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OUR LONG STANDING PROGRAM:

GOAL: Try to FILL In The GAP
Between QCD and NUCLEAR PHYSICS

Starting from FIRST PRINCIPLES (Quarks, Glu-
ons and QCD dynamics): Prove from the Dynam-
ics that Hadrons and Their BOUND STATES Are
Part of the ENERGY-MOMENTUM (EM) SPEC-
TRUM

Possibly, UNDERSTAND Better, From Theory, The
Nature of BINDING POTENTIALS

PART OF IT: DONE Already. 2+ 1 and 34+ 1 Di-
mensional Models, 2 x 2, 4 x4 Spin Matrices, 1 and
2 Flavors.

FRAMEWORK: Imaginary-time LAT TICE Models
Within STRONG COUPLING and Functional Inte-
gral Formulation.

Namely, in the richest model we analyzed up to
now: 2 Flavors, 3+ 1 Dimensions, 4 x 4 Dirac Spin
Matrices. Proved Existence of Baryons and Mesons
and Analyzed I = 0,3 Sectors of 2-Baryon Bound
States, including the I =0, J =1 p—n State:
DEUTERUM.



Bound State Results: Also INCLUDE The MESON
PARTICLES in Some Cases.

BS OBTAINED in a LADDER Approximation, Us-
ing Lattice BETHE-SALPETER Equation.

TREATMENT IS TUNED TO CONTROL CON-
TRIBUTIONS BEYOND LADDER APPROX.

IN ALL THIS, an IMPORTANT TOOL is the HY-
PERPLANE DECOUPLING Method.

A LOT STILL TO BE DONE!
I = 2,3, BS With MESONS, 1/r CORRECTION
to e " IN YUKAWA, etc...

TODAY: Continuing Our Program, We Will Apply
Our ANALYTICAL METHODS to ANALYZE the
341 Dimensional, 3 Color, 3 Flavor Case, Strongly
Coupled Lattice QCD.

OBTAIN The BARYON and MESON SPECTRUM

OBTAIN THE GELL'"MANN-NE'EMAN EIGHTFOLD
WAY FROM DYNAMICS




THE MODEL

PARTITION FCT & EXPECTATIONS

[ = / e_SwﬂZ’g) dvy dzZ du(g) ,

(F@,9) = [ F(@,0,9)e 579 d af du(g)

Yaar(u) Grassmann quark variable at site u
(" = bar/no-bar), di) associated ‘Berezin’ measures
g € SU(3) on oriented lattice bonds
du(g) is product measure of SU(3) Haar measures

MODEL ACTION (Wilson's Action)

S, 1, g)—— > Daaf () TS (Guuteer)ab Poap(u + eet)

+ 2 waaf(u)waaf(u)
_ﬁ Zp X(gp) )

Sisoveru= (u°, @), W €Z+1 weZ d=3, a,b=1,2,3,
a,f=+and f=1,2,3 OR f = u,d,s, and > ' ALSO sums
over e==41, u=20,1,...,d.

[+ =1 + ~#, ~* = Pauli or Dirac spin matrices

Zp is over Plaquettes. x is Re(Character).

M = M(m,k) = (m + 2k)Ispin Is Set To Igpin = 1 by suitably
choosing m > 0.



GAUGE INVARIANCE:

For z € Z4T1 = (Z+ 1) x Z% and h(z) € SU(3),

(x) — h(x)p(z), d(x) — P(@)[h(x)] 7,
9x+etx h(x + et) 9x+et x [h(x)]_l-

FLAVOR or ISOSPIN SYMMETRY: GLOBAL
SU(3);

NO CONTINUOUS Rotation Symmetry. ONLY
Discrete 7w /2 rotations.

FOR SPIN

At k = 0,RECOVER SU(2) @ SU(2)SPIN STRUC-
TURE, J2 and J., CONSERVATION, Separately for
UPPER and LOWER Spin Components

WHEN x #= 0, We Have a PARTIAL RESTORA-
TION of Continuous Symmetry FOR ZERO SPA-
TIAL MOMENTUM STATES. MEANING THAT
the Discrete Group is ENOUGH to INHERIT STRUC-
TURE From the Continuous.

DEFINE Generators Using the Logand NOT Taking
limg~ olerp(i€/2)—1]. May find Difficulties for HIGH
SPIN VALUES (fix the Log branch!)



THIS IS WHAT WE USE TO TALK ABOUT SPIN!
Define Spin Operators J2 and J,. Lowering J_ and
Raising J4 Spin Operators.

Isospin (I,I3), Spin (J,J,), Parity P, Time Rever-
sion 7, Charge Conjugation C, Coordinate Reflec-
tion and Rotation,... OPERATORS Can Be Raised
From Correlation Function Level To Hilbert Space
Operators!

We Also Have Fs = —7CT, A SPIN FLIP Symme-
try (J, < —J;) in Lower / Upper components

T isa NEW TIME REFLECTION SYMMETRY




This is NOT the FIRST TIME this Problem is
Treated in the Literature!

In the 80°s some papers (Smit, Hoeck, ...) were
devoted to analyze this problem.

OUR CLAIM: We Do It Correctly!

BESIDES: Many Results Emerge In Our Treat-
ment That Were Not Obtained Previously:

Masses as convergent expansions in hopping pa-
rameter, possibility of reliable perturbation in gauge
coupling 3, gauge invariance for free, confinement
in Hilbert space up to an energy threshold, no group
structure and right particle multiplicities, disper-
sions and some of their properties,...

AND The One-Particle Spectrum, As It Is Done
HERE, IS A NECESSARY STEP To Go Up In
Spectrum and Obtain Two-Particle Spectrum.



DOMAIN: STRONG COUPLING REGIME
Small HOPPING Parameter kK, 0 < kK1
Large GLUEBALL MASS 3, 0< 08Kk

FAR from SCALING LIMIT But Can Manage It
CONFINEMENT Shows Up In This Way.

DESCRIPTION of MAIN RESULTS

Main Tool: Hyperplane Decoupling Expansion
(Hopping Term)

BARYONS

1. EXISTENCE OF 56 (ANTI-)BARYONS: (Masses
~ —31In k). Manifested by Isolated Dispersion Curves
in the EM Spectrum w(p) = w(pl, p2, p3), p=L-3 ¢

(—m,m]. (Isolated up to near the Meson-Baryon

Threshold ~ —5Ink).

2. EIGHTFOLD WAY:Consider the Usual ISOSPIN
SU(2) & HYPERCHARGE U(1) Subgroups of SU(3) .



A) 2 Sets of EIGHT J = 1/2 particles. That is,
Two OCTETS, ONE for J; = 1/2 and Another for

By FLAVOR AND SPIN FLIP SYMMETRY ALL
the Particles in the OCTETS HAVE SAME MASS!

B) 4 Sets of TEN J = 3/2 Particles. That is, Four
DECUPLETS, Two for J, = 4+1/2 and Two Other

By FLAVOR and SPIN FLIP SYMMETRIES, and
SPIN LOWERING for zero-momentum states, the
Decuplet Masses are INDEPENDENT of J,. There-
fore, ALL Decuplet Baryons have the Same Mass.

NO NEED for Particles in the OCTETS and in the
DECUPLETS To Have the SAME MASS!

3. MASS SPLITTING: MASS SPLITTING Be-
tween Baryon OCTETS and DECUPLETS of O(x°).



4. DISPERSION RELATIONS:

3
we(k,p) = —3Ink —3k3/4 + &3 > (1- cospl) /4
=1
_I_TC(K’aﬁ) ) C — O,d

re(k,p) is of O(k®). ro(k,p) is jointly analytic in &
and in each pJ, for small |[Smp/|.

OBSERVATION: ALL MEMBERS of The Octets
Have the SAME Value for the Quadratic Casimir
C> = 3. For the Decuplet Members, C> =6

DISPERSIONS ARE ALL EQUAL for OCTET
Members And EQUAL For The DECUPLET Mem-
bers With The Same |J;|.

MESONS

1’. EXISTENCE OF 36 MESONS: (Masses ~ —2Ink).
Manifested by Isolated Dispersion Curves in the EM
Spectrum w(p) = w(pl,p?,p3), p=b3 e (=, x].
(Isolated up to near the Meson-Meson Threshold
~ —4Ink).



2/. MESON EIGHTFOLD WAY:Consider ISOSPIN,
HYPERCHARGE and Cy

The 36 Mesons Can Be Grouped Into FOUR ISOSPIN
NONETS: The Pseudo-Scalar Mesons and The Vec-
tor Mesons.

There are: 9 Pseudo-Scalar Mesons with J = 0 and
27 Vector Mesons with J = 1.

Each NONET: Decomposed Into a Singlet (C> = 0)
and Octet (Cy = 3) Isospin.

Up To and Including @(x%): they have the SAME
MASS

M(k) = —2Ink — 3x%/2 + k*r(r),
with r(x) analytic and »(0) # 0.
For zero momentum states, the masses are inde-
pendent of J,. Therefore, As For The PSEUDO-

SCALAR MESONS, ALL Vector Mesons Have the
SAME MASS.

3. MESON MASS SPLITTING: Between Vector
and Pseudo-Scalar Mesons

[rp(K) — ro (k)&% = 2% + O(k®)
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4’. MESON DISPERSION RELATIONS:

3 .
we(k,p) = —2Ink —3k2/24 (1/4)x% Y 2(1 —cosp’)
J=1
—|—K/4’I"c(/€,ﬁ) ) C—Dp,?v
Ire(k,p)| < const and rp(k,p) is jointly analytic in &
and pJ for ||, |Smpl| small.

The various wy(k,p) may depend on |J;|.

5. BARYON SPECTRAL RESULTS: In ODD SUB-
SPACE of Quantum Mechanical Hilbert Space H
(ODD #t of fermions)

MESON SPECTRAL RESULTS: In EVEN SUB-
SPACE of Quantum Mechanical Hilbert Space H

This is Due To SUBTRACTION METHODS For
Two-Baryon and Two-Meson Correlations.

COMBINING BOTH SPECTRAL RESULTS: CON-
FINEMENT IS PROVEN UP To NEAR The TWO-
MESON THRESHOLD.

5. NEW Symmetry: TIME REFLECTION T.
11



Time Reflection Transformation T is Nonlocal
and Linear.

Time Reversion Transformation 7 is Nonlocal and
Antilinear.

SUPPOSING THE CONTINUUM LIMIT EXISTS
T SURVIVES This Limit.

Consequences of Time Reflection (If Any?!).
What happens in other models?

6. SYMMETRIES: Implemented on ‘H by Unitary
(Anti-unitary, for 7 and Fs) Operators.

IMPORTANT: In Obtaining The EXISTENCE Of
Particles, NO GROUP STRUCTURE IS NEEDED!

To Prove the Existence of Particles: Use INDI-
VIDUAL ISOSPIN and SPIN BASIS. NO GUESS-
WORK On the FORM Of The Fields.

GAUGE INVARIANCE of HADRON STATES:
EMERGES FOR FREE, from Hyperplane decou-
pling expansion and Intermediate Gauge Field Inte-
gration.

12



ONLY To Make Contact With 8fdWay: MAKE AP-
PEAL TO SU(3)y GROUP When Re-Expressing
Baryon Fields in PARTICLE BASIS.

An ORTHOGONAL TRANSFORMATION RELATES
THE TWO BASIS.

IT is in the PARTICLE BASIS that the 2-Point
Fcts get the Closest as POSSIBLE To DIAGONAL
FORM!

FOR MESONS: NEED G-parity Gp.

Gp is a Composition of C and Discrete SU(3) ¢ Sym-
metry of Permutations of Flavor Indices

13



TASTE OF THE METHOD:

Hilbert Space H

With Our Parameters and SPIN Matrices, there is
a QM Hilbert Space H of Physical States

FREE FERMION: Dispersions Increase in Each p'

Concentrate Only On BARYONS For Simplicity:
Hodd p— Ho .

In Strong Coupling: By Polymer Expansions
{ Thermodynamic Limit of correlations (CF)
EXISTS
{ Truncated CF have exponential tree decay
{> CF are Lattice Translational invariant and
Extend to Analytic Fcts of k and 3

14



UNIT TRANSLATION Operators (Linear) in H

Ty, n=0,1,...,d, are commuting

To is self-adjoint, with —1 < Ty <1

T;—1..q4 are unitary; T; = i P

P = (Pl ... P9 is the Self-Adjoint MOMENTUM
Spectral points g€ T = (—, 7]

Té > 0, defines the ENERGY OP. H > 0 by

72 . _—2H
To—e

A point in EM SPECTRUM with =0 is a MASS

FEYNMAN-KAC (F-K) FORMULA

G, P, g), F(¢,9,g), supported on u0 = 1/2.
For 20 > 0O,

- 0= 1= 2 - 3 0 1 2 3
e 0w, 1w 2.3 1 0120 X0 .z 0Oy
E(\9, X) is Product of Spectral Families for H, P,

i=1,2,3

15



PARTICLE DETECTION

HYPERPLANE EXPANSION: k — kp in Hopping
Term Between z° = p and 2° = p + 1.

Gryv(z,y) = (L(z)M(y))
Arbitrary functions L and M with odd # of quarks.

Temporally Separated. & — rp, 20 <p <p+1 <.

kp = 0 DISCONNECTS the 20 and y° hyperplanes
since any link crossing the p-hyperplane is forbidden.

—o FORCES CONNECTION.

d/‘ép | lﬁ}p

Gy (z,y) is jointly analytic in all kp's

IMBALANCE in # Quarks or by Gauge Integration,
r=0,1,2
“ ~|r,=0 Give ZERO.

16



THIRD kp Derivative
(3) (@y) = —Yaa3 G(O)3 (z, (p,W))

x ggMup+waw+«mm3L

Notation:

"(33) — €a1a2a3 walalfl ($)¢a2a2f2 (w)¢a3oz3f3 (z)

For CLOSURE (same type of correlations):
3 _ .73
L=vyZz , M=4d%

(AntiB) vanishes for this choice.

This is How BARYON Fields Emerge NATURALLY
As Gauge Invariant Fields! NO SU(3); was used!

REMARK: Important PRODUCT STRUCTURE!

17



BARYON FIELDS:

With All Fields LOWER, «; = 3,4, and at the same
point (Tilde = presence/absence of bars):

~ 1 ~ ~ ~
B&’f’z B €abc waalflwbagfgwcag,f?) )
(B ~_~~>(O) -1 per(d.z9:.)
af’p (n_ )2 af °fg’

NORMALIZATION: Such that the 2-BARYON FCT

Ggg/(’u,, ’U) == <B€(U)Bg/> XUO§UO — <B€(u)B£/>* XUO>UO ,

is —1 at Kk = 0. Orthonormal at x = 0.

PRODUCT STRUCTURE: (u9 # 49)

3
Gélgg — _2637"17[

G2 (u, (0, )G (0 + 1,8),0)X0. 0
+659) (u, (p+ 1,8)G) (9 0), ¥)X405,0
_ ) 5 (0)
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SPECTRAL REPRESENTATION for G: For 4% o=
v9, and By = By(1/2,0), z = u—w, since Goo,(u,v) =
Geleg(u_v)
1 0 o
— 0 —1_—iA.
@) = — [ [ QO e A
x dy(Byy, EAO,N) By,

Here z € Z%, 29 # 0. G is an even function of Z.

FOURIER TRANSFORM:

Gre,(p) = Y G, (@)e”P?
xeZ4
After Separating the Equal-Time Contribution, has
the Spectral Representation

~ 1

Cryy() = Gyt ()= (2m)3 [ £ A0)dy0050,0,(A°) .
where
dkoozﬁglb(/\o)zfT3 5(5—N)dyod5(Bey, E(A0, X) By,

with f(:c y) — (eix y) Ly (e —4)~1 and we set
G(p) = —IG (20 = 0, 2).

USE Gy,4,(p) to DETECT PARTICLES.

Particles correspond to Singularities of églgz(p), for
Imaginary pY, and are Points in the E-M Spectrum.
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7T, P & Spectral Rep.: G is Self-Adjoint.

Theorem GLOBAL BOUND for Gy, 4, (p):

Gy, (u,0)| < < O(1) [[3107

O(1) > 0 uniform in x and /¢'s.

Follows a Spectral MASS GAP of at least

—(B3—-¢e)lnk , O0<ex 1

To GO HIGHER in Spectrum: Use Meromorphic
extension of G(p). For Fixed p and &

m~1(p) = {cof [F(p)]}! / deti(p),
C(p)G(p) =1, I is Convolution Inverse of G.

Thus, the SINGULARITIES of G(p) Are in Zeroes
of detf (p).

That F—1(p) provides an extension of G(p) follows
from the FASTER TIME FALLOFF of I.

PRODUCT STRUCTURE Is INSTRUMENTAL In
Showing The Faster Falloff of I !

20



Define T by NEUMANN SERIES:
r = Q+6'6) 6!t

O
S ("G a6t
n=0

G = Gy + Gn, G4 diagonal.

G, and G;l bounded since Gflo) = —1.

Neumann Series CONVERGES: Recall from THM
|G| is O(k3). Using This, we have

Theorem GLOBAL BOUND for 'y, (p):

.o, (u,v)| < O(1)]|k 3fu—1] 5(|UO_UO|_1), uP—0 £ 0,
l14o
O(1) > 0 uniform in k and ¢'s

Proof of Both Theorems: Applications of the Hy-
perplane Decoupling Expansion.(Product Structure
Enters in Essential and Instrumental Way for IM).

ANALYTICITY of [ (p): Strip |9m p®| < —(5—¢) In k.

DISPERSION CURVES: | det (p° = iw(p),p) =0,

For FIXED p, the Curves Are ISOLATED from the
Rest of the Spectrum.

21



NUMBER of SOLUTIONS: INTUITIVE ARGUMENT

Retain Only O(x3) terms.
3

K :

G€1€2(p)_[ 1-2k COSpO 4 Z Cosp]]5€1€2+0(f€6)
J=1,2,3

_ 3 0 K3 . .

Fo,0,(p) =[-1+2Kk>COSp t S cosp’16g,0,+O(K°)
j=1,2,3

[ is Multiple of Identity Under This Approximation.

Dropping the k=% terms, deti (p) FACTORIZES
INTO 56 FACTORS.

Let p7 =233 (1 —cosp').
EACH FACTOR Gives (Identical) DISP. CURVE

33 3
w(p) = w(p,r) = [3Ink = ==+ p7] + )

PARTICLE MASS:

3
M =w(0, k) = [— 3|n/<;—i]—|-(’)(/<: )
OBS.: Solution in Imp® runs out to Infinity as x \

0.
22



SOLUTION Without Approximation: In Contrast to
ABOVE INDIVIDUAL SPIN and ISOSPIN BASIS

PARTICLE BASIS

In this Basis, G is more diagonal By Using: SU(3);
and Other Symmetries as Charge Conjugation, Par-
ity, Time Reflection. ANALYSIS Becomes SIM-
PLER.

Related to INDIVIDUAL Basis By ORTHOGONAL
TRANSFORMATION. Orthonormal at k = 0.

FASTER DECAY of I is MAINTAINED in PARTI-
CLE Basis. (Isolated Dispersion Curves).

PARTICLE Basis: Elements Labelled by EIGHT-
FOLD WAY Quantum Numbers and SPIN.

Total Isospin I, z—component I,, Hypercharge Y,
Value of Quadratic Casimir co of SU(3);. c3 not
needed! LABELS of Total Spin J and J,.

Orthogonality Relations Ensure 2pf is DIAGONAL
In ALL Quantum Numbers BUT Spin, for all kK > O.
23



DECOMPOSITION of G: TWO Identical 8x8 blocks
(J=1/2) + FOUR Identical 10 x 10 (J = 3/2).

DECOMPOSITION of I': SAME Block Struct.

ADDITIONAL SYMMETRIES: Parity P, Charge
Conjugation C, Discrete Spatial Rotations of n/2
About e3 and Time Reversal 7.

(p) Is Simplified: (7= 0) Is DIAGONAL.

[ (p) Still NOT DIAGONAL for 5 # 0.

Here: For p = 0O, detl Factorizes. USE AUXIL-
IARY FCT Method, Rouché’'s Thm To Get MASS

Spectrum.

MASSES Given By Convergent Expansions in k.
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NEW SYMMETRY: TIME REFLECTION T.
PCT, Further Diagonalizes [ (p). PCT is nonlocal!

OCTET GETS DIAGONAL. DECUPLET GETS
AS CLOSEST AS POSSIBLE TO DIAGONAL.

e Time Reflection T: wa(z) — Aysv(—2°, @),
Pa(z) — 155(—:1:0,:7:’)3504 where A=B = A"1 =

(i?z 212 ) f(g:cy)—>f(g ),Wich:(_zO’g :

o Time Reversal 7: wo(z) — vg(a)Ag,, o
( 20, %), Ya(z) — Bagpg(al), A= B = B~1
v0, F(gzy) — [f (gt 1™

Composed Operation Fs = —7CT Gives Spin Flip
(LOCAL) is a Symmetry. Leaves Invariant EACH
Term in Action. ¥1 — U5, s — —11, (12 — 34),
Jdxy — Jzy

25



HYPERPLANE EXPANSION: Fields Which Create
Baryons are (with all fields at the same point). For
the anti-baryons, all the fields must be unbarred.

OCTET

P+ — eabc (wa+u¢b d — @a—kd?ﬁzb—u)@zcim

n4 “bc U5 (Patuo—d = PatdPb—u)Vetd

Eoi = eabc 5 (Patutb—s = VatsPb—u) Pets,

=1 = Eabc (¢a+d¢b s = VatsVb—d) Yets,
VI = E“bc 25 (Patuo—s = YatsPb—u)Vetus

9 = e‘ébc (2Ya+uptd¥ers — Ya—upt-dPets—

VatuPo—dPets);
24 = Eabc (¢a+d¢b s — VatsVb—d)Vetds

\ Ny = abc (¢a—|—u¢b d @ba—l—dﬂb—u)@zcib‘a

Subindices & denote J, = 3.

n, p, = and =9 have total isospin I = 1/2; T,
>0 and X~ have I=1 and A has I = 0.

co = 3 for Each Member of the Octet.
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> 50 A s+
0 ® — 1
~1 2
=" =0
I I
3 -1 -1 0 I 3

The particle total Hypercharge Y, Strangeness S,
Total Isospin I and z—component of Total Isospin
I3 are indicated.
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DECUPLET

( A+ = = (¢aiu¢biuwc$d+2waiu¢b$uwcj:d)
AL = = YatulPbtuPerd,

A2 %b (2¢aiu¢bid¢c¢d—|‘€5a¢u@bid@cid) :
AY, Datub+dtd

A% = % VYardPbrdPerd »

A% = % )y qPpralesd

A;F = 2% %iuwbiu%;u,

A++ = = Pyt DptuPetu

Z*+ = waiuwbiu%ﬂ:s,

ij = % (YotuPptuerst2PatutPyrullets) ,

Ziao = e )ty PprqPests ,

Z;iz? =34 (¢aiu¢b:|:d¢cq:s + YatuPpraers + VaruPpraets),

*_

Z% T 2\/§

30 = ¢ (Yara¥vra¥erst2atayratess),
2

_*O —_— eabc

:i?, — waiuwb:ﬂ:s’wCﬂ:Sa

:j:(l) — eab (¢a¢u¢bis—|—2¢aiuwb$s)¢ci8’

2
g —
—+3 —

2

=L =% (%q:dlﬁbis+2¢aid¢b:ps)¢cis,

2
Qé abc¢aﬂ:s¢b:|:s¢c:l:s;
2

Q; — eab ¢ai8¢bis¢c$s,
2

co = 6 for Each Member of the Decuplet.
28
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e—Charges verify Gell’Mann-Nishijima relation

Y
Q=I3‘|‘5
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For DECUPLET, In T (p # 0): Four 10 x 10 —
Ten 4 x 4 Blocks With Fixed J,. Multiplicity Two
Eigenvalues (a,b € R)

a 0 c¢c d

O a d —c

c d b O ’
d —c 0 b

1,2,3,4 label J, =3/2,-3/2,1/2,—1/2, respectively.

We Cast the Problem of Determining Dispersion
Curves and Masses into Framework of the ANA-
LYTIC IMPLICIT FCT THM

To obtain M up to and including order k®, we must
compute the values of the 371 contributions to
M(20 = ree?, @) for r =0, |Z| < 2; r =1, |Z] < 2;
r=2 |8 <1, r=3,4, £=0.

Need G for the above points and also the g3713

contributions to G(z) for z = ree® + €eJ, r = 3,4,
as They are Needed in Neumann Series.

30



SHORT DISTANCE behavior of G(x) and [(x):
(c's, ¢”’s, d's and d’'s are computable « and spin
independent constants.)

Decuplet 2pf. In this case, FOR Gr,r,(z), we have:

o [—1+ cgr® + O(k*)]0rr, , x =0

o (—r3+ c9k?)dr, + O(k1Y) , 2 = €€l ;

°o — %K/357‘1T2 + O(K?) , x = €€l ;

o [(—r® 4 c126'2)0pr, + O(K2)] 8u0 + [~ 560, + O(K1O)] 64y

r = 2eet;
° (1_1657“1§ — %5701%)/165“@ + O(k19) |, £ = eel 4+ €€?
° (—i 3 s + 3%5 1)K, + O(K10) , o = eel 4 €e3, ee? + €e3
o — —/165T1T2 - O(K,lo) x = ceV + el ;
° 64 K20, + O(k10) , x = €e® + 2¢’el ;
° — %/{95r1r2 + O(Kk'3), = 2ee® + €' ;
(3% 2~ i5 )/43957"17“2 + O(k1%) , 2 = ee¥ + €’el 4+ €”e?;
55— —|— 5 )/4;95,~lr2 + OO, =€+ e'e+€"e3, i =1,2;
(—r° + 615I€15)5r17«2 + O(k1%) , 2 = 3ee?;
d12k128,, + O(k13) , x = 3ee® + €'el ;
(=K' 4+ c186'8) 0,0, + O(K1?) |, 2 = dee?;
d15k1%8,, + O(Kk'®) , £ = 4ee® + €'el ;
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FO R I_’I"]_’I"Q (m)

e [-1-— %’4’6 + 0(58)]57*17“2 , v =0;

o (k34 ik, + O(K10) |, . = €e;

o £x30,, +O(x°), . =eel;

o [612’11257“17"2 + 0(513)] 5u0 + [67_4’1657“17"2 + O(filo)] 51”' , T = 2eel;
J (_3%5r1§ + 3%5r1%)m65r1r2 + O(k'9) , x = eel + €€?;

(0 5T1§ — %57,1%)/1657«1T2 + O(k'0) , z = eel + €e3, ee® + €e3;
O(k19) , £ = ee® + el ;

O(k1%) , £ = ee® + 2¢’el;

O(k13), £ = 2ee® + €€l ;

O(k1%) , x = €e® + €’e? + €"el>?;

1k 8, + O(K1%) | © = 3ee?;

c1gkt80rr, + O(K1%) , z = 4ee?;

Octet 2pf: SAME FOR z = ree#, r = 1,2,3,4, eeP+
e'el, eeO—I—Qe’ej, 2€eo—l—e’ej, 3€€O—|-€/€j, 4eeo—l—e’ej.

For z = eé -+ e’ej, r = eeY -+ e'el -+ e"ej, for 1y =

12,13,23, the results are different (Former is RE-
SPONSIBLE FOR MASS SPLITTING!)

1 1
Griry = —1—6H65T1r2+0(’f7)7 Uiy = 5“65T1T2+O(“7)7

5
Grlfrz — _55957"17"2 _I_ O(Kflo) , I—’I"]_T’Q — O(H}lo) .
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Continuing: FOR OCTET, Fix x and p. Apply
a ROUCHE's theorem Argument. (Recall I =
const I).

Find OCTET Dispersion Curve

wo(p) = w(p, k) = [—3 In kK — 3&3/4 -+ p§m3/8]—|—ro(ﬁ) ,

ro(p) is of O(k®) and is jointly analytic in each p’
and k.

FOR DECUPLET: In Terms of 4 x 4: Two-By-
Two Dispersion Curves wy(p) Are Determined By
(p Dependence Omitted in ;)

% [|=11 + |=33}i\/% ['z11 — |=33}2 + )|=13‘2 + )lz14‘2 =0.

Due to SQUARE ROOT, and Analyticity Difficul-
ties, the Auxiliary Function Method is NOT DI-
RECTLY Applicable.

Rouché’s argument can be applied and shows the
existence of Exactly Four solutions.

Taking the union of these solutions for all p It Does
NOT tell us How to Decompose Them Into Curves.
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TO CONSTRUCT DISPERSION CURVES: FIXED-
POINT Method Is Sketched in Our Previous Ref-
erence.

That each Dispersion Curve is Isolated In ALL H,

Up To Near the Meson-Baryon Threshold Fol-
lows from a SUBTRACTION METHOD. (Omitted
Here!)

SHORT DISTANCE BHV: CORRECTS OUR PRE-
VIOUS: TWO-FLAVOR RESULTS. BS Are OK!

BOSONIC EIGHTFOLD WAY: AVAILABLE SOON.

MESONIC EIGHTFOLD WAY: On the Way, With
A.F. Neto.
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