Open-charm mesons in hot and dense matter

- L. Tolos¹, A. Ramos² and T. Mizutani³

 ¹FIAS (University of Frankfurt)

 ²Universitat de Barcelona

 ³ Virginia Polytechnic Institute and State University
- 1. Motivation
- 2. Self-consistent coupled-channel approach: $\Lambda_c(2593)$ and $\Sigma_c(2770)$
- 3. Open-charm mesons in hot dense matter
- 4. Conclusions & Outlook

Hadron07, Frascati, 8-13 October 2007

Motivation

Experimental scenarios...

• J/Ψ suppression M.Gonin et al. (NA50), NPA 610 (1996) 404c

initially predicted by color screening in QGP T.Matsui and H.Satz, PLB 178 (1986) 416 but also due to comover scattering $J/\Psi + \pi$, $\rho \rightarrow D + D$

several authors: A. Capella, R. Vogt, X.N. Wang, W. Cassing, O. Linnyk, A. Andronic..

- Open-charm enhancement Abreu et al. (NA50), EPJC14 (2000) 443
 but recent debate because of dimuon production by NA60 Scomparin, talk@QM2005
- CBM@FAIR

From the theoretical side...

DN interaction: similar features as $\overline{K}N$ interaction. In the charm sector we also find a subthreshold I=0 resonance, the $\Lambda_c(2593)$ (udc) with a strong resemblance to the $\Lambda(1405)$ (uds).

$$\overline{K} = \begin{pmatrix} \overline{K}^0 \\ \overline{d} s \\ -K^- \end{pmatrix} \stackrel{\overline{d}}{u} s \qquad (K, \overline{D}^0) \qquad p \qquad (s,c) \quad \overline{u} \qquad u \quad u \quad d \qquad (s,c) \quad \overline{u} \qquad u \quad u \quad d \qquad (s,c) \quad u \qquad d \qquad (s,c) \quad u \qquad d \qquad (s,c) \quad \overline{u} \qquad u \quad u \quad \overline{u} \qquad u \quad \overline{u} \qquad u \quad \overline{u} \qquad \overline{u} \qquad$$

May the $\Lambda_c(2593)$ be generated also dynamically?

- Predictions for the mass shift in mean-field models:
 - $U_{D+}(\rho_0) \sim -60 \text{ to } -200 \text{ MeV}$ and $U_{D-}(\rho_0) \sim 20 \text{ to } -140 \text{ MeV}$
 - QMC model K.Tsushima et al. PRC 59 (1999) 2824, A. Sibirtsev et al. EPJ 6 (1999) 351
 - QCD sum-rule model A.Hayashigaki PLB 487 (2000) 96, 2W. Weise Hirschegg'01 (2001) 249
 - Chiral model A. Mishra et al. PRC 69 (2004) 015202
- Spectral function in self-consistent coupled-channel approach:
 - D meson self-energy with a SU(3) separable potential for u-,d- and ccontent as bare interaction
 - LT, J. Schaffner-Bielich and A. Mishra PRC 70 (2004) 025203;
 - LT, J. Schaffner-Bielich and H. Stoecker PLB 635 (2006) 85 (finite T!)
 - D and D meson self-energy with an improved bare interaction by extension to SU(4) M.F.M. Lutz and C.L. Korpa PLB 633 (2006) 43
 - D meson self-energy using a revised SU(4) interaction + scalarisoscalar attractive $\Sigma_{\rm DN}$ term T. Mizutani and A. Ramos PRC 74 (2006) 065201

HERE: we extend the model to D mesons and implement finite T effects

Self-consistent coupled-channel approach: $\Lambda_c(2593)$ and $\Sigma_c(2880)$

To solve the Bethe-Salpeter equation in coupled channels

where V built from the meson-baryon Lagrangian at lowest order

$$V_{ij} = -\kappa \frac{1}{4f^2} (2\sqrt{s} - M_i - M_j) \left(\frac{M_i + E}{2M_i}\right)^{1/2} \left(\frac{M_j + E'}{2M_j}\right)^{1/2}$$
 broken SU(4) by the physical masses

and supplemented by a scalar-isoscalar interaction (Σ_{DN} term)

Free space DN amplitudes

The model generates the I=0 $\Lambda_c(2593)$ and another resonance in I=1 around the nominal $\Sigma_c(2800)$!

In-medium DN interaction at finite temperature: selfconsistent coupled-channel procedure

Open-charm mesons in hot dense matter

In-medium $\Lambda_c(2793)$ & $\Sigma_c(2880)$ at finite temperature

D meson spectral function at finite temperature

Evolution with density and temperature of the D spectral function

Similar trend to previous finite temperature results

LT, J. Schaffner-Bielich and H. Stoecker PLB 635 (2006) 85

DN scattering lengths & D meson potential

$$a_{\bar{D}N} = -\frac{1}{4\pi} \frac{M_{\bar{D}N}}{\sqrt{s}} T_{\bar{D}N \to \bar{D}N}$$

in contrast with LK

Table 1: $\bar{D}N$ scattering lengths (fm)

200020 21 2 21 200000011110 (2111)			
	Model A	Model B	, /
I=0	0.607	0	
(Born approx.)	0.262	0	
I=1	-0.264	-0.289	-
(Born approx.)	-0.614	-0.876	

similar to LK but half of HKMS

LK: M.F.M. Lutz and C.L.Korpa, PLB 633 (2006) 43 HKMS: J.Haidenbauer et al., EPJA 33 (2007) 107

$$U_{\bar{D}}(\vec{q}) = \frac{\Pi_{\bar{D}}(E_{qp}(\vec{q}), \vec{q})}{2\sqrt{m_{\bar{D}}^2 + \vec{q}^2}}$$

\overline{D} and $\overline{\overline{D}}$ meson potentials

Conclusions & Outlook

We perform a self-consistent coupled-channel calculation of the D and \overline{D} self-energies in symmetric nuclear matter at finite temperature taking, as bare interaction, the SU(4) TW contribution supplemented by Σ_{DN} term

- ✓In hot dense matter, $\Lambda_c(2593)$ and $\Sigma_c(2800)$ stay close to their free position but develop a remarkable width
- ✓ The D meson spectral density shows a single pronounced peak at finite temperature that melts with increasing density
- ✓ The low-density theorem is a not good approximation for the $\overline{D}N$, where the repulsive I=1 component dominates
- ✓ Temperature induces a stronger change in the mass of D than D meson and different behavior of the imaginary part due to distinct resonant structure

Open questions?

- **>**J/Ψ suppression
- Open-charm enhancement
- D-mesic nuclei

Some answers expected at CBM @ FAIR

Working along these lines...

- Dressed charmed baryons beyond mean-field
- In-medium charmed cross sections

•....

LT, A. Ramos and T. Mizutani, in preparation