XII. INTERNATIONAL CONFERENCE ON HADRON SPECTROSCOPY

Laboratori Nazionali di Frascati (Rome)

Open Problems in Hadron Spectroscopy

Luciano Maiani Universita di Roma "La Sapienza"

Opening Talk

October 08, 2007

Summary

- 1. Introduction
- 2. Light scalar mesons resolved
- 3. QCD strings
- 4. New Charmonium states
- 5. Thresholds, cusps and new states
- 6. Two X states ?
- 7. A charged charmonium ?
- 8. Outlook

1. Introduction

- Thirty years after its discovery, we still do not fully control QCD.
- Only in few cases, we can produce reliable theoretical predictions. Even in these cases we need to rely upon phenomenological parameters. Ab initio calculations (lattice) still have many limitations.
- Scaling violations in DIS, input: the structure function at some Q_0^2

Basically all states below the open charm threshold are observed and explained

The (unexplained) success of the constituent quark model

A. Sakharov, Zeldovich
H. Lipkin
A. De Rujula, H. Georgi and S. Glashow

• Quark constituent masses and spin-spin interaction:

$$\begin{split} H &= \sum_{i} m_{i} + \sum_{i < j} \kappa_{ij} \left(\sigma_{i} \cdot \sigma_{j} \right) \delta^{3}(\vec{r}_{ij}) \\ \kappa_{ij} &\simeq \frac{v}{m_{i}m_{j}} \end{split}$$

- Hyperfine interaction explains, among other things, the Λ-Σ⁰ mass difference (they have the same flavor composition) as due to the hyperfine interaction
- Baryons with one heavy and two light quarks can be described by a light diquark+the heavy quark

contribution of the hyperfine interaction energies is removed. For the two cases of spin-zero [8] S = 0 and spin-one S = 1 diquarks,

 $\begin{array}{ll} M(N) - \tilde{M}(\rho) &= M(\Lambda) - \tilde{M}(K^*) \\ 323 \text{ MeV} &\approx & 321 \text{ MeV} \\ \end{array} \approx & M(\Lambda_c) - \tilde{M}(D^*) \\ \approx & 312 \text{ MeV} \\ \end{array} \approx & M(\Lambda_b) - \tilde{M}(B^*) \\ \approx & 310 \text{ MeV} \\ \end{array}$ • M. Karliner, H. Lipkin, hep-ph/0611306v3

 $\tilde{M}(\Delta) - \tilde{M}(\rho) = \tilde{M}(\Sigma) - \tilde{M}(K^*) = \tilde{M}(\Sigma_c) - \tilde{M}(D^*) = \tilde{M}(\Sigma_b) - \tilde{M}(B^*)$ 517.56 MeV \approx 526.43 MeV \approx 523.95 MeV \approx 512.45 MeV Tilde= spin average= eliminates diquark and the "valence quark"

2. Light Scalar Mesons Resolved

Mass and width of the lowest resonance in QCD

I. Caprini National Institute of Physics and Nuclear Engineering, Bucharest, R-077125 Romania

G. Colangelo and H. Leutwyler Institute for Theoretical Physics, University of Bern, Sidlerstr. 5, CH-3012 Bern, Switzerland

arXiv:hep-ph/0512364v2, 7 Apr 2006

The values of the S-matrix element

$$S_0^0(s) = 1 - 2\sqrt{4M_\pi^2/s - 1} t_0^0(s) \tag{6}$$

on the second sheet can be calculated from those on the first sheet: unitarity implies the relation [15]

$$S_0^0(s)^{II} = 1/S_0^0(s)^I$$
 . (7)

The Roy equation thus automatically also specifies the function $S_0^0(s)$ on the second sheet, in the same domain of the *s*-plane [16]. In particular, the amplitude contains a pole on the second sheet if and only if $S_0^0(s)$ has a zero

Partial-wave S matrix elements are "real analytic" functions : $S^*(s)=S$ (s^*) From unitarity: $S(s)S^*(s)=1$; one gets: $S(s)=1/S(s^*)$, hence

HADRON07 07/10/07

Dispersion equation analysis of $\pi \pi$ scattering in S-wave indicate a broad resonance around 500 MeV, σ , and a narrow one around 980, f₀.

 $m_0 = (441 \pm 4) - i (272 \pm 6) \text{ MeV}$

FIG. 2: Domain of validity of the Roy equations.

HADRON07 07/10/07

a similar analysis proves the existence of kappa

The $K_0^*(800)$ scalar resonance from Roy-Steiner representations of πK scattering

S-wave $1 - \frac{1}{0.8} - \frac{1}{0.4} - \frac{1}{0.2} - \frac{1}{0.2} - \frac{1}{0.3} - \frac{1}{0.4} - \frac{1}{0.5} - \frac{1}$

arXiv:hep-ph/0607133v2 25 Aug 2006

S. Descotes-Genon^a and B. Moussallam^b

$$M_{\kappa} = 658 \pm 13 \text{ MeV}, \quad \Gamma_{\kappa} = 557 \pm 24 \text{ MeV}$$

	M_{κ} (MeV)	Γ_{κ} (MeV)
This work	658 ± 13	557 ± 24
Zhou, Zheng 16	694 ± 53	606 ± 89
Jamin et al. 18	708	610
Aitala et al. 7	$721 \pm 19 \pm 43$	$584 \pm 43 \pm 87$
Pelaez [19]	750 ± 18	452 ± 22
Bugg 9	750^{+30}_{-88}	684 ± 120
Ablikim et al. 20	$841 \pm 23^{+64}_{-55}$	$618 \pm 52^{+55}_{-87}$
Ishida et al. 14	877^{+68}_{-30}	668^{+235}_{-110}

ni. Hadron Spectroscopy

a complete nonet

- $\sigma(450, I=0)$, $\varkappa(660, I=1/2)$, $f_0(980, I=0)$ and $a_0(980, I=1)$) fill neatly an entire nonet, but masses are in reverse order with respect to a q-qbar nonet
- pattern at complete variance with the very successful constituent quark model
- Candidate for a Cryptoexotic multiplet diquarks(antidiquarks) are antisymmetric in:
 - color (diquark = $\overline{\mathbf{3}}_{color}$ antidiquark = $\mathbf{3}_{color}$)
 - spin (diquark and antidiquark have spin = 0)
 - flavor (diquark is $\mathbf{\bar{3}}_{flavor}$ antidiquark is $\mathbf{3}_{flavor}$)
- earlier proposal by R. Jaffe (1977) and by R. Jaffe &F. Wilczeck, more recently reconsidered by our group.
 L.Maiani, F. Piccinini, A. Polosa, V. Rigu

L.Maiani, F. Piccinini, A. Polosa, V. Riquer, PRL **93**(2004) 212002

 $f_0/(a_0)^0 = \frac{[su][\bar{s}\bar{u}] \pm [sd][\bar{s}\bar{d}]}{\sqrt{2}}$

$$\kappa = [su][\bar{u}\bar{d}], [sd][\bar{u}\bar{d}]$$

$$\sigma = [ud][\bar{u}\bar{d}]$$

HADRON07 07/10/07

Quantum numbers and mass spectrum

The reversed mass spectrum reveals the 4-quark composition of the lightest scalar mesons

The fully antisymmetric (anti) diquark structure agrees with the absence of truly exotic states, i.e. I=2, $\pi\pi$ resonances.

HADRON07 07/10/07

Tetraquark structure explains the conspicuous affinity for Kaons displayed by f₀ decays

$$egin{aligned} BW_{f_0} &= rac{1}{s-m_0^2+im_0(\Gamma_\pi+\Gamma_K)} \ &\Gamma_\pi &= g_\pi \sqrt{s/4-m_\pi^2} \ &\Gamma_K &= rac{g_K}{2} \left(\sqrt{s/4-m_{K^+}^2} + \sqrt{s/4-m_{K^0}^2}
ight) \end{aligned}$$

	$m_{f_0} \; [{ m MeV}]$	$g_{\pi\pi}$	$g_{K\bar{K}}$
WA76 (1991) ππ & KK seen	979±4	0.28±0.04	0.56 ± 0.18
BES (2004) $\psi \rightarrow \phi \pi \pi, \phi KK$	965±8±6	0.34±0.04	1.4±0.11

$$f_0/(a_0)^0 = \frac{[su][\bar{s}\bar{u}] \pm [sd][\bar{s}\bar{d}]}{\sqrt{2}}$$

- new experimental evidence for light scalar states, to complete the full nonet, has accumulated recently in D non leptonic decays (E791, BES, more recently BeBar)
- other alternative: K-Kbar molecules (DeRujula, Georgi, Glashow), see

N. A. Tornqvist, Z. Phys. C 61, 525 (1994). N. A. Tornqvist, "Comment on the narrow charmonium state of Belle at 3871.8 MeV as a deuson", arXiv:hep-ph/0308277.

- the existence of sigma is crucial to tell the difference:
 - tetraquark \rightarrow complete $SU(3)_{flavor}$ nonet
 - molecule →large $SU(3)_{flavor}$ breaking, maybe only K-Kbar are bound, sigma and kappa may not even exist

Homework:

Decays of light scalars still not fully understood Where is it the q-qbar, P-wave, scalar nonet?

Strong Decays of Tetra-quarks

Below the Baryon-Antibaryon threshold

FIG. 1: The decay of a scalar meson S made up of a diquarkantidiquark pair in two mesons M_1M_2 made up of standard $(q\bar{q})$ pairs.

- Tunneling from colored to uncolored pairs, free to move away from each other
- A fully non-perturbative effect
- Amplitude may depend strongly on the quark mass

One could expect tunneling to be suppressed with respect to the natural process of string breaking. So states below the baryon-antibaryon threshold tend to be narrow. Is this the reason of the narrow X ??

light mesons...

- Poor control of QCD in light hadronic systems will make it very difficult to identify unambiguously the light tetraquark mesons
- Some additional tools:
 - comparison of the f_0 and η e.m. form factor (" γ " \rightarrow f0 ω vs. " γ " \rightarrow η ω), S. Pacetti, 2005
 - Measure of the Nuclear Modification Ratios of f₀ in Relativistic Heavy Ion Collisions (RHIC, LHC) (LM, Riquer, Polosa, Salgado, 2006)
- go to heavy flavored tetraquarks: $[(cq)(\bar{c}\bar{q}')]_{S-wave}$

Extrapolating boldly from the light scalar decays . . . one would predict very small widths, of the order of ten MeV.

Narrow states of this kind are seen in the hadronic final states of B non-leptonic decays, by Belle and PEPII.

Some of them are explained by conventional $c - \bar{q}$ bound states, but there may be a wholly new spectroscopy waiting for us there, which we are only now beginning to decode.

DAFNE Workshop, Frascati, 2004

4. New charmonium states: beyond the SM

- Hidden charm mesons are being found by BELLE and BaBar, which do not fit the Charmonium picture
- main processes are:
 - B non leptonic decays:

$$\begin{split} B^{\pm} &\to K^{\pm} + X^{0}; \quad B^{0} \to K^{0} + X^{0} \\ X^{0} &\to \psi(nS) + \pi's, \text{ or } D^{(*)}D^{(*)} \\ B^{\pm} &\to K^{0} + Z^{\pm}; \quad B^{0} \to K^{\pm} + Z^{\mp} \\ Z^{+} &\to \psi(nS) + \pi^{+} + \pi^{0}, \text{ or } D^{(*)}D^{(*)} \end{split}$$

- Initial State Radiation:

$$e^+e^- \rightarrow \gamma(\text{initial state}) + Y$$

 $Y \rightarrow \psi(nS) + \pi's, \text{ or } D^{(*)}D^{(*)}$

since Y originates from a virtual photon, it has $J^{PC}=1^{--}$. - $e^+e^- \rightarrow \psi(1S) + (D^{(*)}D^{(*)})_M$ (only C=+1 are produced)

X(3872) and Y(4260) are not charmonium states

Proposed interpretations

- X(3872) =
 - D-D* molecule: $M(X) - M(D^{*0}\overline{D}^0) = +0.6 \text{ MeV}$

- F.E. Close, P.R. Page PL B 578 (2004) 119;
- N.A. Tornqvist PL B590 (2004) 209;
- E. Swanson, PL B588 (2004) 189.

– diquark-antidiquark bound state: $[(cq) (\bar{c}\bar{q})]_{S-wave}, J^{PC} = 1^{++}; (q = u, d)$

• L. Maiani, F. Piccinini, A.D. Polosa and V. Riquer, PR D 71 (2005) 014028

- Y(4260) =
 - Hybrid state: $(c \bar{c} g)$

F.E. Close and P.R. Page, PL B 628 (2005) 215;
E. Kou and O. Pene, PL B 631, 164 (2005)

- diquark-antidiquark bound state: $[(cs) (\bar{c}\bar{s})]_{P-wave}, J^{PC} = 1^{--}$. •L. Maiani, V. Riquer, F. Piccinini and A.D. Polosa, PR D 72 (2005) 031502
- molecular state ($\chi_c + \omega$) C.Z. Yuan, P. Wang and X.H. Mo, PL B 634 (2006) 399
- baryonium: Λ_c^+ - Λ_c^-

• C.F. Qiao, PL B 639 (2006) 263

- hybrid classification for X(3872) excluded by the large isospin violation seen in $\psi\rho$ and $\psi\omega$ decays; - Y(4260) is some 33 MeV above D*-D* threshold; parity calls for P-wave: molecule unfavoured ??

HADRON07 07/10/07

5. Thresholds, cusps and new states

Molecular models and threshold effects require vicinity to threshold

Is this the case?

$$\Gamma(X_u \to D^0 \bar{D}^0 \pi^0) >> \Gamma(X_u \to J/\psi \pi^+ \pi^-) \simeq$$

$$\simeq \Gamma(X_d \to J/\psi \pi^+ \pi^-) >> \Gamma(X_d \to D^0 \bar{D}^0 \pi^0)$$

ERICE 02/08/07

Proposed interpretations (cont'd)

• Z⁺(4433), BELLE Collaboration

arXiv:0708.1790v1 [hep-ex] 14 Aug 2007

- charged tetraquark in 2S

– Baryonium: $\Lambda_c^+ \bar{\Sigma}_c^0$

- L. Maiani, A.D. Polosa and V. Riquer, hep-ph: 0708.3997;
- Gershtein, A.K. Likhoded and G.P. Pronko, hep-ph 0709.2058

• K.m. Cheung, W.Y. Keung and T. C. Yuan, hep-ph:0709.1312 [hep-ph] (propose similar states with b quark)

– Threshold enhancement in D_1 -D*

- J.L. Rosner, hep-ph:0708.3496;
- C. Meng and K.T. Chao, hep-ph:0708.4222;
- D.V. Bugg, hep=ph :0709.1254;

• C.~F.~Qiao, hep-ph :0709.4066

27

8. Outlook

- A new spectroscopy is being discovered with the new "charmonia";
- this is made possible by the fact that the Standard Charmonium model is so precise: years of efforts to compute precisely the c-cbar spectroscopy take now their reward;
- The observation of two X states and of the charged charmonium, Z, has given more credibility to the tetraquark interpretation;
- In this case, there must exist neutral states close to Z as well as the Z(1S) around 3890 MeV, with Z(1S) $\rightarrow \pi + \psi(1S)$.
- X and Z states should fall in complete nonets, with masses calculable within the constituent quark model, that works so well for S-wave hadrons;
- alternative schemes still exist and more data are (badly) needed.

Outlook (cont'd)

- Hadron spectroscopy below 1 GeV seems established. But decays are still problematics: what is the source of $f_0 \rightarrow \pi\pi$ decay
- But where is it the q-qbar scalar nonet?
- $\eta\pi$, J=0⁺⁺ resonances "counts" scalar nonets, but a systematic study above 1 GeV is still lacking: is there more than the a₀(1450) ?
- The new spectroscopy is still in its infancy, theory needs guidance from experiments, as last years have shown!

A new generation of machines and detectors are called for Super-B factory ideal. Meanwhile, can FAIR take the challenge? Can Lattice QCD calculations play a role ?