SUPERB: ADETECTOR FOR A VERY HIGH LUMINOSITY ELECTRON POSITRON COLLIDER @ Y(4S)

EUGENIO PAOLONI (I.N.F.N & UNIVERSITÀ DI PISA) FOR

THE SUPERB COLLABORATION

MACHINE AT A GLANCE

Parameter	LER	HER	
Particle type	e^+	e^-	
Energy (GeV)	4	7	
Luminosity $(cm^{-2}s^{-1})$	1.0×10^{36}		
Circumference (m)	2250		
Number of bunches	1733		
Particles/bunch $\times 10^{10}$	6.16	3.52	
Beam current (A)	2.28	1.30	
$\beta_{y} \; (\mathrm{mm})$	0.30		
β_x (mm)	20		
ϵ_{y} (pm-rad)	4		
ϵ_{x} (nm-rad)	1.6		
$\sigma_y^{\star} \; (\mathrm{nm})$	35		
σ_x^{\star} ($\mu \mathrm{m}$)	5.657		
Bunch length (mm)	6		
RF Power (MW)	17		

DETECTOR DESIGN ~ BABAR

- Driving forces
 - Machine: lower boost (smaller longitudinal separation of secondary vertices)
 - *Vertex detector with higher resolution
 - Physics goals: higher luminosity (hence bkg.rates)
 - *Faster & more robust detectors
 - Common sense: costs
 - Reuse as much as possible & reasonable
- BaBar/Belle will fit the requirements
 - Improve performances where needed & feasible

BACKGROUNDS ISSUES

- ____
- Luminosity scaling backgrounds are the main issue
- Huge QED cross sections at the IP
 - Low currents / high luminosity
 - Beam-gas backgrounds are not a problem
 - Synchrotron radiation light from the Final Focus can be shielded

	Cross section	Evt/bunch xing	Rate
Radiative Bhabha	~340 mbarn (Eγ/Ebeam > 1%)	~680	0.3THz
e ⁺ e ⁻ pair production	~7.3 mbarn	~15	7GHz
Elastic Bhabha	O(10 ⁻⁵) mbarn (Det. acceptance)	~20/Million	10KHz
$\Upsilon(4S)$	O(10 ⁻⁶) mbarn	~2/million	I KHz

ENERGY ASYMMETRY

- SuperB emittances cannot be achieved with the present B-factories energy asymmetries
- Lower energy to boost the B mesons
 - □ Babar: 9 GeV+ 3.1 GeV βy=0.56
 - □ Belle: 8 GeV+ 3.5 GeV βy=0.45
 - SuperB: 7GeV + 4 GeV βγ=0.28
- Time dependent analyses are possible only if the vertexing resolution is able to distinguish the two B decay vertices:
 - □ small radius beam pipe
 - very little material in b.p. and first layer
- A b.p. with r ~1cm is highly desirable

HADRON 07: FRASCATI, 12 OCT

- Baseline: use an SVT similar to the Babar one, complemented by one or two inner layers.
 - Cannot reuse because of radiation damage
- Beam pipe radius is of paramount importance
 - inner radius: 1.0cm,
 - layer0 radius: I.2cm,
 - thickness: 0.5% X₀

HADRON 07: FRASCATI, 12 OCT

beampipe 0.5cm

beampipe 1cm

beampipe 1.5cm

SVT LAYER ZERO

- Severe background from pairs production (e⁺e⁻ → e⁺e⁻ e⁺e⁻)
 - Striplets (baseline)
 - Basically already available technology but more sensitive to background. OK up to ~ MHz/cm²
 - Some margin to improve background sensitivity
 - Monolithic Active Pixel (option)
 - Big safety margin in terms of performance and occupancy
 - Cooling and mechanical issues need to be addressed
 - But R&D is still ongoing.

DRIFT CHAMBER

- Basic technology adequate.
- Cannot reuse BaBar DCH because of aging
- Baseline:
 - Same gas, same cell shape
 - Carbon fiber endplates instead of Al to reduce thickness
- Options/Issues to be studied:
 - Miniaturization and relocation of readout electronics
 - Critical for backward calorimetric coverage
 - Conical endplate
 - Further optimization of cell size/gas

HADRON 07: FRASCATI, 12 OCT

PARTICLE ID I: DIRC

- DIRC is essential for Kaon-Pion discrimination above 0.7 GeV
- Barrel DIRC baseline
 - Quartz bars are OK and can be reused
 - Almost irreplaceable
 - PMTs are aging and need to be replaced
 - Keep mechanical support
- Barrel Options
 - Faster PMTs
 - Focusing readout
 - Different radiator

OPTION: ENDCAPS PID

- Extending PID coverage to the forward and backward considered
- Possibly useful, physics case needs to be established quantitatively
- Serious interference with other systems
 - □ Material in front of the EMC
 - Needs space
 - cause displacement of front face of EMC
 - require miniaturization and displacement of DCH electronics
 - □ TOF seems the only viable option

Focusing configuration – data

Technologies

- Aerogel-based focusing RICH
 - □ Working device
 - □ Requires significant space (>25 cm)
- Time of flight
 - Need about 10ps resolution to be competitive with focusing RICH
 - □ 15-20ps OK. 10ps seems to be achievable, although not easy

HADRON 07: FRASCATI, 12 OCT

CALORIMETER

- Still OK and can be reused (the most expensive detector in BaBar)
- Baseline is to transport barrel as one device
 - Various other transportation options

Forward Endcap EMC

- BaBar crystal are damaged by radiation and need to be replaced
- Occupancy at low angle makes CsI(TI) too slow
 - ☐ Pure CsI, LSO

Backward EMC option

- Because of material in front will have a degraded performance
 - Maybe just a VETO device for rare leptonic B decays as B→τv.
- Physics impact needs to be quantitatively assessed
- □ DIRC bars are necessarily in the middle
- □ DCH electronics relocation is critical for the perfomance

HADRON 07: FRASCATI, 12 OCT EUGENIO PAOLONI

FORWARD E.M. CALORIMETER

- Both pure CsI and LSO could be used in the forward EMC
- LSO more expensive, but more light, more compact, and more radiation hard
 - Now LSO is available industrially
 - Cost difference still significant, but not overwhelming.
- Use LSO as baseline
 - Gives better performance
 - Leaves PID option open
- Csl option still open
 - □ in case of cost/availability issues

SIPAT LSO

Quoted Price: 15 USD/cc

Ф80 x 120

Benchmark	physics gain
-----------	--------------

Crystal	CsI(Tl)	CsI	LSO
$\tau \operatorname{decay}(\operatorname{ns})$	680,	16	47
	3340		
$\chi_0({ m cm})$	1.86	1.86	1.14
R_{moliere} (cm)	3.8	3.8	2.3
λ_{nuclear} (cm)	37	37	
$LY (\gamma/MeV)$	56000,	2500	27000
	64:36%		
λ peak (nm)	550	315	420
Rad Hard (Mrad)	.01	.011	100
$\rho (g/cm3)$	4.51	4.51	7.40
n_0	1.79	1.95	1.82

Bakward calorimeter

- Keep as an option
 - Backward endcap
 - **Barrel** extension
- Could be less performant
 - Lead scintillator?

IFR: STEEL THICKNESS

1.2 mm WLS fiber

scintillator

41 mm

optical epoxy

aluminized Mylar tape

- BaBar configuration has too little iron for μ ID
 - > 6.5 λ_l required; 4-5 available in barrel
- Fine segmentation overdid K₁ efficiency optimization
 - Focus on μ ID : fewer layers and more iron

Baseline:

Fill gaps in Babar IFR with more iron

Leave 7-8 detection layers

Need to verify structural issues

Scintillator bars à la MINOS because rates in the 100Hz/ cm² range

Cost effectiveness of steel reuse needs to be fully assessed

EXTRUDED SCINTILLATORS

MINOS USES A LARGE VOLUME OF <u>CHEAP</u> CO-EXTRUDED SCINTILLATOR BARS (8m x 4cmx1cm) WITH SINGLE 1.2mmØ Y11-175 multiclad WLS FIBER EPOXIED IN EXTRUDED GROOVE

MINOS PRODUCTION BARS SHOWING 4 x 1 cm² CROSS SECTION WITH CO-EXTRUDED TiO₂ AND GROOVE FOR WLS FIBER

ATTENUATION LENGTH MEASUREMENTS FOR 5 CASES

- R&D going on
 - Studies on Wavelength Shifter (WLS) optical fiber
 - Matching of WLS fiber witht the scintillator bars
- First measurements from a cosmic test stand
 - Light yield, efficiciency, spatial/temporal resolution

HADRON 07: FRASCATI, 12 OCT EUGENIO PAOLONI

+

DATA ACQUISITION

- L1 Trigger rate of 100-150KHz
 - Unless a hardware Bhabha rejector is developed
 - □ Up from 5KHz current Babar rate
- Event size
 - More readout channels
 - "Interesting Physics" rate
 - □ @ SuperB 5 KHz (S/N = 20-30)
 - □ @ BaBar 50Hz (S/N = 100)
 - □ Bigger mean event size
- Some electronics could be reusable
 - Especially front-end cards, maybe power supplies
- The bulk of the electronics is obsolete and unmaintainable
 - Should be remade with state-of-the-art technology
- Clearly a major cost driver
 - Costed using recent experiments experience (LHC)

Parameter	Year 1	Year 2	Year 3	Year 4	Year 5
Luminosity (ab ⁻¹)	2	6	12	12	12
Storage (PB)					
Tape	3.1	10.2	22.0	26.2	27.8
Disk	0.83	3.35	7.55	10.2	10.2
CPU (MSpecInt2000)					
Data reconstruction	3.0	8.8	14.7	8.8	0.0
Skimming	2.7	9.4	16.1	12.1	0.0
Monte Carlo	9.5	28.0	46.6	28.0	0.0
Physics analysis	5.1	15.0	30.0	30.0	30.0
Total	20	61	107	79	30

CONCLUSIONS

Lot more informations written into our Conceptual Design Report

(physics + machine + detector)

INFN/AE-07/02, SLAC-R-856, LAL 07-15

Available at:

www.pi.infn.it/SuperB

arxiv.org/abs/0709.0451

476 pages

Printed and available

Copies can be requested from Lucia.Lilli@pi.infn.it

Join you too the SuperB team!

BACKUP

		EDIA	Labor	M\&S	Rep.Val.
WBS	Item	mm	mm	kEuro	kEuro
1	SuperB detector	3391	1873	40747	46471
1.0	Interaction region	10	4	210	0
1.1	Tracker (SVT + L0 MAPS)	248	348	5615	0
1.1.1	SVT	142	317	4380	0
1.1.2	L0 Striplet option	23	33	324	0
1.1.3	L0 MAPS option	106	32	1235	0
1.2	DCH	113	104	2862	0
1.3	PID (DIRC Pixilated PMTs + TOF)	110	222	7953	6728
1.3.1	DIRC barrel - Pixilated PMTs	78	152	4527	6728
1.3.1	DIRC barrel - Focusing DIRC	92	179	6959	6728
1.3.2	Forward TOF	32	70	3426	0
1.4	EMC	136	222	10095	30120
1.4.1	Barrel EMC	20	5	171	30120
1.4.2	Forward EMC	73	152	6828	0
1.4.3	Backward EMC	42	65	3096	0
1.5	IFR (scintillator)	56	54	1268	0
1.6	Magnet	87	47	1545	9623
1.7	Electronics	286	213	5565	0
1.8	Online computing	1272	34	1624	0
1.9	Installation and integration	353	624	3830	0
1.A	Project Management	720	0	180	0

Figure 5-1. Overall schedule for the construction of the SuperB project.

Hadron 07: Frascati, 12 Oct Eugenio Paoloni