Heavy Flavor decays and light hadrons in the FOCUS experiment.

Hadron 2007 Frascati – October 8 - 12

Sandra Malvezzi
INFN Milano Bicocca
for the FOCUS collaboration

Outline

- Introduction
 - Heavy Flavor decay and light hadron interplay
- Analysis
 - hadron dynamics study
 - three body Dalitz plot analysis: formalism revision

```
^{*} D<sup>+</sup> → K<sup>-</sup> π<sup>+</sup> π<sup>+</sup> 53000 evts
```

$$\rightarrow$$
 D⁺,D_s $\rightarrow \pi^+\pi^-\pi^+$ 1500 evts

possible model independent approach

$$\rightarrow$$
 D⁺ \rightarrow K⁺K⁻ π ⁺ 4200 evts

- pentaquark search
- Conclusions

Introduction the *exegesis* of the title

- We know there is physics beyond the SM but we do not know (yet) what this is.
- The "search strategy" includes *also* precision measurements of the CKM matrix elements
 - Resurrection of the Dalitz plot analysis in the Heavy Flavor modern experiments
 - to study HF hadronic decays
 - to perform sophisticated studies such as CPV

$$B \rightarrow \rho \pi$$
 α angle $B \rightarrow D(*)K(*)$ γ angle

The interplay...i.e, the issue

- to go from $B \rightarrow \pi\pi\pi$ to $B \rightarrow \rho\pi$
 - means selecting and filtering the desired states among the possible contributions, e.g. $\sigma\pi$, $f_0(980)\pi$, $\pi\pi\pi$ etc..
- a model for D⁰ decay is needed
- light hadrons

- $-(K\pi)\pi$, $K(\pi\pi)$
 - 16 states, two 'ad hoc': σ_1 , σ_2

Phys. Rev.Lett.95 (2005) 121802.

Phys. Rev. D73 (2006) 112009

...and the *naïve* experimentalist's question

- In the era of precision measurements
 - How to deal with the underlying hadron dynamics that colors and shapes the final states?
 - The $\pi\pi$, $K\pi$ S—wave are characterized by broad, overlapping states: unitarity is not explicitly guaranteed by a simple sum of Breit -Wigner (BW) functions
 - σ,κ are not simple BW's
 - $f_0(980)$ is a Flatté-like function, coupling to KK and $\pi\pi$

.. a possible answer

a *bridge* of knowledge and terminology

• Many problems are already well known in nuclear and intermediate-energy physics

K-matrix

- a cultural bridge towards the high energy community
- a common jargon
- Efforts made by FOCUS
 - apply K-matrix to the Heavy Flavor sectorbeneficial for future B-studies

What is K-matrix? E.P.Wigner, Phys. Rev. 70 (1946) 15

S.U. Chung et al. Ann. Physik 4 (1995) 404

• It follows from S-matrix and, because of S-matrix unitarity, it is real

$$S = I + 2i\rho^{1/2}T\rho^{1/2}$$

$$K^{-1} = T^{-1} + i\rho$$
 $T = (I - iK \cdot \rho)^{-1}K$

- Viceversa, any real K-matrix would generate an unitary S-matrix
- This is the real advantage of the K-matrix approach:
 - It (heavily) simplifies the formalization of any scattering problem since the unitarity of S is automatically respected.

- For a single-pole problem, far away from any threshold, a K-matrix amplitude reduces to the standard BW formula
 - The two descriptions are equivalent
- In all the other cases, the BW representation is no longer valid
 - The most severe problem is that it does not respect unitarity

 m_A =1270 MeV, Γ_A = 180 MeV m_B =1560 MeV, Γ_B = 160 MeV

Adding BWs *a la* "traditional Isobar Model"

- Breaks Unitarity
- Heavily modify the phase motion!

From Scattering to Production

- Thanks to I.J.R. Aitchison (Nucl. Phys. A189 (1972) 514), the K-matrix approach can be extended to production processes
- In technical language,

- From
$$T = (I - iK \cdot \rho)^{-1} K$$

$$F = (I - iK \cdot \rho)^{-1} P$$

- The P-vector describes the coupling at the production with each channel involved in the process
 - In our case the production is the D decay

First FOCUS study: $D^+, D_s^+ \rightarrow \pi^+\pi^-\pi^+$

$$F = (I - iK \cdot \rho)^{-1} P$$

Describes coupling of resonances to D

Comes from scattering data

Beside restoring the proper dynamical features of the resonances, K-matrix allows for the inclusion of all the knowledge coming from scattering experiments: **enormous amount of results and science!**

ππ S-wave scattering parametrization

"K-matrix analysis of the 00⁺⁺-wave in the mass region below 1900 MeV" V.V Anisovich and A.V.Sarantsev Eur.Phys.J.A16 (2003) 229

• A global fit to a rich set of the available data has been performed

```
\pi p \rightarrow \pi^0 \pi^0 n, \eta \eta n, \eta \eta' n, |t| < 0.2 (GeV/c^2)
         GAMS
                                                 \pi p \rightarrow \pi^0 \pi^0 n, 0.30<|t|<1.0 (GeV/c<sup>2</sup>)
         GAMS
                                                 \pi p^- \rightarrow KKn
         BNL
         CERN-Munich
                                                 \pi^+\pi^- \rightarrow \pi^+\pi^-
                                                                                                                   At rest, from liquid
                                                 pp \to \pi^0 \pi^0 \pi^0, \pi^0 \pi^0 \eta, \pi^0 \eta \eta
         Crystal Barrel
                                                                                                                 At rest, from gaseous H_2
                                                 pp \to \pi^0 \pi^0 \pi^0, \pi^0 \pi^0 \eta
         Crystal Barrel
*
         Crystal Barrel
                                                                                                                                                     H_2
                                                 pp \to \pi^+\pi^-\pi^0, K^+K^-\pi^0, K_sK_s\pi^0, K^+K_s\pi^-
*
                                                                                                                   At rest, from liquid
         Crystal Barrel
                                                np \rightarrow \pi^0 \pi^0 \pi^-, \pi^- \pi^- \pi^+, K_s K^- \pi^0, K_s K_s \pi^-
                                                                                                                                                      D_{\gamma}
                                                                                                                   At rest, from liquid
         E852
                                                \pi^{-}p \rightarrow \pi^{0}\pi^{0}n, 0<|t|<1.5 (GeV/c<sup>2</sup>)
```

• It provided the K-matrix input to our three-pion D analysis

$D^+ \rightarrow \pi^+ \pi^- \pi^+ K$ -matrix fit results

PLB 585 (2004) 200

decay channel	fit fractions (%)	phase (deg)
$(S - wave)\pi^+$	$56.00 \pm 3.24 \pm 2.08$	0(fixed)
$f_2(1275)\pi^+$	$11.74 \pm 1.90 \pm 0.23$	-47.5 ± 18 .7 ± 11.7
$ ho^0(770)\pi^+$	$30.82 \pm 3.14 \pm 2.29$	$-139.4 \pm 16.5 \pm 9.9$

Reasonable fit with <u>no retuning</u> of the A&S K-matrix.

No new ingredient (resonance) required not present in the scattering!

$D_s^+ \rightarrow \pi^+ \pi^- \pi^+ K$ -matrix fit results

decay channel	fit fractions (%)	phase (deg)
(S - wave)π ⁺	$87.04 \pm 5.60 \pm 4.17$	0(fixed)
$f_2(1275)\pi^+$	$9.74 \pm 4.49 \pm 2.63$	$168.0 \pm 18.7 \pm 2.5$
$\rho^0(1450)\pi^+$	$6.56 \pm 3.43 \pm 3.31$	$234.9 \pm 19.5 \pm 13.3$

Yield D⁺ =
$$1527 \pm 51$$
 evts
Yield D_s = 1475 ± 50 evts

The high statistics test

- Three-pion analysis suggested:
 - two-body dominance
 - consistency with scattering data

- It was important (mandatory) to test the formalism (a) high statistics
 - $-\mathbf{D}^{+} \rightarrow \mathbf{K}^{-} \pi^{+} \pi^{+}$ channel

The D⁺ \rightarrow K⁻ π ⁺ π ⁺ decay 53653 evts...another story!

The $K\pi$ S-wave scattering parametrization

(Mike Pennington)

- two isospin states (I=1/2 and I=3/2) \iff two K-matrices fit S-wave K- π^+ \to K- π^+ LASS data above 825 MeV Nucl. Phys,.B 296 (1988) 493 and K- $\pi^ \to$ K- π^- scattering from Estabrooks *et al* Nucl. Phys,.B 133 (1978) 490
- extrapolate down to $K\pi$ threshold according to dispersive analysis consistent with ChPT (Buttiker et al, Eur.Phys.J C33 (2004) 409).

I=1/2 K-matrix

1 pole -2 channels $(K\pi - K\eta')$

$$K_{11} = \left(\frac{s - s_{01/2}}{s_{norm}}\right) \left(\frac{g_1 \cdot g_1}{s_1 - s} + C_{110} + C_{111}\widetilde{s} + C_{112}\widetilde{s}^2\right)$$

$$K_{22} = \left(\frac{s - s_{01/2}}{s_{norm}}\right) \left(\frac{g_2 \cdot g_2}{s_1 - s} + C_{220} + C_{221}\widetilde{s} + C_{222}\widetilde{s}^2\right)$$

$$K_{12} = \left(\frac{s - s_{01/2}}{s_{norm}}\right) \left(\frac{g_1 \cdot g_2}{s_1 - s} + C_{120} + C_{121}\widetilde{s} + C_{122}\widetilde{s}^2\right) \qquad \begin{aligned} s &= m^2(K\pi) \\ s_{norm} &= m^2_K + m^2_\pi \\ \widetilde{s} &= s/s_{norm} - 1 \end{aligned}$$

 $K_{11} = \left(\frac{s - s_{01/2}}{s_{norm}}\right) \left(\frac{g_1 \cdot g_1}{s_1 - s} + C_{110} + C_{111}\widetilde{s} + C_{112}\widetilde{s}^2\right)$ $K_{22} = \left(\frac{s - s_{01/2}}{s_{norm}}\right) \left(\frac{g_2 \cdot g_2}{s_1 - s} + C_{220} + C_{221}\widetilde{s} + C_{222}\widetilde{s}^2\right)$ $g_1, g_2: \text{ real couplings of the } s_1 \text{ pole to the first and second channel}$ $s_{01/2} = 0.23 \text{ GeV}^2 \text{ is the Adler zero position in the } I = 1/2 \text{ ChPT elastic scattering amplitude}$

$$s = m^{2}(K\pi)$$

$$s_{\text{norm}} = m^{2}_{K} + m^{2}_{\pi}$$

$$\widetilde{s} = s/s_{\text{norm}} - 1$$

Values of parameters for the $L = 1.72 K_{-image/c}$

Pole (GeV ²)	Coupling (GeV)	C_{1H}	C ₁₂	C_{221}
$s_1 = 1.7919$	1000 (0.000)			
	$g_1 = 0.31072$			
	$g_2 = -0.02323$			
		$C_{110} = 0.79299$	$C_{120} = 0.15040$	$C_{220} = 0.17054$
		$C_{111} = -0.15099$	$C_{121} = -0.038266$	$C_{221} = -0.0219$
		$C_{112} = 0.00811$	$C_{122} = 0.0022596$	$C_{222} = 0.00085655$

S-matrix pole : $E = M-i\Gamma/2 = 1.408 -i0.110$ GeV

I=3/2 K-matrix

1 channel scalar function

$$K_{3/2} = \left(\frac{S - S_{03/2}}{S_{norm}}\right) \left(D_{110} + D_{111}\widetilde{S} + D_{112}\widetilde{S}^{2}\right)$$

 $s_{03/2} = 0.27 \text{ GeV}^2$ is the Adler zero position in the I=3/2 ChPT elastic scattering amplitude

$$D_{110} = -0.22147$$
$$D_{111} = 0.026637$$

$$D_{112} = -0.00092057$$

$$s = m^{2}(K\pi)$$

$$s_{\text{norm}} = m^{2}_{K} + m^{2}_{\pi}$$

$$\widetilde{s} = s/s_{\text{norm}} - 1$$

P and F-vectors

P-vectors

- initial coupling $D^+ \rightarrow (K^-\pi^+) \pi^+_{\text{spectator}}$ need not be real

$$(P_{1/2})_{1=K\pi} = \frac{\beta g_1 e^{i\theta}}{s_1 - s} + (c_{10} + c_{11}\hat{s} + c_{12}\hat{s}^2)e^{i\gamma_1}$$

$$\hat{s} = s - s_c$$

$$s_c = 2 \text{ GeV}^2$$

$$(P_{1/2})_{2=K\eta'} = \frac{\beta g_2 e^{i\theta}}{s_1 - s} + (c_{20} + c_{21}\hat{s} + c_{22}\hat{s}^2)e^{i\gamma_2}$$

$$P_{3/2} = (c_{30} + c_{31}\hat{s} + c_{32}\hat{s}^2)e^{i\gamma_3}$$

...and F-vectors

$$F_{3/2} = (I - iK_{3/2}\rho)^{-1} P_{3/2}$$
$$(F_{1/2})_{1=K\pi} = (I - iK_{1/2}\rho)_{1j}^{-1} (P_{1/2})_{j}$$

 β , θ , c_{ij} , γ_i are the free parameters, all the others are fixed to scattering

... finally ready to fit $D^+ \rightarrow K^- \pi^+ \pi^+$

 $83 \pm 1.5 \%$

coefficient	phase (deg)	
$\beta = 3.389 \pm 0.152 \pm 0.002 \pm 0.068$	$\theta = 286 \pm 4 \pm 0.3 \pm 3.0$	
$c_{10} = 1.655 \pm 0.156 \pm 0.010 \pm 0.101$	$\gamma_1 = 304 \pm 6 \pm 0.4 \pm 5.8$	
$c_{11} = 0.780 \pm 0.096 \pm 0.003 \pm 0.090$		
$c_{12} = -0.954 \pm 0.058 \pm 0.0015 \pm 0.025$	_	
$c_{20} = 17.182 \pm 1.036 \pm 0.023 \pm 0.362$	$\gamma_2 = 126 \pm 3 \pm 0.1 \pm 1.2$	
$c_{30} = 0.734 \pm 0.080 \pm 0.005 \pm 0.030$	$\gamma_3 = 211 \pm 10 \pm 0.7 \pm 7.8$	
Total S-wave fit fraction = $83.23 \pm 1.50 \pm 0.04 \pm 0.07$ %	C maria franti	
sospin $1/2$ fraction = $207.25 \pm 25.45 \pm 1.81 \pm 12.23$ %	S-wave fraction	

Isospin 3/2 fraction = $40.50 \pm 9.63 \pm 0.55 \pm 3.15$ %

BW-like for J>0 states

component	fit fraction (%)	phase δ_j (deg)	coefficient
$K^*(892)\pi^+$	13.61 ± 0.98	0 (fixed)	1 (fixed)
	$\pm~0.01\pm0.30$		
$K^*(1680)\pi^+$	1.90 ± 0.63	1 ± 7	0.373 ± 0.067
	$\pm~0.009\pm0.43$	$\pm~0.1\pm6$	$\pm 0.009 \pm 0.047$
$K_2^*(1430)\pi^+$	0.39 ± 0.09	296 ± 7	0.169 ± 0.017
1	$\pm~0.004\pm0.05$	$\pm~0.3\pm1$	\pm 0.010 \pm 0.012
$K^*(1410)\pi^+$	0.48 ± 0.21	293 ± 17	0.188 ± 0.041
	$\pm~0.012\pm0.17$	$\pm 0.4 \pm 7$	$\pm 0.002 \pm 0.030$

Comparison with the isobar fit

- •serves as the standard for fit quality
- •requires two "ad hoc" scalars states with free masses and widths (BW) with no reference to how these states appear in other $K\pi$ interactions (an effective data description)

$$m=856\pm17$$
 $k \Gamma=464\pm28$
 $K_0^*(1430)$
 $m=1461\pm4$
 $\Gamma=177\pm8$

- - •Isobar and K-matrix fits show
 - •same "hot spots" in the adaptive binning scheme
 - •good agreement in vectortensor fit parameters (

What else can we infer from F-vectors?

Phase comparison

Results (I)

- The first determination in D decays of the I=1/2 and I=3/2 for the S-wave $K\pi$ system has been performed
- The hypothesis of the two -body dominance is consistent with the high statistics $D^+ \to K^-\pi^+\pi^+$
- Our results show close consistency with $K\pi$ scattering data, and consequently, with Watson's theorem predictions for two-body $K\pi$ interactions in the low $K\pi$ mass region where elastic processes dominate.

Results (II)

• Our K-matrix representation fits along the real energy axis inputs on scattering data and ChPT in close agreement with those used by Descotes-Genon and Moussallam

(Eur. Phys. J C48 (2006) 553) that locate k with

mass
$$(653 \pm 15) \text{ MeV/c}^2$$

and

width
$$(557 \pm 24)$$
 MeV/c²

different from isobar

- Whatever *k* is revealed by our data, it is the same as that found in scattering data.
 - We had reached an analougous conclusion for σ in the three pion analysis.

Results (III)

- Our K-matrix description gives a fit quality globally good.
- However it deteriorates at higher $K\pi$ mass
 - Two channels: $K\pi$ and $K\eta$ ':
 - Reliable info on the former, poor constraints on the latter

• Improvements: using a number of D-decay chains with $K\pi$ final state interactions and inputting all these in one combined analysis in which several inelastic channels are included in the K-matrix formalism.

A non-parametric approach to measuring the $K^-\pi^+$ amplitudes in $D^+ \rightarrow K^-K^+\pi^+$ decay

Phys.Lett.B 648 (2007) 156

• $\mathbf{D}^+ \rightarrow \mathbf{K}^- \mathbf{K}^+ \pi^+$ described by E687 :Phys.Lett.B 351 (1995) 591.

$$\phi \pi^+, K^+ \overline{K}^{*0}$$
 (892), $K^+ \overline{K}_0^{*0}$ (1430)

φπ⁺ is an important contribution
BUT φ is very narrow and can be removed via a mass-cut (φ-veto)

 (6400 evts and 4200 m_{KK}>1050 MeV/c²)

In the absence of K-K⁺ resonances (careful systematic check) we can write the decay amplitude in terms of $m_{K-\pi^+}$ and the decay angle θ

one-dimensional analysis

$$A = \sum_{l}^{s,p,d...} A_{l}(m_{K^{-}\pi^{+}}) d_{00}^{l}(\cos\theta)$$
Wigner *d*-matrices

For S and P-wave only

$$I(m, \cos \theta) = |A|^2 = |S(m) + P(m) \cos \theta|^2 =$$

$$|S(m)|^2 + 2\operatorname{Re}\{S^*(m)P(m)\}\cos \theta + |P(m)|^2 \cos^2 \theta =$$

$$SS(m) + 2SP(m)\cos \theta + PP(m)\cos^2 \theta$$

Apply the projector method

nearly identical to that used to determine the q² dependence of the helicity form factor in D⁺ \rightarrow K⁻ π ⁺l⁺ ν (PLB 633 (2006) 183.)

Projection weighting technique

- Approach is to divide $\cos\theta$ into 20 evenly spaced angular bins
- ${}^{i}\vec{D} = ({}^{i}n_{1}{}^{i}n_{2}...{}^{i}n_{20})$ is then a vector whose 20 components give the population in data for each of the 20 $\cos\theta$ bins: i specifies the ith $m_{K-\pi+}$ bin.
- Goal is to represent the ${}^{i}\vec{D}$ vector as a sum over the expected populations for each of the three partial waves, the ${}^{i}\vec{m}$ vectors.

$$\{ \vec{m}_{\alpha} \} = (\vec{m}_{SS}, \vec{m}_{SP}, \vec{m}_{PP})$$

- Each ${}^{i}\vec{m}_{\alpha}$ is generated using a phase space and full simulation of the $D^{+} \rightarrow K^{-}K^{+}\pi^{+}$ decay with one amplitude turned on and all the others shut off.
- We use a weighting technique to fit the bin populations in the data to the form

$$\vec{D} = F_{SS}(m_i)^i \vec{m}_{SS} + F_{SP}(m_i)^i \vec{m}_{SP} + F_{PP}(m_i)^i \vec{m}_{PP}$$

Results (IV)

Comparison plot is based on E687 model BUT with a much wider $K*_0(1430)$, i.e. an *effective* $\Gamma=500$ MeV/c² Breit Wigner,i.e, $K\pi$ S-wave model not trivial

Results (V)

No need to assume BW, Form Factors etc..

– some discrepancies between our non-parametric description of the S-wave $K^-\pi^+$ amplitude and the standard BW $K_0^*(1430)$.

"Glitch" in the first three bins

 if they are deemed to be significant, one explanation would be the presence of a small D-wave component

• $D^+ \rightarrow K^-K^+\pi^+$ is an ideal case for an analysis of this kind

- extend to $\mathbf{D}_{s}^{+} \rightarrow \mathbf{K}^{+}\mathbf{K}^{+}\pi^{+}$
- $\mathbf{D^0}$ → $\mathbf{K^+K^-\overline{K^0}}$ (emphasis on studying $m_{K^-K^+}$ spectrum after cuts to minimize $K^{\pm}\overline{K^0}$ contributions such as $a^{\pm}_{0}(980)$
- dipion amplitudes in **four body*** decays such as $\mathbf{D}^0 \to \mathbf{K}^+\mathbf{K}^+\pi^-\pi^+ \to \phi\pi^-\pi^+$ (dipion spectra against longitudinally and transversely polarized ϕ).

*FOCUS: First amplitude analysis of $D^0 \rightarrow 4\pi$

Phys.Rev.D7 (2007) 052003 poor fit quality and model problems

Pentaguark search in FOCUS

2005 Phys.Lett.B 622 (2005) 229

$$\Theta_c^0(\overline{c}uudd) \to D^{*-}p$$

$$\Theta_c^0 \to D^-p$$

ays.Lett. $\Theta_c^0(\bar{c}uudd) \to D^{*-}p$ $no\ evidence\ of\ charmed\ pentaquark$

2006 Phys.Lett.B 639 (2006) 604

$$\Theta^+(\bar{s}uudd) \to pK_s^0$$

no evidence of $\Theta \leftarrow pK_s \theta$

2007 arXiv: 0708.1010 [hep-ex] $\phi(1860)$ (ssdd \overline{u})

$$\Xi_5^{--} \rightarrow \Xi^- \pi^-$$

 n_0 evidence of $\Xi_5 \longrightarrow \Xi_7 +$

• No evidence for pentaquarks decaying to pK_s^0 in the mass range of 1470 MeV/c² to 2200 MeV/c²

- In contrast 9 million $K^*(892)^+ \rightarrow K_s^0 \pi^+$
- − 0.4 million $\Sigma^*(1385)^{\pm} \rightarrow \Lambda^0 \pi^{\pm}$

and energy release

Parent particle with momenta above 25 GeV/c (good acceptance) Natural width of 0 (15) MeV/c²

$$\frac{\sigma(\Theta^{+}) \cdot BR(\Theta^{+} \to pK_{s}^{0})}{\sigma(K^{*}(892)^{+})} < 0.00012 \ (0.00029) \text{ at } 95\% \text{ C.L.}$$

$$\frac{\sigma(\Theta^{+}) \cdot BR(\Theta^{+} \to pK_{s}^{0})}{\sigma(\Sigma^{*}(1385)^{\pm})} < 0.0042 \ (0.0099) \text{ at } 95\% \text{ C.L}$$

• No evidence for $\Xi_5^- \to \Xi^- \pi^-$ in the mass range of 1480 MeV/c² to 2400 MeV/c²

- In contrast 65000
$$\Xi$$
*(1530) 0 \rightarrow $\Xi \pi^+$

and energy release

Parent particle with momenta above 25 GeV/c (good acceptance) Natural width of 0 (15) MeV/ c^2)

$$\frac{\sigma(\Xi_5^-) \cdot BR(\Xi_5^- \to \Xi^- \pi^-)}{\sigma(\Xi^* (1530)^0)} < 0.007 \ (0.019) \text{ at } 95 \% \text{ C.L}$$

NA49: 15 $\Xi^*(1530)^0 \rightarrow \Xi \pi^+$ and 38 $\Xi_5^- \rightarrow \Xi^- \pi^-$ FOCUS results are ~4000 times larger

Conclusions

- Heavy Flavor decays are teaching us much about hadronic decay dynamics and QCD.
- Some formalism complications have already emerged expecially in the charm field others (unexpected) will only become clearer when we delve deeper into the beauty sector
 - B_s will be a new chapter (Ciuchini et al PLB645 (2007) 201: $B_s \to K\pi\pi$)
- There will be work for both theorists and experimentalists
 - Synergy invaluable!

The are no shortcuts toward ambitious and high-precision studies and NP search

Back-up slides

Isobar fit parameters

Table 2
Fit fractions, phases, and coefficients from the isobar fit to the FOCUS $D^+ \to K^-\pi^+\pi^+$ data. The first error is statistic, the second error is systematic from the experiment, and the third error is systematic induced by model input parameters for higher resonances

300-00			
Chunnel	Fit traction (%)	Phase \mathbb{S}_{ℓ} (deg)	Coefficient
non-resonant	29.7±4.5	325 ± 4	1.47 ± 0.11
	$\pm 1.5 \pm 2.1$ (see text)	±2±1.2	$\pm 0.06 \pm 0.06$
$K^{\pi}(892)\pi^{+}$	13.7±0.9	O (fixed)	1 (fixed)
	$\pm 0.6 \pm 0.3$		
$K^*(1410)\pi^+$	0.2 ± 0.1	350±34	0.12 ± 0.03
	$\pm 0.1 \pm 0.04$	±17±15	±0.003 ±0.01
$K^*(1680)\pi^+$	1.8 ± 0.4	3 ± 7	0.36 ± 0.04
	$\pm 0.2 \pm 0.3$	±4±8	$\pm 0.02 \pm 0.03$
$K_2^{\pi}(1430)\pi^{+}$	0.4 ± 0.05	319±8	0.17 ± 0.01
	$\pm 0.04 \pm 0.03$	±2 ± 2	$\pm 0.01 \pm 0.01$
$K_n^*(1430)\pi^+$	17.5 ± 1.5	36±5	1.13 ± 0.05
	$\pm 0.8 \pm 0.4$	±2±1.2	$\pm 0.01 \pm 0.02$
к л +	22.4 ± 3.7	199±6	1.28 ± 0.10
	$\pm 1.2 \pm 1.5$ (see text)	±1±5	$\pm 0.015 \pm 0.04$
	Mass (MeV/c^2)	Width (MeV/ e^2)	
$K_0^*(1430)$	$1461 \pm 4 \pm 2 \pm 0.5$	177 ± 8 ± 3 ± 1.5	
К	$856 \pm 17 \pm 5 \pm 12$	$464 \pm 28 \pm 6 \pm 21$	
-			

I=1/2 functions

• Multiplying the ${}^{i}\vec{D}$ data vector by each \vec{m}_{α} produces a component equation

$$\begin{pmatrix} \vec{i} \ \vec{m}_{SS} \cdot \vec{i} \ \vec{D} \\ \vec{i} \ \vec{m}_{SP} \cdot \vec{i} \ \vec{D} \\ \vec{i} \ \vec{m}_{PP} \cdot \vec{i} \ \vec{D} \end{pmatrix} = \begin{pmatrix} \vec{m}_{SS} \cdot \vec{m}_{SS} & \vec{m}_{SS} \cdot \vec{m}_{SP} & \vec{m}_{SS} \cdot \vec{m}_{PP} \\ \vec{m}_{SP} \cdot \vec{m}_{SS} & \vec{m}_{SP} \cdot \vec{m}_{SP} & \vec{m}_{SP} \cdot \vec{m}_{PP} \\ \vec{m}_{PP} \cdot \vec{m}_{SS} & \vec{m}_{PP} \cdot \vec{m}_{SP} & \vec{m}_{PP} \cdot \vec{m}_{PP} \end{pmatrix} \begin{pmatrix} F_{SS}(m_i) \\ F_{SP}(m_i) \\ F_{PP}(m_i) \end{pmatrix}$$

•The formal solution is

$$\begin{pmatrix} F_{SS}(m_i) \\ F_{SP}(m_i) \\ F_{PP}(m_i) \end{pmatrix} = \begin{pmatrix} \vec{m}_{SS} \cdot \vec{m}_{SS} & \vec{m}_{SS} \cdot \vec{m}_{SP} & \vec{m}_{SS} \cdot \vec{m}_{PP} \\ \vec{m}_{SP} \cdot \vec{m}_{SS} & \vec{m}_{SP} \cdot \vec{m}_{SP} & \vec{m}_{SP} \cdot \vec{m}_{PP} \\ \vec{m}_{PP} \cdot \vec{m}_{SS} & \vec{m}_{PP} \cdot \vec{m}_{SP} & \vec{m}_{PP} \cdot \vec{m}_{PP} \end{pmatrix}^{-1} \begin{pmatrix} i \vec{m}_{SS} \cdot i \vec{D} \\ i \vec{m}_{SP} \cdot i \vec{D} \\ i \vec{m}_{PP} \cdot i \vec{D} \end{pmatrix}$$

•This solution can be written as

$$F_{SS}(m_i) = {}^i \vec{P}_{SS} \cdot {}^i \vec{D},$$

 $F_{SP}(m_i) = {}^i \vec{P}_{SP} \cdot {}^i \vec{D},$
 $F_{PP}(m_i) = {}^i \vec{P}_{PP} \cdot {}^i \vec{D}$

•Where the projection vectors are given by

$$\begin{pmatrix} \vec{P}_{SS} \\ \vec{P}_{SP} \\ \vec{P}_{PP} \end{pmatrix} = \begin{pmatrix} \vec{m}_{SS} \cdot \vec{m}_{SS} & \vec{m}_{SS} \cdot \vec{m}_{SP} & \vec{m}_{SS} \cdot \vec{m}_{PP} \\ \vec{m}_{SS} \cdot \vec{m}_{SS} & \vec{m}_{SP} \cdot \vec{m}_{SP} & \vec{m}_{SP} \cdot \vec{m}_{PP} \\ \vec{m}_{PP} \cdot \vec{m}_{SS} & \vec{m}_{PP} \cdot \vec{m}_{SP} & \vec{m}_{PP} \cdot \vec{m}_{PP} \end{pmatrix}^{-1} \begin{pmatrix} i \vec{m}_{SS} \\ i \vec{m}_{SP} \\ i \vec{m}_{PP} \end{pmatrix}$$

•The various projector dot products are implemented through a weighting technique.

Example:

• to extract the term $2S(m_{K^-\pi^+}) \times P(m_{K^-\pi^+})$ in the *i*th mass bin , we need the dot product

$${}^{i}\vec{P}_{SP} \cdot {}^{i}\vec{D} = ({}^{i}\vec{P}_{SP})_{1}^{i}n_{1} + ({}^{i}\vec{P}_{SP})_{2}^{i}n_{2} + \dots + ({}^{i}\vec{P}_{SP})_{20}^{i}n_{20}$$

• we can do this by making a weighted histogram of $m_{K-\pi+}$ where

the events reconstructed in the first $\cos\theta$ bin are weighted by $(^{i}\vec{P}_{SP})_{1}$

the events reconstructed in the second $\cos\theta$ bin_are weighted by $(\vec{P}_{SP})_2$

Systematic errors

- Model for K-K+ channel
 - \$\phi\$ parameters
 - potential contributions from $f_0(980)$ and $f_2(1270)$
 - varying amplitudes and phases
- Monte Carlo simulations
 - comparison of simulated and observed
 - $\cos\theta$ as a function of $m_{K-\pi+}$
 - m_{KK} , $m_{K-\pi^+}$, $m_{K+\pi^+}$ global mass projection (good agreement)
- Different analysis
 - three rather than five projectors (consistency)
 - different ϕ -veto cut $m_{KK} > 1050 \text{ MeV/c}^2$ (1100 MeV/c²)

The bias correction

legenda: crosses are the reconstructed spectra, diamonds are are the actual spectra used in the simulation based on our E687 model .

- No evidence for pentaquarks decaying to pK_s^0 in the mass range of 1470 MeV/c² to 2200 MeV/c²
 - In contrast 9 million $K^*(892)^+ \rightarrow K_s^0 \pi^+$
 - $0.4 \text{ million } \Sigma^*(1385)^{\pm} \rightarrow \Lambda^0 \pi^{\pm}$

and energy release

Parent particle produced at any momenta.

Natural width of 0 (15) MeV/c²

$$\frac{\sigma(\Theta^{+}) \cdot BR(\Theta^{+} \to pK_{s}^{0})}{\sigma(K^{*}(892)^{+})} < 0.0013 \ (0.0033) \text{ at } 95 \% \text{ C.L}$$

$$\frac{\sigma(\Theta^{+}) \cdot BR(\Theta^{+} \to pK_{s}^{0})}{\sigma(\Sigma^{*}(1385)^{\pm})} < 0.023 \ (0.057) \text{ at } 95 \% \text{ C.L}$$

Parent particle with momenta above 25 GeV/c (good acceptance) Natural width of 0 (15) MeV/c²

$$\frac{\sigma(\Theta^{+}) \cdot BR(\Theta^{+} \to pK_{s}^{0})}{\sigma(K^{*}(892)^{+})} < 0.00012 \ (0.00029) \text{ at } 95\% \text{ C.L.}$$

$$\frac{\sigma(\Theta^{+}) \cdot BR(\Theta^{+} \to pK_{s}^{0})}{\sigma(\Sigma^{*}(1385)^{\pm})} < 0.0042 \ (0.0099) \text{ at } 95\% \text{ C.L.}$$

- No evidence for $\Xi_5^-\to\Xi^-\pi^-$ in the mass range of 1480 MeV/c² to 2400 MeV/c²
 - In contrast 65000 Ξ *(1530) 0 \rightarrow $\Xi \pi^+$

Parent particle produced at any momenta. Natural width of 0 (15) MeV/c^2)

and energy release

$$\frac{\sigma(\Xi_{5}^{-}) \cdot BR(\Xi_{5}^{-} \to \Xi^{-}\pi^{-})}{\sigma(\Xi^{*}(1530)^{0})} < 0.032 \ (0.091) \text{ at } 95 \% \text{ C.L}$$

Parent particle with momenta above 25 GeV/c (good acceptance) Natural width of 0 (15) MeV/c^2)

$$\frac{\sigma(\Xi_5^-) \cdot BR(\Xi_5^- \to \Xi^- \pi^-)}{\sigma(\Xi^* (1530)^0)} < 0.007 \ (0.019) \text{ at } 95 \% \text{ C.L}$$

NA49: 15 $\varXi^*(1530)^0 \to \varXi \pi^+$ and 38 $\varXi_5^- \to \varXi^- \pi^-$ FOCUS results are ~4000 times larger