Studies of e⁺e[−]→ Quasi-2-Body processes at 10.6 GeV at BaBar # David Muller SLAC #### Representing the BaBar Collaboration - Introduction - $e^+e^- \rightarrow \eta \gamma$, $\eta' \gamma$ - $\mathbf{e}^+\mathbf{e}^- \rightarrow \rho^0 \rho^0$, $\rho^0 \phi$ - $e^+e^- \rightarrow \rho^+\rho^-$ - $\mathbf{e}^+\mathbf{e}^- \rightarrow \eta \phi$ - Summary **Transition Form Factors** Two-Virtual-Photon Annihilation Test of QCD in helicity structure Test of QCD in E_{CM} Dependence ### Quasi-2-Body Final States in e⁺e⁻ Annihilations: - Only some Quantum #, helicity combinations allowed - Rich testing ground for QCD - → cross sections/amplitudes - → helicity structure - → E_{CM} dependence - If $Y=\overline{X}$ then parametrize in terms of a form factor - If $Y=\gamma$, vector meson then it's a transition form factor - Potential sensitivity to higher order/new propagators - radiative return see talks by W. Wang and S. Serednyakov - High E_{CM} : perturbative regime, $e^+e^- \to \gamma * \to q\overline{q}(g) \to jets; <math>\sigma \propto 1/s$ - QCD: few-body cross sections fall faster than 1/s \rightarrow but accessible at high E_{CM} with high statistics - Some other processes fall more slowly, may be visible at high E_{CM} # Double charmonium at 10.6 GeV: seen by BELLE confirmed by BaBar PRL 89, 151802 (02) PRD 72, 031101 (05) - Observed cross sections higher than expected - → spurred considerable theoretical work; ongoing - → BELLE update includes a new state, X(3940) hep-ex/0507019 - We are studying several fully reconstructed low-mult processes - → just starting to scratch the surface of this physics - → several interesting results already in quasi-2-body channels ### The BaBar Experiment • e⁺e⁻ collisions at 10.6 GeV, designed for CP violation in B decays #### • Different beam energies: $$\rightarrow$$ E_e⁻ = 9.0 GeV $$\rightarrow$$ E_e⁺ = 3.1 GeV \rightarrow c.m.-lab boost, $\gamma\beta$ =0.55 #### Asymmetric detector \rightarrow c.m. frame acceptance $-0.9 \sim \cos\theta^* \sim 0.85$ wrt e⁻ beam #### with excellent performance - → Good tracking, mass resolution - \rightarrow Good γ , π^0 recon. - \rightarrow Full e, μ , π ,K,p ID #### • High luminosity: → ~ 475 fb⁻¹ accumulated \leftrightarrow 1.6 billion e⁺e⁻ \rightarrow qq evts \leftrightarrow 0.5 billion e⁺e⁻ \rightarrow B \overline{B} evts \rightarrow 224–379 fb⁻¹ used here $$e^+e^- \to \gamma \eta \text{ and } \gamma \eta'$$ 232 fb⁻¹, PRD 74, 012002 (06) - Vector-pseudoscalar states with a distinctive topology: - → one high-energy photon recoiling against ... - → a set of 2-4 charged tracks and two photons - Reconstruct: $$\rightarrow \eta \rightarrow \pi^+\pi^-\pi^0, \quad \pi^0 \rightarrow \gamma\gamma$$ $\rightarrow \eta' \rightarrow \pi^+\pi^-\eta, \quad \eta \rightarrow \gamma\gamma \text{ or } \pi^+\pi^-\pi^0$ • Constrain total 4-momentum, $\gamma \gamma$ mass in a kinematic fit, select → nice clean signals, fit to extract yield - The corresponding cross sections $\sigma(e^+e^- \rightarrow \gamma \eta) = 4.5\pm 1.2\pm 0.3 \text{ fb}$ $\gamma \eta' = 5.4\pm 0.8\pm 0.3 \text{ fb}$ - can be related to Transition Form Factors - → QCD predicts asymptotic values - \rightarrow models predict s dependence at low s=|q²| - We have the highest-|q²| measurements to date - → consistent with approach to asymptotic regime - \rightarrow and with QCD predictions ... which depend on η - η' mixing ... - \rightarrow ...but the ratio, 1.10±0.17 is outside the theory range, 1.6–2.3 - ⇒ more theoretical, experimental input needed $$e^+e^- \to \rho^0 \rho^0$$ and $\rho^0 \phi$ 225 fb⁻¹, PRL 97, 112002 (06) - Study of the $e^+e^- \to \pi^+\pi^-\pi^+\pi^-$ and $e^+e^- \to K^+K^-\pi^+\pi^-$ reactions \to expect several intermediate states to contribute - Require: - → exactly four good charged tracks with zero total charge - \rightarrow identified as π^{\pm} or K^{\pm} - - → backgrounds are small, but interesting; still under study - \rightarrow select events within 170 MeV of the nominal E_{CM} #### Now study the internal structure of these events \rightarrow some generator level simulations for e⁺e⁻ $\rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}$ → at 10.6 GeV, large kinematic separation between modes → ...and between "correct" and "incorrect" pairings - We see several such modes in the data - The most striking (and easy to analyze) are the clear signals for - $\rho^0 \rho^0$ and $\rho^0 \phi$ are neutral vector-vector states with C = +1 - \rightarrow forbidden in single $\gamma*$ annihilation - \rightarrow allowed in 2- γ * annihilation (TVPA) - → ...and expected at ~this level - ⇒ Are we observing this process? - TVPA predicts strongly forward-peaked production angles - \rightarrow distributed as $\sim (1 + \cos^2 \theta_{\rho}) / (1 \cos^2 \theta_{\rho})$ \rightarrow other processes might give $\sin^2\theta_{\rho}$, flat, $1+\cos^2\theta_{\rho}$, ... → The data are consistent with TVPA, "nothing" else also, ρ,φ light enough that polarization ~transverse - \rightarrow Helicity angles are consistent with $\sin^2\theta_H$ distributions - and slow energy dependence, ~1/s - → Not seen in ISR data at 1-4.5 GeV PRD 71, 052001 (05) ⇒ First observation of e⁺e⁻ → hadrons via TVPA ← $\cos\theta^* \in [-0.8-0.8]$ - Extract cross sections within the ranges $m_{\rho} \in [500\text{-}1100] \text{ MeV/c}^2$ $m_{\phi} \in [1008\text{-}1035] \text{ MeV/c}^2$ - \Rightarrow 20.7±0.7±2.7 fb for e⁺e⁻ $\rightarrow \rho\rho$ 5.7±0.5±0.8 fb $\rho\phi$ - ⇒ a vector-dominance prediction is consistent hep-ph/0606155 $$\underline{e^+e^- \rightarrow \; \rho^+\rho^-}$$ 379 fb⁻¹, BaBar Prelimnary - Study of the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ reaction - → expect several intermediate states to contribute - The $\rho^+\rho^-$ channel is especially interesting: - \rightarrow allowed via single $\gamma*$ annihilation, in some helicity states - → amplitude level QCD test in helicity structure - → TVPA could also contribute via a final state interaction - → ...and interference could give an observable(?) asymmetry #### Require: - \rightarrow exactly two tracks, identified as π^+ and π^- - \rightarrow two good $\pi^0 \rightarrow \gamma \gamma$ candidates - \rightarrow momentum $|p_{\pi^+\pi^-\pi^0\pi^0}|<0.2$ GeV/c in the c.m. frame - \rightarrow a pairing with both $m_{\pi^+\pi^0}$ and $m_{\pi^-\pi^0}$ < 1.6 GeV/c² - \rightarrow select events within 280 MeV of the nominal E_{CM} - There is a clear signal for $e^+e^- \rightarrow \rho^+\rho^-$ - 2D fit to extract the signal yield - → including <u>linear background</u> $$\rightarrow ...+ \rho^{+}\pi^{-}\pi^{0} / \rho^{-}\pi^{+}\pi^{0}$$ $$\rightarrow$$...+ $\rho^+\rho^-$ - \Rightarrow (fiducial) cross section is 8.5±0.7±1.5 fb cf. 20.7±0.7±2.7 fb for $\rho^0 \rho^0$ - → is this similarity interesting? - ⇒ ...but this channel is seen in ISR data at 2-4 GeV - → we will study the energy dependence #### Angular distributions single-γ* annihilation allows 3 nonzero helicity amplitudes: 00, 10, 11 → QCD predicts that the 00 state should dominate at high E_{CM} PRD 24, 2848 (81) Fit the production/ decay helicity and decay azimuthalangles simultaneously → limited statistics, but... - → the 00 contribution is largest, but not dominant - → ~40% needed from 01 and/or 11 → insufficient stats to look at dihedral angle/presence of TVPA $$e^+e^- \rightarrow \eta \phi$$ 224 fb⁻¹, PRD 97, 111103 (06) - Study of the e⁺e[−] → K⁺K[−]γγ reaction - → expect only a few intermediate states to contribute - \rightarrow can this be related to $e^+e^- \rightarrow \eta_c J/\psi$? - \rightarrow theoretical E_{CM} dependence: 1/s³ ...or 1/s⁴ PLB 425, 365 (98) PRD 24, 2848 (81) PRept 112, 173 (84) #### Require: - → exactly two good charged tracks, identified as K⁺ and K⁻ - → two good photons, E>0.5 GeV - \rightarrow m_{KK} < 1.1 GeV/c² - $\rightarrow 0.4 < m_{\gamma\gamma} < 0.8 \text{ GeV/c}^2$ - \rightarrow select events within 230 MeV of the nominal E_{CM} - Very clean signals for for $K^+K^-\eta$, $\phi\gamma\gamma$, $\eta\phi$ - 2D fit to extract the signal yield - \Rightarrow fiducial cross section is 2.1±0.4±0.1 fb - ⇒ angular distributions consistent (stat. limited) with expectations for single-γ* production of a pseudoscalar-vector state - \rightarrow assuming this, cross section is 2.9±0.5±0.1 fb cf. 25.6±2.8±3.4 fb for $\eta_c J/\psi$ - \rightarrow comparison depends on the ss content of the η - → theoretical input needed - $e^+e^- \rightarrow \eta \phi$ is seen at lower energies - \rightarrow in ISR by BaBar in K⁺K⁻ π ⁺ π ⁻ π ⁰ and K⁺K⁻ $\gamma\gamma$ - → by CLEO at 3.67 GeV arXiv:0708.2451, subm. to PRD Preliminary PRD 73, 212002 (06) - Can study E_{CM} dependence - → possible structure(s) near threshold, 2.2 GeV - → at "high"-E_{CM}, data are consistent with 1/s⁴ but not with 1/s³ Dispersion relation phenomenology - EPJ A31, 665 (07) - \rightarrow explains the data nicely in terms of ϕ' and ρ' resonances - → confirms 1/s⁴ asymptotic behavior ## **Conclusions** - The very high luminosity of the B factories has (re)opened the study of several interesting areas of elementary particle physics - In particular, exclusive reactions at 10.6 GeV: - \rightarrow first observation of e⁺e⁻ annihilations into hadrons via 2γ * - $\rightarrow \eta$, η' form factors measured in(?) the asymptotic region - $\rightarrow \eta \phi$, $\rho^+ \rho^-$ cross sections measured in the asymptotic region - \rightarrow new test of QCD in the $\rho^+\rho^-$ helicity structure - Many new, improved studies planned - → update results with full data set - → more (quasi)-2-body modes, form factors, QCD tests - → "complete" studies of particular final states