Search for $f_{1}(1285) \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decay with VES detector

VES collaboration IHEP, Protvino, Russia

Presented by V.Nikolaenko

Introduction.

- f1(1285) mass: $m=1281.8 \pm 0.6 \mathrm{MeV}$;
- width: W= $24.2 \pm 1.1 \mathrm{MeV}$;
- Known f1(1285) decays:
f1(1285) $\rightarrow 4$ п,
BR=(33.1 $\pm 2.1) \%$ $\mathrm{f} 1(1285) \rightarrow$ Ппт, $\quad \mathrm{BR}=(52 \pm 16) \%$ including $\rightarrow \mathrm{a}_{0} \pi$ $\mathrm{f} 1(1285) \rightarrow \mathrm{K} \overline{\mathrm{K}} \pi \quad \mathrm{BR}=(9.0 \pm 0.4) \%$ f1(1285) \rightarrow ρY BR=($5.5 \pm 1.3) \%$

Theoretical predictions

- Decay $f_{1} \rightarrow \pi^{+} \Pi^{-} \pi^{0}$ violates the isospin symmetry
- This decay can proceed via $f_{1} \leftrightarrow a_{1}$ mixing and due to the mixing $a_{0}(980) \leftrightarrow f_{0}(980)$ predicted by N.Achasov et.al., Phys.Lett. B88(1979) 367. The violation of isospin symmetry at this mass region should be particularly strong due to the mass difference between the pairs of charged and neutral kaons. It leads to significant enhancement at $m\left(\pi^{+} \pi^{-}\right) \approx 2 m_{k}$.
- The f_{1} decay is a reach source of $a_{0}(980)$

$\mathrm{a}_{0}(980) \leftrightarrow \mathrm{f}_{0}(980)$ mixing

Diagrams with pairs of charged and neutral kaons cancel one another, but this cancellation is not exact due to the kaon mass difference

reaction $\pi^{-} N \rightarrow\left(\mathrm{f}_{1} \pi^{-}\right) \mathrm{N}$

- is suitable for search of $f_{1} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decay: - this is a diffractive reaction, the cross section is large and the It l-distribution is narrow;
- background reaction $\pi^{-} N \rightarrow(4 \pi) N$ is not a diffractive process and it is relatively suppressed, particularly at low It I ; - the dominant decay, $f_{1} \rightarrow \eta \pi^{+} \pi^{-}$, and the rare decay $f_{1} \rightarrow \pi^{+} \Pi^{-} \pi^{0}$ are similar from the experimental point of view

Experiment and event selection

- Statistics acquired in m-Be interactions at 27, 36.6 and $41 \mathrm{GeV} / \mathrm{c}$ is analysed
- requested primary vertex, two neg. and one pos. outgoing track, two showers in ECAL, which are not associated with charged tracks and have E>250 MeV
- Events with identified e^{+-}or K^{+-}were rejected
- A requirement on the sum of energies of outgoing particles was imposed, which selected events in diffractive peak

Fig.1, π^{0} and η signals

selection requirements (cont.)

- EM-showers with effective mass from 105 to 165 MeV were taken as $\pi 0$-candidates; the m-range for η-candidates was $(435,620) \mathrm{MeV}$;
- Accepted (yy)-candidates were subjected to a kinematical 1C-fit to a pion or η mass; fitted parameters were used at further steps. Number of selected ($\pi^{+} \pi^{-} \pi^{0} \pi^{-}$) events is $9.0 \cdot 10^{6}$.
- Events with I t'l < $0.04 \mathrm{GeV}^{2}$ were kept for analysis

Fig.2, t-distributions

t-distribitions for $\left(\pi^{+} \pi^{*} \pi^{0} \pi^{*}\right)$ and $\left(\eta \pi^{+} \pi^{*} \pi^{\prime}\right)$ production

Fia.3. $\left(n \pi^{+} \pi^{-} \pi^{-}\right)$svstem

- Events with $-\mathrm{t}<0.04 \mathrm{GeV}^{2}$ selected, the number of f_{1} events is 69500 ± 500

$\left(\eta \pi^{+} \pi^{-}\right)$system

- The following observations were made:
- the $\left(\mathrm{f}_{1} \pi^{-}\right)$system is produced in spin-parity state JP $\mathrm{m} \mathrm{\eta}=1^{+} 0+$;
- the decay of this system into $f_{1}\left(J^{P}=1^{+}\right)$ and π proceeds in P-wave;
- the decay $f_{1} \rightarrow \eta$ тा again involves a P wave ;
- we derived an angular part of the amplitude which describe the sequence of production and decay processes:

angular amplitude

$$
A=C \sin \theta_{1} \sin \theta_{2} \sin \left(\phi_{0}-\phi_{2}\right)
$$

here
θ_{1} is the Gottfried-Jackson angle of the extra π; θ_{2} is the polar angle of π^{0} at the f_{1} rest frame with Z-axis going along the direction of extra π^{-}; φ_{0} and φ_{2} are azimuthal angles of the beam particle and the π^{0} at the same system, respectively. The validity of the corresponding weight,

$$
W=|A|^{2}
$$

is demonstrated at Fig. 4.

Fig.4, ($\left.\eta^{+} \pi^{+} \pi^{-} \pi^{-}\right)$system ($\left.\eta \pi^{+} \pi^{-} \pi^{-}\right)$system

$m\left(\eta \pi^{+} \pi^{-}\right)$distribution for events at $W>0.8$ is divided by a similar spectrum at $W<0.2$

Fig.5, ($\pi^{0} \pi^{+} \pi \cdot \pi$) system

$$
\left(\pi^{+} \pi^{-} \pi^{0} \pi^{-}\right) \text {system }
$$

- The total mass and the mass spectra of 2- and 3body combinations are shown at Fig. 5 .
- There are two entries per event at Fig. 5b, 5d, $5 f$
- It worse mentioning that the decay $\omega \rightarrow \pi^{+} \pi^{-}$is seen at Fig.5d (see zoom at the corner).
- A structure seen at Fig.5b near m=1300 MeV was subjected to detailed analysis.
- New cut: events with $m\left(\pi^{+} \pi^{-} \pi^{0}\right)<800 \mathrm{Mev}$ were discarded.
- Angular weight W obtained in the analysis of the $\left(\eta \pi^{+} \pi^{-}\right)$system was applied

Fig.6, Selected events at
$\left.0.97<m\left(\pi^{+} \pi^{-}\right)<1.00\right)$

- a) $m\left(\pi^{+} \pi^{-} \pi^{0}\right)$ at low It I; b) the same but weighted; c) ratio of Weighted to Unweighted spectra; d) similar ratio for $m\left(\pi^{+} \pi^{-} \pi^{0}\right)$ at high It $\left.I ; e\right)$ similar ratio for $m\left(\pi^{+} \pi^{-} \pi^{-}\right)$at low It I.

Next steps

- Results from two different methods are shown:
- 1) events with $m\left(\pi^{+} \pi^{-}\right)$in interval $0.97<\mathrm{m}<1.00 \mathrm{GeV}$ were selected, and the 3-body mass spectra, $m\left(\pi^{+} \pi^{-} \pi^{0}\right)$ and $m\left(\pi^{+} \pi^{-} \pi^{-}\right)$were produced, at low |t|and at high | $\mathrm{t} \mid$, weighted with angular weight and unweighted. Some distributions are shown at Fig. 6 and 7.

Next steps (cont.)

- 2) events with 3-body mass, $m\left(\pi^{+} \pi^{-} \pi^{0}\right)$ in the interval from 1.20 to 1.35 GeV were taken. This interval was subdivided into 15 bins, the bin width is 10 MeV . The $\quad \mathrm{m}\left(\pi^{+} \pi^{-}\right)$spectra in individual bins were inspected. A bump at the mass close to 985 MeV is observed at the bin from 1280 to 1290 (Fig.8). The fit with a gaussian signal and BG (phase space multiplied to a quadratic function with arbitrary coefficients) is shown.

Fig. 7, Ratio of weighted mass $\left.\underset{\substack{\text { ves reseminaryy }}}{\mathrm{specta}} 0.97<m\left(\pi^{+} \pi^{-}\right)<1.00\right)$

- $m\left(\pi^{+} \pi \pi^{0}\right)$ spectrum at low $I t I$ is divided by a spectra sum:
- sum $=m\left(\pi^{+} \pi^{-} \pi^{0}\right)$ at high It I plus $m\left(\pi^{+} \pi \pi^{-}\right)$at low It I ; fit by BW + linear Background yields $m=1285 \pm 5 \mathrm{MeV}$ and Width $28 \pm 10 \mathrm{MeV}$; the signal significance is 4σ

Fig. 8, Fit of $m\left(\pi^{+} \pi \pi^{-}\right)$spectrum

VES preliminary

Fit result

selected events at $1.280<m\left(\pi^{+} \pi^{-} \pi^{0}\right)<1.290 \mathrm{GeV}$

Last steps

- The gaussian width of the fitted signal was determined at mass bin from 1280 to 1290 MeV , and then it was fixed. Statistical significance of the signal in this bin increased to 6.0σ. Then fits at other bins were made, with fixed gaussian width.
- Results are shown at Fig.9. A peak is observed at this summary plot, with mass $1288 \pm 2 \mathrm{MeV}$ and BreitWigner width of $19 \pm 4 \mathrm{MeV}$
- The sum of observed signals $\mathrm{N}=1491 \pm 334$ events.
- A similar procedure with binning on the $m\left(\pi^{+} \pi^{-} \pi^{-}\right)$ was performed, no signal at the f_{1} region was found.

Fig.9.VES preliminary

Fitted number events in the peak at $m\left(\pi^{+} \pi^{-}\right)$ spectrum near 985 MeV as a function of $\mathrm{m}\left(\pi^{+} \pi^{-} \pi^{0}\right)$

Conclusions

- All elements of the observed pattern fit well in the hypothesis that the decay $f_{1}(1285) \rightarrow \pi^{+} \Pi^{-} \pi^{0}$ is observed and that the mechanism of the isospin symmetry breaking, which has been predicted by Achasov and collaborators in 1979, works in this decay.
- From the observed number of events in $\left(\eta \pi^{+} \pi^{-}\right)$and $\left(\pi^{+} \pi^{-} \pi^{0}\right)$ channels we determine the relative branching ratios.
Our estimations are obtained actually in restricted interval of $m\left(\pi^{+} \pi^{-}\right)$, between 960 and $1010 \mathrm{MeV} / \mathrm{c}^{2}$:

Branching ratios

$$
\begin{aligned}
& \frac{B R\left(f_{1}(1285) \rightarrow \pi^{+} \pi^{-} \pi^{0}\left(0.96<m\left(\pi^{+} \pi^{-}\right)<1.01\right)\right)}{B R\left(f_{1}(1285) \rightarrow \eta \pi^{+} \pi^{-}\right) \cdot B R(\eta \rightarrow \gamma \gamma)} \\
& =(2.1 \pm 0.5) \%
\end{aligned}
$$

or

$$
\begin{aligned}
& B R\left(f_{1}(1285) \rightarrow \pi^{+} \pi^{-} \pi^{0}\left(0.96<m\left(\pi^{+} \pi^{-}\right)<1.01\right)\right)= \\
& =(0.29 \pm 0.11) \%
\end{aligned}
$$

This value agrees with predictions of Achasov et al.

