Studies of <mark>σ(e⁺e⁻ →hadrons)</mark> at BABAR using Initial State Radiation (ISR)

Wenfeng Wang Laboratoire de l'Accélérateur Linéaire, Orsay for the BABAR Collaboration

XII International Conference on Hadron Spectroscopy 8-13 October, 2007, Frascati

Outline

- Introduction
- ISR method at BABAR
- Exclusive Analyses
- Inclusive analysis
- Summary

Objective

Precise measurements of cross section for all significant processes, $e^+e^- \rightarrow hadrons$, from threshold to ~4-5GeV

- Summing up exclusive cross sections ==>Improve the precision of R
- Study spectroscopy of $J^{PC}=1^{--}$ states and their decays

R(s): crucial input for hadronic contributions to

•Muon anomalous magnetic moment (a_{μ}) -----dispersion integrals

 $a_{\mu}^{had}, LO = \frac{\alpha^{2}}{3\pi^{2}} \int_{-\infty}^{\infty} R(s) \frac{K(s)}{s} ds$ K(s) known QED kernel •Running of α_{OED} (for SM fits \Rightarrow Higgs Mass). W.F. Wang R measurements at BaBar-ISR

ISR at Y(4S) Energies

- ~4-5GeV with tagged photon; high transverse momentum, high acceptance
- Obtained in one experiment, as opposed to scan experiments: pointto-point uncertainties greatly reduced
- High PEP-II luminosity and BABAR detector performance allow to be competitive with low energy e⁺e⁻ machines

MC simulation (AfkQed) uses Born-level ISR + FSR + Interference, + Structure functions for soft photons; precision ~1%

BaBar ISR: e⁺e⁻→hadrons

- Reactions for which results have been published :
 - pp
 - $\pi^+\pi^-\pi^0$
 - $2\pi^+2\pi^-$, **K**⁺**K**⁻ $\pi^+\pi^-$,
 - $K^+K^-\pi^+\pi^-K^+K^-\pi^0\pi^0$, $2K^+2K^-$
 - $3\pi^+3\pi^-$, $2\pi^+2\pi^-\pi^0\pi^0$, $K^+K^-2\pi^+2\pi^-$ PRD 73, 052003 (2006)
- PRD 73, 012005 (2006) PRD 70, 072004 (2004) PRD 71, 052001 (2005) PRD 76, 012008 (2007)
- New results presented in this meeting :
 - $K^+K^-\pi^0$, $K_SK^-\pi^+$, $K^+K^-\eta$,
 - $\Lambda\Lambda$, $\Lambda\Sigma^0$, $\Sigma^0\Sigma^0$
 - $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$

Submitted to PRD e-Print: arXiv:0709.1988 [hep-ex] **BaBar Preliminary**

BaBar Preliminary

 $2\pi^+2\pi^-\pi^0, 2\pi^+2\pi^-\eta$, KK $\pi^+\pi^-\pi^0, KK\pi^+\pi^-\eta$

Submitted to PRD e-Print: arXiv:0708.2461 [hep-ex]

- Work in progress on :
 - $\pi^+\pi^-$, **K**⁺**K**⁻, $\pi^+\pi^-3\pi^0$
 - Inclusive R

BaBar ISR: $\pi^+\pi^-\pi^0\pi^0$

BaBar ISR: $\pi^+\pi^-\pi^0\pi^0$

--substructure

BaBar ISR: $\pi^+\pi^-\pi^+\pi^-\pi^0$

- ~30,000 events => allow to study details
 - Lower mass : 20% bg.
 - ~4.5GeV : 60-80% bg.
- Wider energy region
- ~4.0 nb at 1.65 GeV, generally decrease except for J/ψ and ψ(2S)
- systematic error~7% at peak.

R measurements at BaBar-ISR

BaBar ISR: $\pi^+\pi^-\pi^+\pi^-\pi^0$ --substructure

BaBar ISR: $\pi^+\pi^-\pi^+\pi^-\pi^0$ --sub-modes

Cross sections of submode: $\eta \pi^+ \pi^- \approx \eta \rho^0$ $\omega \pi \pi$ $\rho X = \rho^{\pm} 3\pi + \rho^0 3\pi$: from subtraction $\omega \pi \pi / \eta \pi^+ \pi^-$

BaBar ISR: $\omega \pi^+ \pi^-$

BaBar ISR: $\pi^+\pi^-\pi^+\pi^-\eta$

 ${\boldsymbol{\cdot}}{\sim}4,\!300$ events selected, J/ψ seen,

- -Lower mass <20% bg
- -Higher mass 50-80% bg

- Peak 1.2 nb at 2.2 GeV
- 10% systematic error below
 3 GeV

R measurements at BaBar-ISR

BaBar ISR: $\pi^+\pi^-\pi^+\pi^-\eta$ --substructure

BaBar measurement summary

To calculate R in the energy range 1-2 GeV the processes $\pi^+\pi^-$, $\pi^+\pi^-3\pi^0$, $\pi^+\pi^-4\pi^0$, K⁺K⁻, K_SK_L, K_SK_L $\pi\pi$, K_SK⁺ $\pi^-\pi^0$ must be measured.

J/ ψ and $\psi(2S)$ decays @BaBar

Inclusive R: Analysis Technique

- Select events with a high-energy photon in a region with good energy resolution.
- Primary background: QED events with a high-E photon Taken from MC
 - Remove/subtract: $e^+e^-\gamma$, $\gamma\gamma$; $\tau^+\tau^-\gamma$ and $\mu^+\mu^-\gamma$...
- Compute the integral:

Inclusive R: Energy Resolution effects

 Energy resolution ~2%, affects the spectrum, especially at low s': • Fortunately, we measure an integral of R(s)/s, not R(s)/s itself: $\Delta \alpha^{had} (M_{Z}^{2}) \propto \int_{4m_{\pi}^{2}}^{\infty} \frac{R(s)}{s} \cdot \left(\frac{1}{s-M^{2}}\right) ds$ $\frac{\delta s'}{s'} \sim \frac{s}{s'} \frac{\delta E_{\gamma}}{E_{\gamma}}$ • Smearing \Rightarrow events move in s'; Problem only if weight function is non-uniform. - OK for $\Delta \alpha^{\text{Had}}$ $a_{\mu}^{had} \propto \int_{-\infty}^{\infty} \frac{R(s)}{s} \cdot \left(\frac{K(s)}{s}\right) ds,$ Does not work for a_u Contribution to $\Delta \alpha_{Had}$ Partial ∆α_{Had} Integral **True Spectrum** True Spectrum (MC) **Smeared spectrum** Smeared spectrum _____ 10-4 $\int_{-4\pi^2}^{x} \frac{R(s)}{s} \cdot \left(\frac{1}{s - M_{\pi^2}^2}\right) ds$ 10⁻⁵ 20 -5 5 10 25 5 20 -5 0 10 15 25 30 35 s' (GeV²) s' [GeV²] s' (GeV²) s' [GeV²]

The region <5 GeV dominates overall uncertainty ~ 3.2%

Preliminary systematic uncertainty 4.4% -->3.6%, improve overall precision

Summary

- *BaBar* continues study of low energy e^+e^- cross section using ISR
 - •Results published: pp̄, $\pi^+\pi^-\pi^0$, $2\pi^+2\pi^-$, $2K^+2K^-$, $3\pi^+3\pi^-$, $2\pi^+2\pi^-\pi^0\pi^0$, $K^+K^-2\pi^+2\pi^-$, $K^+K^-\pi^0\pi^0$
 - •Preliminary results: $\pi^+\pi^-\pi^0\pi^0$, $2\pi^+2\pi^-\pi^0$, $2\pi^+2\pi^-\eta$, $K^+K^-\pi^0$, $K_5K^-\pi^+$, $K^+K^-\eta$, $\Lambda\Lambda$, $\Lambda\Sigma^0$
 - , $\Sigma^0\Sigma^0$, KK $\pi^+\pi^-\pi^0$, KK $\pi^+\pi^-\eta$
 - •Obtained data allow to determine parameters of excited ρ -, ω -, ϕ -states. Simultaneous fit of all channels?
- Work in progress: $\pi^+\pi^-$, K⁺K⁻, K $\overline{K}(\pi,\eta)$, $\pi^+\pi^-\pi^0\pi^0$, inclusive-R...

BABAR providing high statistics measurements of exclusive hadronic cross sections with ~5-10% syst. uncertainties ==> large improvement over the existing data in the lower mass range!

Relevance of precision of R measurements

Contributions to $a_{\mu}^{had,LO}$: low-s region crucial

Contributions to $\Delta \alpha^{had}$

sensitive to full accessible range

(1-5) GeV has dominant uncertainties

BaBar ISR: $\pi^+\pi^-\pi^0\pi^0$

J/ ψ and $\psi(2S)$ decays @BaBar

- J/ ψ and $\psi(2S)$ used to monitor mass scale and resolution

• byproduct but important: measure $\Gamma_{ee} x B(J/\psi \rightarrow f) = B(J/\psi \rightarrow f)$

	Measured	Measured	J/ψ or $\psi(2S)$ Branching Fraction (10^{-3})	
BaBar	Quantity	Value (eV)	Calculated, this work	PDG2006
prelimindry	$\overset{\psi}{\cdot} \mathcal{B}_{J/\psi \to 2(\pi + \pi^{-})\pi^{0}}$	$303. \pm 5 \pm 18$	54.6 $\pm 0.9 \pm 3.4$	33.7 ± 2.6
$\Gamma_{ee}^{J/\eta}$	${}^{\psi} \cdot \mathcal{B}_{J/\psi \to \omega \pi + \pi^{-}} \cdot \mathcal{B}_{\omega \to 3\pi}$	47.8 \pm 3.1 \pm 3.2	$9.\ 7\ \pm 0.6\ \pm 0.6$	7.2 ± 1.0
$\Gamma_{ee}^{J/\eta}$	${}^{\psi} \cdot \mathcal{B}_{J/\psi o \eta \pi^+ \pi^-} \cdot \mathcal{B}_{\eta o 3\pi}$	$0.\;51{\pm}\;0.22{\pm}\;0.03$	$0.\;40{\pm}\;0.17{\pm}\;0.03$	$0.\ 193 {\pm}\ 0.023$
$\Gamma_{ee}^{J/\eta}$	$^{\psi} \cdot \mathcal{B}_{J/\psi \to 2(\pi^+\pi^-)\eta}$	$5.\ 16 {\pm}\ 0.85 {\pm}\ 0.39$	$2.35 \pm 0.39 \pm 0.20$	2.26 ± 0.28
$\Gamma_{ee}^{J/\eta}$	$^{\psi} \cdot \mathcal{B}_{J/\psi \to K^+K^-\pi^+\pi^-\pi^0}$	107.0 $\pm 4.3 \pm 6.4$	$19.\ 2\ \pm 0.8\ \pm 1.5$	12.0 ± 3.0
$\Gamma_{ee}^{J/\eta}$	${}^{\psi} \cdot \mathcal{B}_{J/\psi \to \phi\eta} \cdot \mathcal{B}_{\phi \to K^+K^-} \cdot \mathcal{B}_{\eta \to 3\pi}$	$0.\;84{\pm}\;0.37{\pm}\;0.05$	$1.\ 4\ \pm 0.6\ \pm 0.1$	0.74 ± 0.08
$\Gamma^{J/\eta}_{ee}$	${}^{\psi} \cdot \mathcal{B}_{J/\psi \to \omega K^+ K^-} \cdot \mathcal{B}_{\omega \to 3\pi}$	$3.3 \pm 1.3 \pm 0.2$	$1.\;36{\pm}\;0.50{\pm}\;0.10$	1.9 ± 0.4
$\Gamma_{ee}^{J/\eta}$	$^{\psi} \cdot \mathcal{B}_{J/\psi \to K+K-\pi+\pi^{-}\eta}$	$10.2 \pm 1.3 \pm 0.8$	$4.\ 7\ \pm 0.6\ \pm 0.4$	no entry
$\Gamma^{\psi(2S}_{ee}$	$\mathcal{B}_{\psi(2S)\to 2(\pi+\pi^-)\pi^0}$	29.7 $\pm 2.2 \pm 1.8$	$12.\ 0\ \pm 0.9\ \pm 0.7$	2.66 ± 0.29
$\Gamma^{\psi(2S}_{ee}$	$\mathcal{B}_{\psi(2S)\to J/\psi\pi^+\pi^-}\cdot\mathcal{B}_{J/\psi\to 3\pi}$	$18.\ 6\ \pm 1.2\ \pm 1.1$	$23.\ 6\ \pm 1.6\ \pm 1.6$	20. 2 ± 1.4
$\Gamma^{\psi(2S}_{ee}$	$(\mathcal{B}_{\psi(2S)\to\omega\pi^+\pi^-}\cdot\mathcal{B}_{\omega\to3\pi})$	$2.69 \pm 0.73 \pm 0.16$	$1.\ 22{\pm}\ 0.33{\pm}\ 0.07$	$0.\ 66\ \pm 0.17$
$\Gamma^{\psi(2S}_{ee}$) $\mathcal{B}_{\psi(2S)\to J/\psi\eta} \cdot \mathcal{B}_{\eta\to 3\pi} \cdot \mathcal{B}_{J/\psi\to\mu^+\mu^-}$	$1.11{\pm}0.33{\pm}0.07$	$33.4 \pm 9.9 \pm 2.0$	$30.\ 9 \pm \ 0.8$
$\Gamma^{\psi(2S}_{ee}$) $\mathcal{B}_{\psi(2S)\to 2(\pi+\pi^-)\eta}$	$1.13{\pm}0.55{\pm}0.08$	$1.2 \pm 0.6 \pm 0.1$	no entry
$\Gamma^{\psi(2S}_{ee}$) $\mathcal{B}_{\psi(2S)\to K^+K^-\pi^+\pi^-\pi^0}$	$4.\ 4\ \pm 1.3\ \pm 0.3$	$1.\ 8\ \pm 0.5\ \pm 0.1$	1.24 ± 0.10
$\Gamma^{\psi(2S}_{ee}$	$\mathcal{B}_{\psi(2S)\to K+K-\pi+\pi^-\eta}$	$1.2 \pm 0.7 \pm 0.1$	$1.\ 3\ \pm 0.7\ \pm 0.1$	no entry