Studies of e⁺e[−]→ Quasi-2-Body processes at 10.6 GeV at BaBar

David Muller SLAC

Representing the BaBar Collaboration

- Introduction
- $e^+e^- \rightarrow \eta \gamma$, $\eta' \gamma$
- $\mathbf{e}^+\mathbf{e}^- \rightarrow \rho^0 \rho^0$, $\rho^0 \phi$
- $e^+e^- \rightarrow \rho^+\rho^-$
- $\mathbf{e}^+\mathbf{e}^- \rightarrow \eta \phi$
- Summary

Transition Form Factors

Two-Virtual-Photon Annihilation

Test of QCD in helicity structure

Test of QCD in E_{CM} Dependence

Quasi-2-Body Final States in e⁺e⁻ Annihilations:

- Only some Quantum #, helicity combinations allowed
- Rich testing ground for QCD
 - → cross sections/amplitudes
 - → helicity structure
 - → E_{CM} dependence
- If $Y=\overline{X}$ then parametrize in terms of a form factor
- If $Y=\gamma$, vector meson then it's a transition form factor
- Potential sensitivity to higher order/new propagators

- radiative return see talks by W. Wang and S. Serednyakov
- High E_{CM} : perturbative regime, $e^+e^- \to \gamma * \to q\overline{q}(g) \to jets; <math>\sigma \propto 1/s$
- QCD: few-body cross sections fall faster than 1/s \rightarrow but accessible at high E_{CM} with high statistics
- Some other processes fall more slowly, may be visible at high E_{CM}

Double charmonium at 10.6 GeV: seen by BELLE confirmed by BaBar

PRL 89, 151802 (02) PRD 72, 031101 (05)

- Observed cross sections higher than expected
 - → spurred considerable theoretical work; ongoing
 - → BELLE update includes a new state, X(3940)

hep-ex/0507019

- We are studying several fully reconstructed low-mult processes
 - → just starting to scratch the surface of this physics
 - → several interesting results already in quasi-2-body channels

The BaBar Experiment

• e⁺e⁻ collisions at 10.6 GeV, designed for CP violation in B decays

• Different beam energies:

$$\rightarrow$$
 E_e⁻ = 9.0 GeV

$$\rightarrow$$
 E_e⁺ = 3.1 GeV

 \rightarrow c.m.-lab boost, $\gamma\beta$ =0.55

Asymmetric detector

 \rightarrow c.m. frame acceptance $-0.9 \sim \cos\theta^* \sim 0.85$ wrt e⁻ beam

with excellent performance

- → Good tracking, mass resolution
- \rightarrow Good γ , π^0 recon.
- \rightarrow Full e, μ , π ,K,p ID

• High luminosity:

→ ~ 475 fb⁻¹ accumulated

 \leftrightarrow 1.6 billion e⁺e⁻ \rightarrow qq evts

 \leftrightarrow 0.5 billion e⁺e⁻ \rightarrow B \overline{B} evts

 \rightarrow 224–379 fb⁻¹ used here

$$e^+e^- \to \gamma \eta \text{ and } \gamma \eta'$$
 232 fb⁻¹, PRD 74, 012002 (06)

- Vector-pseudoscalar states with a distinctive topology:
 - → one high-energy photon recoiling against ...
 - → a set of 2-4 charged tracks and two photons
- Reconstruct:

$$\rightarrow \eta \rightarrow \pi^+\pi^-\pi^0, \quad \pi^0 \rightarrow \gamma\gamma$$

 $\rightarrow \eta' \rightarrow \pi^+\pi^-\eta, \quad \eta \rightarrow \gamma\gamma \text{ or } \pi^+\pi^-\pi^0$

• Constrain total 4-momentum, $\gamma \gamma$ mass in a kinematic fit, select

→ nice clean signals, fit to extract yield

- The corresponding cross sections $\sigma(e^+e^- \rightarrow \gamma \eta) = 4.5\pm 1.2\pm 0.3 \text{ fb}$ $\gamma \eta' = 5.4\pm 0.8\pm 0.3 \text{ fb}$
- can be related to Transition Form Factors
 - → QCD predicts asymptotic values
 - \rightarrow models predict s dependence at low s=|q²|
- We have the highest-|q²| measurements to date

- → consistent with approach to asymptotic regime
- \rightarrow and with QCD predictions ... which depend on η - η' mixing ...
- \rightarrow ...but the ratio, 1.10±0.17 is outside the theory range, 1.6–2.3
- ⇒ more theoretical, experimental input needed

$$e^+e^- \to \rho^0 \rho^0$$
 and $\rho^0 \phi$ 225 fb⁻¹, PRL 97, 112002 (06)

- Study of the $e^+e^- \to \pi^+\pi^-\pi^+\pi^-$ and $e^+e^- \to K^+K^-\pi^+\pi^-$ reactions \to expect several intermediate states to contribute
- Require:
 - → exactly four good charged tracks with zero total charge
 - \rightarrow identified as π^{\pm} or K^{\pm}

- - → backgrounds are small, but interesting; still under study
 - \rightarrow select events within 170 MeV of the nominal E_{CM}

Now study the internal structure of these events

 \rightarrow some generator level simulations for e⁺e⁻ $\rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}$

→ at 10.6 GeV, large kinematic separation between modes

→ ...and between "correct" and "incorrect" pairings

- We see several such modes in the data
- The most striking (and easy to analyze) are the clear signals for

- $\rho^0 \rho^0$ and $\rho^0 \phi$ are neutral vector-vector states with C = +1
 - \rightarrow forbidden in single $\gamma*$ annihilation
 - \rightarrow allowed in 2- γ * annihilation (TVPA)
 - → ...and expected at ~this level
 - ⇒ Are we observing this process?

- TVPA predicts strongly forward-peaked production angles
 - \rightarrow distributed as $\sim (1 + \cos^2 \theta_{\rho}) / (1 \cos^2 \theta_{\rho})$

 \rightarrow other processes might give $\sin^2\theta_{\rho}$, flat, $1+\cos^2\theta_{\rho}$, ...

→ The data are consistent with TVPA, "nothing" else

also, ρ,φ light enough that polarization ~transverse

- \rightarrow Helicity angles are consistent with $\sin^2\theta_H$ distributions
- and slow energy dependence, ~1/s
 - → Not seen in ISR data at 1-4.5 GeV

PRD 71, 052001 (05)

⇒ First observation of e⁺e⁻ → hadrons via TVPA ←

 $\cos\theta^* \in [-0.8-0.8]$

- Extract cross sections within the ranges $m_{\rho} \in [500\text{-}1100] \text{ MeV/c}^2$ $m_{\phi} \in [1008\text{-}1035] \text{ MeV/c}^2$
 - \Rightarrow 20.7±0.7±2.7 fb for e⁺e⁻ $\rightarrow \rho\rho$ 5.7±0.5±0.8 fb $\rho\phi$
 - ⇒ a vector-dominance prediction is consistent

hep-ph/0606155

$$\underline{e^+e^- \rightarrow \; \rho^+\rho^-}$$

379 fb⁻¹, BaBar Prelimnary

- Study of the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ reaction
 - → expect several intermediate states to contribute
- The $\rho^+\rho^-$ channel is especially interesting:
 - \rightarrow allowed via single $\gamma*$ annihilation, in some helicity states
 - → amplitude level QCD test in helicity structure
 - → TVPA could also contribute via a final state interaction
 - → ...and interference could give an observable(?) asymmetry

Require:

- \rightarrow exactly two tracks, identified as π^+ and π^-
- \rightarrow two good $\pi^0 \rightarrow \gamma \gamma$ candidates
- \rightarrow momentum $|p_{\pi^+\pi^-\pi^0\pi^0}|<0.2$ GeV/c in the c.m. frame
- \rightarrow a pairing with both $m_{\pi^+\pi^0}$ and $m_{\pi^-\pi^0}$ < 1.6 GeV/c²
- \rightarrow select events within 280 MeV of the nominal E_{CM}

- There is a clear signal for $e^+e^- \rightarrow \rho^+\rho^-$
- 2D fit to extract the signal yield
 - → including <u>linear background</u>

$$\rightarrow ...+ \rho^{+}\pi^{-}\pi^{0} / \rho^{-}\pi^{+}\pi^{0}$$

$$\rightarrow$$
 ...+ $\rho^+\rho^-$

- \Rightarrow (fiducial) cross section is 8.5±0.7±1.5 fb cf. 20.7±0.7±2.7 fb for $\rho^0 \rho^0$
 - → is this similarity interesting?
- ⇒ ...but this channel is seen in ISR data at 2-4 GeV
 - → we will study the energy dependence

Angular distributions

 single-γ* annihilation allows 3 nonzero helicity amplitudes: 00, 10, 11

→ QCD predicts that the 00 state should dominate at high E_{CM} PRD 24, 2848 (81)

 Fit the production/ decay helicity and decay azimuthalangles simultaneously

→ limited statistics, but...

- → the 00 contribution is largest, but not dominant
- → ~40% needed from 01 and/or 11

→ insufficient stats to look at dihedral angle/presence of TVPA

$$e^+e^- \rightarrow \eta \phi$$

224 fb⁻¹, PRD 97, 111103 (06)

- Study of the e⁺e[−] → K⁺K[−]γγ reaction
 - → expect only a few intermediate states to contribute
 - \rightarrow can this be related to $e^+e^- \rightarrow \eta_c J/\psi$?
 - \rightarrow theoretical E_{CM} dependence: 1/s³

...or 1/s⁴

PLB 425, 365 (98)

PRD 24, 2848 (81)

PRept 112, 173 (84)

Require:

- → exactly two good charged tracks, identified as K⁺ and K⁻
- → two good photons, E>0.5 GeV
- \rightarrow m_{KK} < 1.1 GeV/c²
- $\rightarrow 0.4 < m_{\gamma\gamma} < 0.8 \text{ GeV/c}^2$
- \rightarrow select events within 230 MeV of the nominal E_{CM}

- Very clean signals for for $K^+K^-\eta$, $\phi\gamma\gamma$, $\eta\phi$
- 2D fit to extract the signal yield

- \Rightarrow fiducial cross section is 2.1±0.4±0.1 fb
- ⇒ angular distributions consistent (stat. limited) with expectations for single-γ* production of a pseudoscalar-vector state
 - \rightarrow assuming this, cross section is 2.9±0.5±0.1 fb cf. 25.6±2.8±3.4 fb for $\eta_c J/\psi$
 - \rightarrow comparison depends on the ss content of the η
 - → theoretical input needed

- $e^+e^- \rightarrow \eta \phi$ is seen at lower energies
 - \rightarrow in ISR by BaBar in K⁺K⁻ π ⁺ π ⁻ π ⁰ and K⁺K⁻ $\gamma\gamma$
 - → by CLEO at 3.67 GeV

arXiv:0708.2451, subm. to PRD Preliminary

PRD 73, 212002 (06)

- Can study E_{CM} dependence
 - → possible structure(s) near threshold, 2.2 GeV
 - → at "high"-E_{CM}, data are consistent with 1/s⁴ but not with 1/s³

Dispersion relation phenomenology

- EPJ A31, 665 (07)
- \rightarrow explains the data nicely in terms of ϕ' and ρ' resonances
- → confirms 1/s⁴ asymptotic behavior

Conclusions

- The very high luminosity of the B factories has (re)opened the study of several interesting areas of elementary particle physics
- In particular, exclusive reactions at 10.6 GeV:
 - \rightarrow first observation of e⁺e⁻ annihilations into hadrons via 2γ *
 - $\rightarrow \eta$, η' form factors measured in(?) the asymptotic region
 - $\rightarrow \eta \phi$, $\rho^+ \rho^-$ cross sections measured in the asymptotic region
 - \rightarrow new test of QCD in the $\rho^+\rho^-$ helicity structure
- Many new, improved studies planned
 - → update results with full data set
 - → more (quasi)-2-body modes, form factors, QCD tests
 - → "complete" studies of particular final states