_{\mathrm{mod}}\right) \mathrm{MeV} \\ & \mathrm{g}_{\mathrm{f0K}+\mathrm{K}-}=\left(3.76 \pm 0.04_{\mathrm{fit}}+0.15 /-0.08_{\text {syst }}+1.16 /-0.48_{\mathrm{mod}}\right) \mathrm{GeV} \\ & \mathrm{g}_{\text {f0 } \pi+\pi-}=\left(-1.43 \pm 0.01_{\text {fit }}+0.01 /-0.06_{\text {syst }}+0.03 /-0.60_{\mathrm{mod}}\right) \mathrm{GeV}\end{aligned}$
$\mathbf{M}_{\mathrm{f} 0}=\left(984.7 \pm 1.9_{\mathrm{mod}}\right) \mathbf{M e V}$
$\mathrm{g}_{\text {foK }+\mathrm{K}-}=\left(3.97 \pm 0.43_{\mathrm{mod}}\right) \mathrm{GeV}$
$\mathrm{g}_{\text {f0 } 0 \pi \pi-}=\left(-1.82 \pm 0.19_{\text {mod }}\right) \mathrm{GeV}$
$\checkmark 8$ fit variants with $\mathrm{P}\left(\chi^{2}\right)>1 \%$
\checkmark variants average \rightarrow central value
\checkmark variants RMS \rightarrow model model uncertainty reduced of factor ~ 5 in
$M_{\text {fo }}$ and of a factor ~ 3 in the couplings dependence uncertainty $M_{f 0}$ and of a factor ~ 3 in the couplings

News for the $\mathrm{f}_{0}(\mathbf{9 8 0}) \rightarrow \pi^{+} \pi^{-}$analysis

a) improved KL parametrization implemented also for $\pi^{+} \pi^{-} \gamma$ events
b) acceptable χ^{2} with reasonable ISR + FSR parameters

$M_{\text {fo }}(\mathrm{MeV})$	$\mathrm{g}_{\text {fокк }}(\mathrm{GeV})$	$\mathrm{g}_{\mathrm{f} 0 \pi \pi}(\mathrm{GeV})$	$\mathrm{M}_{\mathrm{\rho}}(\mathrm{MeV})$	Γ_{ρ}	α	β	$\mathrm{A}_{\rho \pi}$
983.7	4.74	-2.22	772.5	144.2	1.64	-0.129	4.7

preliminary update

* results in better agreement between the 2 analyses
* $\phi \rightarrow \rho \pi$ interference with Scalar and FSR amplitudes to be considered

Forward backward asymmetry

Forward backward asymmetry - improved

The $\mathrm{a}_{0}(\mathbf{9 8 0}) \rightarrow \eta \pi^{0}$ analysis; $\eta \rightarrow \gamma \gamma$ final state

a) 5 photons from the interaction point
b) $1^{\text {st }}$ kinematic fit with 4 -mom. conservation
c) $2^{\text {nd }}$ kinematic fit also with constraints on η, π^{0} masses \rightarrow global $\varepsilon \sim 40 \%$
d) 3×10^{4} events from $414 \mathrm{pb}^{-1}$
e) large background $\sim 55 \%$ from final states with 5 or 7γ

The $\mathbf{a}_{\mathbf{0}}(\mathbf{9 8 0}) \rightarrow \eta \pi^{0}$ analysis; $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ final state

a) 2 tracks $+5 \gamma$ from the interaction point
b) $1^{\text {st }}$ kinematic fit with 4 -mom. conservation
c) $2^{\text {nd }}$ kinematic fit also with constraints

$$
\text { on } \eta, \pi^{0} \text { masses } \rightarrow \text { global } \varepsilon \sim 20 \%
$$

d) 4.5×10^{3} events from $414 \mathrm{pb}^{-1}$
e) small background $\sim 15 \%$ from $\omega\left(\rightarrow \pi^{+} \pi^{-} \pi^{0}\right) \pi^{0}$

$$
\text { and } K_{S} K_{L} \rightarrow 2 \text { tracks }+2-3 \pi^{0}
$$

from event counting
$\left(7.19 \pm 0.17_{\text {stat }} \pm 0.24_{\text {sys }}\right) \times 10^{-5}$

Results for the $\mathbf{a}_{\mathbf{0}} \mathbf{(9 8 0)} \rightarrow \eta \pi^{0}$ analyses

$a_{0}(980)$ parameters extracted from a simultaneous fit to both $M_{\eta \pi}$ spectra (efficiency + resolution accounted)
free parameters:
Ratio $\mathrm{BR}_{\eta \rightarrow \gamma \gamma} / \mathrm{BR}_{\eta \rightarrow \pi+\pi-\pi 0}$
$\operatorname{BR}\left(\phi \rightarrow \rho \pi^{0} \rightarrow \eta \pi^{0} \gamma\right)$
KL:
$\mathrm{M}_{\mathrm{a} 0}, \mathrm{~g}_{\mathrm{aOKK}} \mathrm{g}_{\mathrm{a} 0 \eta \pi}$ couplings
NS:
$\mathrm{M}_{\mathrm{a} 0}, \mathrm{~g}_{\text {фа0 }} \mathrm{g}_{\text {aOKK }} \mathrm{g}_{\mathrm{a} 0 \eta \pi}$ couplings

Parameter	Kaon Loop	No Structure
$\mathrm{M}_{\mathrm{a} 0}(\mathrm{MeV})$	983 ± 1	983 (fixed)
$\mathrm{g}_{\mathrm{a} 0 \mathrm{KK}}(\mathrm{GeV})$	$\mathbf{2 . 1 6} \pm \mathbf{0 . 0 4}$	$\mathbf{1 . 5 7} \pm \mathbf{0 . 1 3}$
$\mathrm{g}_{\mathrm{a} 0 \eta \pi}(\mathrm{GeV})$	2.8 ± 0.1	2.2 ± 0.1
$\mathrm{~g}_{\phi 00 \gamma}\left(\mathrm{GeV}^{-1}\right)$	-	$\mathbf{1 . 6 1} \pm \mathbf{0 . 0 5}$
$\mathrm{BR}(\phi \rightarrow \rho \pi \rightarrow \eta \pi \gamma) \times 10^{6}$	0.9 ± 0.4	$4.1($ fixed $)$
$\mathbf{B R}(\eta \rightarrow \gamma \gamma) / \mathbf{B R}(\eta \rightarrow \pi \tau \pi \tau)$	$\mathbf{1 . 6 9} \pm \mathbf{0 . 0 4}$	$\mathbf{1 . 6 9} \pm \mathbf{0 . 0 4}$
$\chi^{\mathbf{2}} / \mathbf{N d f}$	$\mathbf{1 5 6 . 6 / 1 3 6}$	$\mathbf{1 4 6 . 8} / \mathbf{1 3 4}$
$\mathbf{P}\left(\chi^{\mathbf{2}}\right)$	$\mathbf{1 1 \%}$	$\mathbf{2 1 \%}$

Comments on $\mathrm{a}_{0}(\mathbf{9 8 0})$ results

\checkmark good consistency between the two analyses:
experimental systematics is under control
\checkmark small VMD contribution (when fitted)
$\checkmark \operatorname{BR}(\eta \rightarrow \gamma \gamma) / \operatorname{BR}\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$ consistent with the PDG
$\checkmark \mathrm{g}_{\mathrm{a} 0 \mathrm{KK}} \sim 2.2, \mathrm{~g}_{\mathrm{a} 0 \mathrm{KK}} / \mathrm{g}_{\mathrm{a} 0 \eta \pi} \sim 0.8 \rightarrow$ in conflict with $q q \bar{q} \bar{q}$ hypothesis
(different from the $f_{0}(980)$)
\checkmark large $\operatorname{BR}\left(\phi \rightarrow \eta \pi^{0} \gamma\right)$ and $g_{\phi a 0 \gamma}$ values (as for the $f_{0}(980)$)
$\mathbf{g}_{\phi \mathrm{M} \gamma}^{2}=\frac{3}{\alpha}\left(\frac{2 \mathbf{m}_{\phi}}{\mathbf{m}_{\phi}^{2}-\mathbf{m}_{\mathrm{M}}^{2}}\right)^{3} \Gamma(\phi \rightarrow \mathbf{M} \gamma)$

increasing s quark content

Conclusions and outlook

Extensive study of $f_{0}(980)$ properties with 2001-2002 KLOE data:
$>$ First clear evidence of the $\phi \rightarrow f_{0} \gamma \rightarrow \pi^{+} \pi^{-} \gamma$ process both in $\pi^{+} \pi^{-}$invariant mass and in the forward-backward asymmetry, not sensitive to $\sigma(600)$
$>$ The data sample allows for an accurate Dalitz plot analysis in the $\pi^{0} \pi^{0}$ final state for the first time: fixed $\sigma(600)$ parameters give better fits
$>$ Combined fit coming soon..., appetizers presented here:
\checkmark Large reduction of theory spread in the neutral channel
\checkmark Good agreement between the 2 channels using the same KL model

Analyses of $\phi \rightarrow \mathbf{a}_{0}(980) \gamma \rightarrow \eta \pi \gamma$ performed with different η decay channels:
$>$ Good agreement btw the 2 analyses (different systematics) \rightarrow combined fit
$>$ Preliminary results show sizeable s quark content for the \mathbf{a}_{0}

Future prospects - KLOE2

- New scheme to increase the DAФNE luminosity by a factor $O(5)$ has been proposed (crabbed waist collisions) \Rightarrow test in Autumn 2007
- If successful, KLOE-2 data taking could start in 2009 (upgraded detector: Inner tracker, Tagger for $\gamma \gamma$ physics, Calorimeter
read-out,)
- Observation of $\phi \rightarrow\left(f_{0} / a_{0}\right) \gamma \rightarrow \mathbf{K}^{0} \overline{\mathbf{K}}^{0} \gamma$
- Search for the $\sigma(500)$ in $e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0} \pi^{0}\left(\gamma \gamma \rightarrow \sigma \rightarrow \pi^{0} \pi^{0}\right)$
- If the high energy option (up to 2.5 GeV in the c.m.) will be exploited
\Rightarrow measurement of $\Gamma\left(f_{0} \rightarrow \gamma \gamma\right)$ and $\Gamma\left(a_{0} \rightarrow \gamma \gamma\right)$ through $\gamma \gamma \rightarrow f_{0}, a_{0}$

News for the $\mathrm{f}_{\mathbf{0}}(\mathbf{9 8 0}) \rightarrow \pi^{0} \pi^{0}$ analysis

2 changes in o couplings with respect to Achasov paper [PRD73(2006)054029]:

- $\mathrm{C}_{\mathrm{f} 0 \mathrm{\sigma}}=-0.047 \mathrm{GeV}^{2} \quad$ (was $+0.047 \mathrm{GeV}^{2}$) [private communication]
- $\mathrm{g}_{\sigma \pi \pi}=2.1 \mathrm{GeV} \quad($ was $-2.1 \mathrm{GeV}) \quad[\mathrm{PRD} 74$ (2006) 059902(E)]

	$\mathrm{M}_{\mathrm{f} 0}(\mathrm{MeV})$	$\mathrm{g}_{\mathrm{f0} \div+\mathrm{K}-}(\mathrm{GeV})$	$\mathrm{g}_{\mathrm{f} 0 \pi+\pi-}(\mathrm{GeV})$	$\mathrm{P}\left(\chi^{2}\right)$
old $\mathrm{C}_{\mathrm{f} 0 \sigma}$	976.8 ± 0.3	3.76 ± 0.04	-1.43 ± 0.01	14.5%
old $\mathrm{g}_{\sigma \pi \pi}$	984.5 ± 0.4	4.53 ± 0.05	-1.90 ± 0.01	0.9%
new $\mathrm{C}_{\mathrm{f} 0 \sigma}$	$984.5) \pm 0.4$	4.01 ± 0.10	-1.79 ± 0.02	5.8%
new $\mathrm{g}_{\sigma \pi \pi}$	982.1 ± 0.4	3.99 ± 0.09	-1.79 ± 0.02	6.3%

more stable f_{0} parameters within different model assumptions

News for the $\mathrm{f}_{0}(\mathbf{9 8 0}) \rightarrow \pi^{0} \pi^{0}$ analysis

$$
\mathbf{M}_{\mathrm{f} 0}=\left(976.8 \pm 0.3_{\mathrm{fit}}+0.9 /-0.6_{\text {syst }}+10.1_{\text {mod }}\right) \mathrm{MeV}
$$

$$
g_{f 0 K+K-}=\left(3.76 \pm 0.04_{\text {fit }}+0.15 /-0.08_{\text {syst }}+1.16 /-0.48_{\text {mod }}\right) \mathrm{GeV}
$$

$$
\mathrm{g}_{\mathrm{f} 0 \pi+\pi-}=\left(-1.43 \pm 0.01_{\mathrm{fit}}+0.01 /-0.06_{\mathrm{syst}}+0.03 /-0.60_{\mathrm{mod}}\right) \mathrm{GeV}
$$

$\checkmark 7$ fit variants with $P\left(x^{2}\right)>1 \%$
\checkmark variants average \rightarrow central value

\checkmark variants RMS \rightarrow model dependence uncertainty model uncertainty reduced in the couplings

$$
\begin{aligned}
& \text { published result } \\
& \longrightarrow \\
& \mathbf{M}_{\mathrm{f} 0}=\left(984.7 \pm 1.9_{\text {mod }}\right) \mathbf{M e V} \\
& \mathrm{g}_{\mathrm{f} 0 \mathrm{~K}+\mathrm{K}-}=\left(3.97 \pm \mathbf{0 . 4 3} \mathbf{m o d}_{\text {mod }}\right) \mathbf{G e V} \\
& \mathrm{g}_{\text {f0к }+\pi-}=\left(-1.82 \pm 0.19_{\bmod }\right) \mathbf{G e V}
\end{aligned}
$$

Branching ratios

Couplings

$$
\mathbf{g}_{f_{0} \mathrm{KK}}>\mathbf{g}_{f_{0} \pi^{+} \pi^{-}}
$$

$\left(\begin{array}{lll}\text { CMD-2 (1999) : } & 1.90 \pm 0.16 \\ \text { SND (2000) } & : & 2.14 \pm 0.19 \\ \text { BES (2005) } & : & 2.05 \pm 0.11 \\ \left(\mathrm{~J} / \psi \rightarrow \phi \pi^{+} \pi^{-}, \phi K^{+} \mathrm{K}^{-}\right)\end{array}\right)$

(SND (2000): 1.33 ± 0.92)

Models

- Kaon loop

$$
\mathbf{M}_{\mathrm{KL}}=\frac{\mathbf{g}_{\mathrm{SK} \overline{\mathrm{~K}}} \mathbf{g}_{\mathrm{SPP}} \mathbf{g}\left(\mathrm{~m}^{2}\right) \mathrm{e}^{\mathrm{i} \mathrm{i}_{\mathrm{m}}(\theta)}}{\mathbf{D}_{\mathrm{S}}\left(\mathrm{~m}^{2}\right)}
$$

(Achasov - Ivanchenko Nucl.Phys.B315(1989)465,
Achasov - Gubin Phys.Rev.D63(2001)094007,
Achasov - Kiselev Phys.Rev.D68(2003)014006)

- "No Structure"
$\mathbf{M}_{\mathrm{NS}}=\frac{e}{4 \mathrm{~F}_{\phi}} \frac{\mathbf{s} \mathbf{M}_{\phi}^{2}}{\mathbf{D}_{\phi}(\mathbf{s})}\left[\frac{\mathbf{g}_{\mathrm{SPP}} \mathbf{g}_{\varphi \mathrm{S}}}{\mathbf{D}_{\mathrm{S}}\left(\mathrm{m}^{2}\right)}+\frac{\mathbf{c}_{0}}{\mathbf{m}_{\varphi}^{2}}+\mathbf{c}_{1} \frac{\mathbf{m}^{2}-\mathbf{m}_{\mathrm{S}}^{2}}{\mathbf{m}_{\varphi}^{4}}\right]$

(G.Isidori et al., JHEP0605(2006)049)

Dalitz fit: KL model

- Kaon Loop with $\sigma(600)$ contribution

$$
\mathbf{M}_{\mathrm{KL}}=\mathbf{g}\left(\mathbf{m}^{2}\right) \mathrm{e}^{\mathrm{i} \hat{\delta}_{\mathrm{m}}} \sum_{\mathrm{S}, \mathrm{~S}^{\prime}=f_{0}, \sigma} \mathbf{g}_{\mathrm{SK} \overline{\mathrm{~K}}} \quad \mathbf{G}_{\mathrm{SS}^{\prime}}^{-1} \mathbf{g}_{\mathrm{S}^{\prime} \pi \pi}
$$

(δ_{m} takes into account for both pp and KK scattering) $\sigma(600)$ and $\mathbf{p p}$ and KK scattering parameters fixed to the values of Achasov-Kiselev PRD73(2006)054029

- Interfering background (VDM parametrization)

- Free parameters: $\mathrm{M}_{f 0}, \mathrm{~g}_{f \mathrm{KK}}, \mathrm{g}_{f \mathrm{pp}}+7$ VDM parameters

Dalitz fit: NS model

- "No structure":

$$
\mathbf{M}_{\mathrm{NS}}=\left(\mathbf{s}-\mathbf{m}^{2}\right)\left[\frac{\mathbf{g}_{f_{0} \pi} \mathbf{g}_{\phi f_{0} \gamma}}{\mathbf{D}_{f_{0}}\left(\mathbf{m}^{2}\right)}+\frac{\mathbf{c}_{0} e^{i \mathrm{~b}_{0} \frac{\mathrm{v}_{\pi}(\mathbf{m})}{\mathrm{m}_{\phi}}}}{\mathbf{m}_{\phi}^{2}}+\mathbf{c}_{1} e^{i \mathrm{~b}_{1} \frac{\mathrm{v}_{\pi}(\mathrm{m})}{\mathrm{m}_{\phi}}} \frac{\mathbf{m}^{2}-\mathbf{m}_{f_{0}}^{2}}{\mathbf{m}_{\phi}^{4}}\right]
$$

- Scalar term: B-W with energy dependent width:

$$
\begin{aligned}
& \Gamma_{f_{0}}(\mathbf{m})=\mathbf{g}_{f_{0} \pi \pi}^{2} \frac{\mathbf{v}_{\pi}(\mathbf{m})}{8 \pi \mathbf{m}^{2}}+\mathbf{g}_{f_{0} \mathrm{~K} \overline{\mathrm{~K}}}^{2} \frac{\mathbf{v}_{\mathrm{K}^{ \pm}}(\mathbf{m})+\mathbf{v}_{\mathrm{K}^{0}}(\mathbf{m})}{8 \pi \mathbf{m}^{2}} \\
& \mathbf{v}_{\mathrm{P}}(\mathbf{m})=\sqrt{\mathbf{m}^{2} / 4-\mathbf{m}_{\mathrm{P}}^{2}}
\end{aligned}
$$

- Background: same VDM parametrization as Kaon loop
- Free parameters: $\mathbf{M}_{f 0}, g_{f K K}, g_{f p p}, g_{\phi f p}, c_{0}, c_{1}, b_{1}+$ VDM parameters $\left(b_{0}\right.$ can be expressed in terms of other parameters)

Structures

$\mathbf{q} \overline{\mathbf{q}}$ case :
$f_{0}=-\frac{1}{\sqrt{2}}(\mathbf{u} \overline{\mathbf{u}}+\mathbf{d} \overline{\mathbf{d}}) \sin \varphi_{\mathrm{S}}+\mathbf{s} \overline{\mathbf{s}} \cos \varphi_{\mathrm{S}}$
$\boldsymbol{\sigma}=\frac{1}{\sqrt{2}}(\mathbf{u} \overline{\mathbf{u}}+\mathbf{d} \overline{\mathbf{d}}) \cos \varphi_{\mathrm{S}}+\mathbf{s} \overline{\mathbf{s}} \sin \varphi_{\mathrm{S}}$
$\frac{\mathbf{g}_{f_{0} \pi \pi}}{\mathbf{g}_{f_{0} \mathrm{KK}}}=\frac{-2 \sin \varphi_{\mathrm{S}}}{\sqrt{2} \cos \varphi_{\mathrm{S}}-\sin \varphi_{\mathrm{S}}}$

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}(\mathbf{u} \overline{\mathbf{u}}-\mathbf{d} \overline{\mathbf{d}}) \mathbf{s} \overline{\mathbf{s}}: \\
& \frac{\mathbf{g}_{a_{0} \eta \pi}}{\mathbf{g}_{a_{0} \mathrm{KK}}}=2 \cos \varphi_{\mathrm{P}}=1.54 \\
& \frac{1}{\sqrt{2}}(\mathbf{u \overline { u }}-\mathrm{d} \overline{\mathbf{d}}): \\
& \frac{\mathbf{g}_{a_{0} \eta \pi}}{\mathbf{g}_{a_{0} \mathrm{KK}}}=\sqrt{2} \sin \varphi_{\mathrm{P}}=0.90
\end{aligned}
$$

$$
\text { assuming } \varphi_{\mathrm{P}}=39.7^{\circ}
$$

