XII International Conference on Hadron Spectroscopy

Laboratori Nazionali di Frascati (Roma)

09-10-2007

Light scalar mesons at KLOE

Federico Nguyen

Università degli Studi and Sezione INFN Roma TRE

for the KLOE Collaboration

Outline

Motivations: open issues

- Is $\sigma(600)$ the lightest scalar meson?
- Do σ , $a_0(980)$ and $f_0(980)$ belong to the same $q\bar{q} {}^3P_0$ nonet?
- If so, why is the mass spectrum inverted?
- If not, is their structure nonconventional?

Alternative hypotheses: qqqqq states (Jaffe, Achasov et al., Maiani et al.) KK molecules (Weinstein-Isgur, Close et al., Kalashnikova et al.)

> ϕ -factory \Rightarrow study of $f_0(980)[+\sigma(600)]$ and $a_0(980)$ from radiative ϕ decays

.

Models for the observed spectra

1) Kaon Loop [KL]

[N.N.Achasov, V.N.Ivanchenko, NPB315 (1989) 465] [N.N.Achasov, V.V.Gubin, PRD 56 (1997) 4084]

2) "No Structure" [NS]

[G.Isidori, L.Maiani, M.Nicolaci, S.Pacetti, JHEP 0605 (2006) 049]

dipole transition ($\propto E_{\gamma}^{3}$) damped by loop function, propagator accounts for opening of KK channel

a₀ (f₀) "couplings" to KK, $\eta \pi (\pi \pi)$ and to $\phi \cong |ss>$ is the $\sigma(600)$ needed to describe the mass spectra? dipole transition ($\propto E_{\gamma}^{3}$) damped by polynomial terms, propagator accounts for opening of KK channel

The $f_0(980) \rightarrow \pi^+\pi^-$ analysis

published: PLB 634 (2006) 148

event selection:

2 tracks with θ >45°; missing momentum matching photon direction, with $\theta_{\gamma}>$ 45°;

 $e \ e$

π

π

+

ρπ

π

ISR

+

π

т

ρ

FSR

e⁺e⁻ γ events rejection on calorimetric basis; $\mu^+\mu^-\gamma$ and $\pi^+\pi^-\pi^0$ suppressed by means of kinematics;

Results for the $f_0(980) \rightarrow \pi^+\pi^-$ analysis

fitting function:

$$\frac{dN}{dm} = L_{\text{int}}\epsilon(m) \left(\frac{d\sigma_{\text{ISR}}}{dm} + \frac{d\sigma_{\text{FSR}}}{dm} + \frac{d\sigma_{\rho\pi}}{dm} + \frac{d\sigma_{\sigma\pi}}{dm} + \frac{d\sigma_{\text{scal}}}{dm} \pm \frac{d\sigma_{\text{scal}}^{\text{INT}}}{dm} \right)$$

✓ peak at
$$M_{\pi\pi}$$
~ 980 MeV due to ϕ → $f_0(980)\gamma$,
with negative interf. with FSR

- ✓ in both models the $f_0(980)$ is strongly coupled
- to kaons and to the $\boldsymbol{\varphi}$
- \checkmark introduction of the $\sigma(600)$ does not improve

the fit

both fits are satisfactory in describing the $f_0(980)$ structure

The $f_0(980) \rightarrow \pi^0 \pi^0$ analysis

Results for the $f_0(980) \rightarrow \pi^0 \pi^0$ analysis

 $\pi\pi/KK$ scattering phases and $\sigma(600)$ fixed (m \in [400,710] MeV, $\Gamma \in$ [240,490] MeV) from fits to published KLOE ϕ decays and to existing $\pi\pi$ scattering data [Achasov & Kiselev, PRD73(2006)054029] \rightarrow 10 model variants

KL:NS: $\chi^2_{\min}/dof = 2754/2676$ $\chi^2_{\min}/dof = 2799/479$ $P(\chi^2 > \chi^2_{\min}) = 14.5\%$ $P(\chi^2 > \chi^2_{\min}) = 4.4\%$

KL (in particular): ✓ the 6 fit variants with P(χ^2)>1% are kept ✓ best fit result → central value ✓ maximum variation among fits → model dependence uncertainty

Summary table and comparison

KL fit results:

 $\pi^{0}\pi^{0}$: $\sigma(600)$ [but with fixed values] needed to describe data, $\pi^{+}\pi^{-}$: not sensitive to $\sigma(600)$

both channels: f₀(980) strongly coupled to KK

NS fit results:

both channels: only f₀(980) sufficient to describe data

 $\pi^0 \pi^0$ wrt $\pi^+\pi^-$: larger $g_{\phi f 0 \gamma}$ but weaker KK coupling confidence intervals are given by exp. systematics, except for KL in the $\pi^0 \pi^0$ channel: model dependence

d	Parameter	π+π-γ	π ⁰ π ⁰ γ
Kaon Loo	M _{f0} (MeV)	980—987	$976.8 \pm 0.3^{+0.9}_{-0.6} \pm 10.1$
	g _{f0KK} (GeV)	5.0-6.3	$3.76 \pm 0.04^{+0.15}_{-0.08} ^{+1.16}_{-0.48}$
	g _{f0ππ} (GeV)	3.0-4.2	$-1.43 \pm 0.01^{+0.01}_{-0.06}$
	$g^2_{f0KK}/g^2_{f0\pi\pi}$	2.2-2.8	$6.9 \pm 0.1_{-0.1}^{+0.3} \begin{array}{c} +0.3 \\ -3.9 \end{array}$
No Structure	Parameter	π+π-γ	π ⁰ π ⁰ γ
	M _{f0} (MeV)	973-981	$984.7 \pm 0.4^{+2.4}_{-3.7}$
	g _{f0KK} (GeV)	1.6-2.3	$0.40 \pm 0.04^{+0.62}_{-0.29}$
	g _{f0ππ} (GeV)	0.9-1.1	$1.31 \pm 0.01^{+0.09}_{-0.03}$
	$g^2_{f0KK}/g^2_{f0\pi\pi}$	2.6-4.4	$0.09 \pm 0.02^{+0.44}_{-0.08}$
	g _{ba0y} (GeV-1)	1.2-2.0	$2.61 \pm 0.02^{+0.31}_{-0.08}$

marginal agreement between the 2 final states

News for the $f_0(980) \rightarrow \pi^0 \pi^0$ analysis

2 changes in σ couplings with respect to Achasov paper [PRD73(2006)054029]:

• $C_{f0\sigma} = -0.047 \text{ GeV}^2$ (was +0.047 GeV²) [private communication] • $g_{\sigma\pi\pi} = 2.1 \text{ GeV}$ (was -2.1 GeV) [PRD 74 (2006) 059902(E)]

 \checkmark variants RMS \rightarrow model

model uncertainty reduced of factor ~ 5 in M_{f0} and of a factor ~ 3 in the couplings

 $g_{f0\pi+\pi-} = (-1.82 \pm 0.19_{mod}) \text{ GeV}$

News for the $f_0(980) \rightarrow \pi^+\pi^-$ analysis

- a) improved KL parametrization implemented also for $\pi^+\pi^-\gamma$ events
- b) acceptable χ^2 with reasonable ISR+FSR parameters

- results in better agreement between the 2 analyses
- $\label{eq:ppi} \phi \to \rho \pi$ interference with Scalar and FSR amplitudes to be considered

Forward backward asymmetry

Forward backward asymmetry - improved

The $a_0(980) \rightarrow \eta \pi^0$ analysis; $\eta \rightarrow \gamma \gamma$ final state

The $a_0(980) \rightarrow \eta \pi^0$ analysis; $\eta \rightarrow \pi^+\pi^-\pi^0$ final state

Results for the $a_0(980) \rightarrow \eta \pi^0$ analyses

 $a_0(980)$ parameters extracted from a simultaneous fit to both $M_{\eta\pi}$ spectra (efficiency + resolution accounted)

free parameters:

Ratio BR_{η}	$\rightarrow \gamma\gamma / BR_{\eta} \rightarrow \pi + \pi - \pi 0$
$BR(\phi \rightarrow \rho)$	π ⁰ → ηπ ⁰ γ)

KL:

 M_{a0} , g_{a0KK} $g_{a0\eta\pi}$ couplings NS:

 M_{a0} , $g_{\phi a0\gamma} g_{a0KK} g_{a0\eta\pi}$ couplings

	Parameter	Kaon Loop	No Structure		
	M _{a0} (MeV)	983 ± 1	983 (fixed)		
π0	g _{a0KK} (GeV)	$\textbf{2.16} \pm \textbf{0.04}$	1.57 ± 0.13		
	g _{a0ηπ} (GeV)	2.8 ± 0.1	2.2 ± 0.1		
	g _{oa0y} (GeV ⁻¹)	-	1.61 ± 0.05		
	BR($\phi \rightarrow \rho \pi \rightarrow \eta \pi \gamma$)×10 ⁶	0.9 ± 0.4	4.1 (fixed)		
zs	BR(η \rightarrow γγ)/BR(η \rightarrow πππ)	1.69 ± 0.04	1.69 ± 0.04		
	χ^2/Ndf	156.6/136	146.8/134		
	Ρ (χ ²)	11%	21%		
preliminary: ArXiv 0707.4609					

Comments on $a_0(980)$ results

 \checkmark good consistency between the two analyses:

experimental systematics is under control

- \checkmark small VMD contribution (when fitted)
- ✓ BR(η → γγ)/BR(η → π⁺π⁻π⁰) consistent with the PDG
- $\checkmark g_{a0KK} \sim 2.2, g_{a0KK}/g_{a0\eta\pi} \sim 0.8 \rightarrow \text{ in conflict with } qq\bar{q}\bar{q} \text{ hypothesis}$

(different from the $f_0(980)$)

✓ large BR($\phi \rightarrow \eta \pi^0 \gamma$) and $g_{\phi a 0 \gamma}$ values (as for the f₀(980))

$$\mathbf{g}_{\phi\mathbf{M}\gamma}^2 = rac{3}{lpha} \left(rac{2\mathbf{m}_{\phi}}{\mathbf{m}_{\phi}^2 - \mathbf{m}_{\mathbf{M}}^2}
ight)^3 \Gamma(\phi
ightarrow \mathbf{M}\gamma)$$

Meson	g _{φMγ} (GeV⁻¹)
π ⁰	0.13
η	0.71
η΄	0.75
a ₀ (980)	1.6
f ₀ (980)	1.2 – 2.7

increasing s quark content

Federico Nguyen 09-10-2007

Conclusions and outlook

Extensive study of $f_0(980)$ **properties with 2001–2002 KLOE data:**

- First clear evidence of the φ → f₀ γ → π⁺ π⁻ γ process both in π⁺ π⁻ invariant mass and in the forward-backward asymmetry, not sensitive to σ(600)
- > The data sample allows for an accurate Dalitz plot analysis in the $\pi^0 \pi^0$ final state for the first time: fixed $\sigma(600)$ parameters give better fits
- Combined fit coming soon..., appetizers presented here:
 - ✓ Large reduction of theory spread in the neutral channel
 - ✓ Good agreement between the 2 channels using the same KL model
- **♦** Analyses of $\phi \rightarrow a_0(980) \gamma \rightarrow \gamma \pi \gamma$ performed with different γ decay channels:
 - ➢ Good agreement btw the 2 analyses (different systematics) → combined fit
 - \succ Preliminary results show sizeable s quark content for the a_0

Future prospects - KLOE2

- New scheme to increase the DAΦNE luminosity by a factor O(5) has been proposed (crabbed waist collisions) ⇒ test in Autumn 2007
- If successful, KLOE-2 data taking could start in 2009 (upgraded detector: Inner tracker, Tagger for γγ physics, Calorimeter read-out,)

- Observation of $\phi \to (f_0/a_0)\gamma \to \mathrm{K}^0 \overline{\mathrm{K}}^0 \gamma$
- Search for the $\sigma(500)$ in $e^+e^- \rightarrow e^+e^-\pi^0\pi^0$ ($\gamma\gamma \rightarrow \sigma \rightarrow \pi^0\pi^0$)
- If the high energy option (up to 2.5 GeV in the c.m.) will be exploited

 \Rightarrow measurement of $\Gamma(f_0 \rightarrow \gamma \gamma)$ and $\Gamma(a_0 \rightarrow \gamma \gamma)$ through $\gamma \gamma \rightarrow f_0, a_0$

News for the $f_0(980) \rightarrow \pi^0 \pi^0$ analysis

2 changes in σ couplings with respect to Achasov paper [PRD73(2006)054029]:

• $C_{f0\sigma} = -0.047 \text{ GeV}^2$ (was +0.047 GeV²) [private communication] • $g_{\sigma\pi\pi} = 2.1 \text{ GeV}$ (was -2.1 GeV) [PRD 74 (2006) 059902(E)]

	M _{f0} (MeV)	g _{f0K+K-} (GeV)	g _{f0 π+π-} (GeV)	P(χ²)
old $C_{f0\sigma}$	976.8 ± 0.3	3.76 ± 0.04	-1.43 ± 0.01	14.5%
old g _{onn}	984.5 ± 0.4	4.53 ± 0.05	-1.90 ± 0.01	0.9%
new $C_{f0\sigma}$	984.5)± 0.4	4.01 ± 0.10	-1.79 ± 0.02	5.8%
new g _{олл}	982.1 ± 0.4	3.99 ± 0.09	-1.79 ± 0.02	6.3%

<u>more stable f_0 parameters within different model assumptions</u>

News for the $f_0(980) \rightarrow \pi^0 \pi^0$ analysis

Branching ratios

Couplings

$$\mathbf{g}_{f_0 \mathbf{K} \mathbf{K}} > \mathbf{g}_{f_0 \pi^+ \pi^-}$$

$$\mathbf{g}_{a_0\mathrm{KK}} < \mathbf{g}_{a_0\eta\pi}$$

(SND (2000): 1.33 ± 0.92)

Models

Kaon loop • • g_{økk} • g_{skk} $\mathbf{M}_{\mathrm{KL}} = \frac{\mathbf{g}_{\mathrm{SK}\overline{\mathrm{K}}} \, \mathbf{g}_{\mathrm{SPP}} \, \mathbf{g}(\mathbf{m}^2) \mathbf{e}^{\mathbf{i}\delta_{\mathbf{m}}(\theta)}}{\mathbf{D}_{\mathrm{S}}(\mathbf{m}^2)}$ (Achasov - Ivanchenko Nucl.Phys.B315(1989)465, Achasov - Gubin Phys.Rev.D63(2001)094007, Achasov - Kiselev Phys.Rev.D68(2003)014006) "No Structure" $\mathbf{M}_{\rm NS} = \frac{e}{4\mathbf{F}_{\phi}} \frac{\mathbf{s}\mathbf{M}_{\phi}^2}{\mathbf{D}_{\phi}(\mathbf{s})} \left[\frac{\mathbf{g}_{\rm SPP} \mathbf{g}_{\phi S\gamma}}{\mathbf{D}_{\rm S}(\mathbf{m}^2)} + \frac{\mathbf{c}_0}{\mathbf{m}_{\phi}^2} + \mathbf{c}_1 \frac{\mathbf{m}^2 - \mathbf{m}_{\rm S}^2}{\mathbf{m}^4} \right]$

(G.Isidori et al., JHEP0605(2006)049)

Dalitz fit: KL model

Kaon Loop with σ(600) contribution

$$\mathbf{M}_{\mathrm{KL}} = \mathbf{g}(\mathbf{m}^2) \mathbf{e}^{\mathbf{i}\delta_{\mathbf{m}}} \sum_{\mathbf{S},\mathbf{S}'=f_0,\sigma} \mathbf{g}_{\mathrm{SK}\overline{\mathrm{K}}} \mathbf{G}_{\mathrm{SS}'}^{-1} \mathbf{g}_{\mathrm{S'}\pi\pi}$$

 $(\delta_m \text{ takes into account for both pp and KK scattering})$ $\sigma(600)$ and pp and KK scattering parameters fixed to the values of Achasov-Kiselev PRD73(2006)054029

Interfering background (VDM parametrization)

Free parameters: M_{f0}, g_{fKK}, g_{fpp} + 7 VDM parameters

Dalitz fit: NS model

• "No structure" :

$$\mathbf{M}_{\rm NS} = (\mathbf{s} - \mathbf{m}^2) \left[\frac{\mathbf{g}_{f_0 \pi \pi} \mathbf{g}_{\phi f_0 \gamma}}{\mathbf{D}_{f_0}(\mathbf{m}^2)} + \frac{\mathbf{c}_0 e^{i\mathbf{b}_0 \frac{\mathbf{v}_{\pi}(\mathbf{m})}{\mathbf{m}_{\phi}}}}{\mathbf{m}_{\phi}^2} + \mathbf{c}_1 e^{i\mathbf{b}_1 \frac{\mathbf{v}_{\pi}(\mathbf{m})}{\mathbf{m}_{\phi}}} \frac{\mathbf{m}^2 - \mathbf{m}_{f_0}^2}{\mathbf{m}_{\phi}^4} \right]$$

• Scalar term: B-W with energy dependent width:

$$\Gamma_{f_0}(\mathbf{m}) = \mathbf{g}_{f_0 \pi \pi}^2 \frac{\mathbf{v}_{\pi}(\mathbf{m})}{8\pi \mathbf{m}^2} + \mathbf{g}_{f_0 \mathbf{K} \overline{\mathbf{K}}}^2 \frac{\mathbf{v}_{\mathbf{K}^{\pm}}(\mathbf{m}) + \mathbf{v}_{\mathbf{K}^{0}}(\mathbf{m})}{8\pi \mathbf{m}^2}$$

$$\mathbf{v}_{\mathrm{P}}(\mathbf{m}) = \sqrt{\frac{\mathbf{m}^2}{4} - \mathbf{m}_{\mathrm{P}}^2}$$

- Background: same VDM parametrization as Kaon loop
- Free parameters: M_{f0}, g_{fKK}, g_{fpp}, g_{φfγ}, c₀, c₁, b₁ + VDM parameters (b₀ can be expressed in terms of other parameters)

Structures

