Spacelike and Timelike Nucleon Form Factors within Light-Front dynamics

J. P. B. C. de Melo (CCET, Univ. de Cruzeiro do Sul, São Paulo) Tobias Frederico (ITA-CT, São Paulo)
Emanuele Pace (Tor Vergata University \& INFN)
Silvia Pisano (Rome University \& INFN - Tor Vergata)
G. S. (INFN - Roma)

Electromagnetic Hadron Form Factors and Higher Fock Components \rightarrow J. P. B. C. de Melo, T. Frederico, E. Pace, S. Pisano, G. Salme', Nucl. Phys. A 782 (2007) 69c

Timelike and spacelike hadron form factors, Fock state components and light-front dynamics J. P. B. C. de Melo, T. Frederico, E. Pace, S. Pisano, G. Salme', Nucl. Phys. A 790 (2007) 606c

Pion ff in the space-like and time-like regions \rightarrow J. P. B. C. de Melo, T. Frederico, E. Pace, G. Salme', Phys. Lett. B 581 (2004) 75

Space-like and time-like pion electromagnetic form factor and Fock state components within the Light-Front dynamics \rightarrow J. P. B. C. de Melo, T. Frederico, E. Pace, G. Salme', Phys. Rev. D 73, 074013 (2006)

Outline

- Motivations
- A covariant approach for the Hadron EM Current: i) the Mandelstam Formula - ii) phenomenological Bethe - Salpeter amplitudes for Hadrons - iii) quark-photon vertex
- Pion EM Form Factor in the space- and time-like regions: tuning our model - Microscopic Vector Meson Dominance
- Nucleon EM Form Factors in the space- and time-like regions: quark-photon vertex \equiv Bare + VMD
- Conclusion \& Perspectives: Nucleon GPD's ?

The investigation of hadron EM form factors in the space- and time-like regions, within the light-front dynamics,

- opens a unique possibility to study the hadronic state, in both the valence and the nonvalence sector (Brodsky, Pauli \& Pinsky, Phys. Rep. 301 (1998) 299)

$$
\begin{aligned}
\mid \text { meson }\rangle & =|q \bar{q}\rangle
\end{aligned}+|q \bar{q} q \bar{q}\rangle+|q \bar{q} g\rangle \ldots . . .
$$

\star A meaningful Fock expansion within LF framework, due to the properties of the LF vacuum.
$\star \star$ Zero modes $\rightarrow \chi$ SB for fermions

- yields the possibility to address the vast phenomenology of hadronic resonances (Vector Meson propagation...) in the time-like region, and then to impose strong constraints on dynamical models pointing to a microscopical description of hadrons
- allows one to obtain insights into the two-body currents associated to the $q \bar{q}$ pair production, (very important in reference frames where $q^{+} \neq 0$).

The Mandelstam Formula for the EM current

Our guidance \Rightarrow the Mandelstam formula, that yields a covariant expression for the em current of Hadrons, (to be considered as an interacting systems).

For a global investigation of SL and TL regions we need to change frame, from the $q^{+}=0$ frame (a standard choice within LF) to a $q^{+} \neq 0$ frame (F.M. Lev, Pace and G.S. NPA 641 (1998) 229).

In the SL region

$$
\begin{aligned}
& j^{\mu}=-\imath e \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{Tr}\left[S_{Q}\left(k-P_{h}\right) \bar{\Lambda}_{h}\left(k-P_{h}^{\prime}, P_{h}^{\prime}\right) S(k-q) \times\right. \\
& \left.\quad \Gamma^{\mu}(k, q) S(k) \Lambda_{h}\left(k, P_{h}\right)\right]
\end{aligned}
$$

- $S(p)=\frac{1}{\not p-m+\imath \epsilon}$, with m the mass of the constituent quark struck by the virtual photon
- $S_{Q}(p)$: propagator(s) of the spectator constituent quark(s) for a meson (baryon)
- $\Lambda_{h}\left(k, P_{h}\right)$ is the hadron vertex function; P_{h}^{μ} and $P_{h^{\prime}}^{\mu}$ are the hadron momenta. Very important: it contains a Dirac structure, i.e. a proper combination of Dirac matrices.
- $\Gamma^{\mu}(k, q)$ is the quark-photon vertex (q^{μ} the virtual photon momentum)

$$
\mathrm{SL} \rightarrow \mathrm{TL} \quad P_{h}^{\mu} \quad \rightarrow \quad-P_{\bar{h}}^{\mu}
$$

Projecting out the Mandelstam Formula on the Light Front

...through a k^{-}integration, (only the poles of the Dirac propagators taken into account), in a reference frame where $q^{+}>0, \quad \mathbf{q}_{\perp}=0$

Pion

Space-like region

(val.) $0<k^{+}<P_{\pi}^{+} \quad P_{\pi}^{+}<k^{+}<q^{+}$(non-val.)
$\times \Rightarrow k$ on its mass shell : $k_{\text {on }}^{-}=\left(m^{2}+k_{\perp}^{2}\right) / k^{+}$
$\star \star$ Second Problem: How to connect the Fock language with the Bethe-Salpeter one, e.g. how to describe the vertex amplitude $\Lambda\left(k_{i}, P_{h}\right)$ in both the valence and the non-valence regions? $\star \star$
\star In the limit $m_{\pi} \rightarrow 0$, the quark-photon vertex is dominated by the $q \bar{q}$ production. In particular only the VMD mechanism is acting.

* A Vector Meson Dominance approximation has been applied to the quark-photon vertex, when a $q \bar{q}$ pair is produced

$$
\Gamma^{+}(k, q)=\sqrt{2} \sum_{n, \lambda}\left[\epsilon_{\lambda} \cdot \widehat{V}_{n}(k, k-q)\right] \frac{\Lambda_{n}\left(k, P_{n}\right)\left[\epsilon_{\lambda}^{+}\right]^{*} f_{V n}}{\left(q^{2}-M_{n}^{2}+\imath M_{n} \Gamma_{n}\left(q^{2}\right)\right)}
$$

- $f_{V n}$ is the decay constant of the n -th vector meson into a virtual photon (to be calculated in our model !), M_{n} the mass, $\Gamma_{n}\left(q^{2}\right)=\Gamma_{n} q^{2} / M_{n}^{2}\left(\right.$ for $\left.q^{2}>0\right)$ the corresponding total decay width and ϵ_{λ} is the VM polarization
- $\left[\epsilon_{\lambda} \cdot \widehat{V}_{n}(k, k-q)\right] \equiv$ Dirac structure of the VM Bethe-Salpeter amplitude.
$\Lambda_{n}(k, q) \equiv$ momentum-dependent part of the BS amplitude (to be approximated in our approach).

By eigenfunctions of a relativistic CQ square mass operator (Frederico, Pauli \& Zhou, PRD 66 (2002) 116011)

Pion EM Form Factor

 in the space- and time-like regionsThe pion EM form factor can be extracted using the definitions

$$
\begin{aligned}
j_{T L}^{\mu} & =\langle\pi \bar{\pi}| \bar{q}(0) \gamma^{\mu} q(0)|0\rangle=e\left(P_{\pi}^{\mu}-P_{\bar{\pi}}^{\mu}\right) F_{\pi}\left(q^{2}\right) \\
j_{S L}^{\mu} & =\langle\pi| \bar{q}(0) \gamma^{\mu} q(0)\left|\pi^{\prime}\right\rangle=e\left(P_{\pi}^{\mu}+P_{\pi^{\prime}}^{\mu}\right) F_{\pi}\left(q^{2}\right)
\end{aligned}
$$

From i) the Mandelstam formula, ii) integrating over k^{-}taking into account only the poles of Dirac propagators and iii) putting $m_{\pi} \rightarrow 0$ one obtains the following expression of the EM pion form factor

$$
\begin{gathered}
\text { calculated } \downarrow \\
F_{\pi}\left(q^{2}\right)=\sum_{n} \frac{f_{V n}}{q^{2}-M_{n}^{2}+\imath M_{n} \Gamma_{n}\left(q^{2}\right)} g_{V n}^{+}\left(q^{2}\right) \\
\text { Two adjusted parameters } \uparrow
\end{gathered}
$$

1) The width, Γ_{n}, of the VM's with mass $>2.150 \mathrm{GeV}$. The chosen value $\Gamma_{n}=0.15 \mathrm{GeV}$ is similar to the width of the first four VM's
2) $w_{V M}$, the weight the so-called instantaneous contributions.

Pion EM Form Factor in the SL and TL regions Comparison with Exp. data

- Data, R. Baldini et al. (EPJ. C11 (1999) 709, and Refs. therein.)

Solid line: calculation with the pion w.f. from the FPZ model for the Bethe-Salpeter amplitude in the valence region $\left(w_{V M}=-0.7\right)$.
Dashed line: the same as the solid line, but with the asymptotic pion w.f. $\quad\left(\Lambda_{\pi}\left(k ; P_{\pi}\right)=1\right)$

$$
\psi_{\pi}\left(k^{+}, \mathbf{k}_{\perp} ; P_{\pi}^{+}, \mathbf{P}_{\pi \perp}\right)=\frac{m}{f_{\pi}} \frac{P_{\pi}^{+}}{\left[M_{\pi}^{2}-M_{0}^{2}\left(k^{+}, \mathbf{k}_{\perp} ; P_{\pi}^{+}, \mathbf{P}_{\pi \perp}\right)\right]}
$$

Our microscopical VMD depends upon one parameter and now is fixed!

The Dirac structure of the quark-nucleon vertex is suggested, as in the case of the quark-pion vertex, by an effective Lagrangian (de Araujo et al PLB B478 (2001) 86)

$$
\begin{aligned}
& \mathcal{L}_{e f f}(x)=\frac{\epsilon_{a b c}}{\sqrt{2}} \int d^{4} x_{1} d^{4} x_{2} d^{4} x_{3} \mathcal{F}\left(x_{1}, x_{2}, x_{3}, x\right) \sum_{\tau_{1}, \tau_{2}, \tau_{3}} \times \\
& {\left[m_{N} \alpha \bar{q}^{a}\left(x_{1}, \tau_{1}\right) \imath \tau_{y} \gamma^{5} q_{C}^{b}\left(x_{2}, \tau_{2}\right) \bar{q}^{c}\left(x_{3}, \tau_{3}\right)-\frac{(1-\alpha)}{\sqrt{3}} \times\right.} \\
& \left.\bar{q}^{a}\left(x_{1}, \tau_{1}\right) \vec{\tau} \imath \tau_{y} \gamma^{5} \gamma_{\mu} q_{C}^{b}\left(x_{2}, \tau_{2}\right) \cdot \bar{q}^{c}\left(x_{3}, \tau_{3}\right) \vec{\tau}\left(-\imath \partial^{\mu}\right)\right] \psi_{N}\left(x, \tau_{N}\right)
\end{aligned}
$$

$$
+\ldots
$$

for the present time $\alpha=1$, i.e. no derivative coupling

Space-like

Triangle cont. Pair cont. (Z-diag.)

Time-like

The non valence contribution of the photon is involved: $|q \bar{q}, q \bar{q}, q \bar{q}\rangle$

Definition

The nucleon em form factors (Dirac and Pauli ff's) are introduced as usual from the matrix elements of the macroscopic em current

$$
\begin{aligned}
& \left\langle N ; \sigma^{\prime}, p^{\prime}\right| j^{\mu}|p, \sigma ; N\rangle=\bar{U}_{N}\left(p^{\prime}, \sigma^{\prime}\right)\left[-F_{2}\left(Q^{2}\right) \frac{p^{\prime \mu}+p^{\mu}}{2 M_{N}}+\right. \\
& \left.\left(F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right)\right) \gamma^{\mu}\right] U_{N}(p, \sigma)= \\
& =3 N_{c} \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \int \frac{d^{4} k_{2}}{(2 \pi)^{4}} \sum\left\{\bar{\Phi}^{\sigma^{\prime}}\left(k_{1}, k_{2}, k_{3}^{\prime}, P_{N}^{\prime}\right) \times\right. \\
& \left.\quad S^{-1}\left(k_{1}\right) S^{-1}\left(k_{2}\right) \mathcal{I}^{\mu}\left(k_{3}, q\right) \Phi^{\sigma}\left(k_{1}, k_{2}, k_{3}, P_{N}\right)\right\}
\end{aligned}
$$

where $\mathcal{I}^{\mu}\left(k_{1}, k_{2}, k_{3}, q\right)$ is the quark-photon vertex, $\Phi_{N}^{\sigma}\left(k_{1}, k_{2}, k_{3}, p\right)$ the Bethe-Salpeter amplitude that contains a Dirac structure (highly non trivial...) and a dependence upon the four-momenta of the quarks.

Quark-Photon Vertex

$$
\mathcal{I}^{\mu}=\mathcal{I}_{I S}^{\mu}+\tau_{z} \mathcal{I}_{I V}^{\mu}
$$

each term contains a contribution corresponding to a purely
valence sector (Space-like only) and a contribution corresponding to the pair production (or Z-diagram).

In turn, the Z-diagram contribution can be decomposed in a bare term + a Vector Meson Dominance term (according to the decomposition of the photon state in bare, hadronic [and leptonic] contributions), viz

$$
\begin{aligned}
& \mathcal{I}_{I S(I V)}^{\mu}(k, q)=\mathcal{N}_{I S(I V)} \theta\left(P_{N}^{+}-k^{+}\right) \theta\left(k^{+}\right) \gamma^{\mu}+ \\
& +\theta\left(q^{+}+k^{+}\right) \theta\left(-k^{+}\right)\left\{Z_{b} \mathcal{N}_{I S(I V)} \gamma^{\mu}+Z_{V} \Gamma_{V}^{\mu}[k, q, I S(I V)]\right\}
\end{aligned}
$$

with $\mathcal{N}_{I S}=1 / 6$ and $\mathcal{N}_{I S}=1 / 2$. The constant Z_{b} (bare term) and Z_{V} (VMD term) are unknown renormalization constants to be extracted from the phenomenological analysis of the data.

Momentum Dependence of the Bethe-Salpeter Amplitude

In the valence sector, where the spectator quarks are on their-own k^{-}-shell and the struck one is a quark, the momentum dependence of the Nucleon Bethe-Salpeter amplitude reduces to a 3-momentum dependence, due to the LF projection we have applied.

It is approximated through a Nucleon Wave Function a la Brodsky (PQCD inspired)

$$
\mathcal{W}_{N}=\mathcal{N} \frac{1}{\left(\xi_{1} \xi_{2} \xi_{3}\right)^{0.13}} \frac{1}{\left[\beta^{2}+M_{0}^{2}(1,2,3)\right]^{7 / 2}}
$$

$\star \beta$ fixed through anomalous magnetic moments Proton: 2.878 (Exp. 2.793) Neutron:-1.859 (Exp. -1.913)
$\star \star$ The powers allow a falloff, a little bit faster than $1 / Q^{4}$ for the triangle contribution

In the non-valence sector, relevant for evaluating the Z-diagram contribution, the momentum dependence is approximated by

$$
\Lambda^{S L}=\left[g_{12}\right]^{5 / 2} \frac{\left(k_{1}^{+}+k_{2}^{+}\right)}{P_{N}^{\prime+}} g_{N \overline{3}}\left(\frac{P_{N}^{+}}{k_{\overline{3}}^{+}}\right)^{r}
$$

where $g_{A B}=\left(m_{A}^{2}+m_{B}^{2}\right) /\left[\beta^{2}+M_{0}^{2}(A, B)\right]$ and $r=0.37$ for obtaining the charge radius of the proton correctly $(\sim 0.9 \mathrm{fm}$, cf C. E. Hyde-Wright and K. de Jager, A. Rev. Nucl. and Part. Sci. 54, 217 (2004)).

An analogous expression holds in the TL.

Fixed parms

- quark mass adopted: 200 MeV
- VMD, up to 20 mesons for achieving a good convergence in the q^{2}-range investigated.The isovector part from the Pion analysis. The isoscalar part is an extension of the isovector one, with eigenvectors and eigenvalues from the Frederico, Pauli and Zhou model.

Adjusted parms

- Z_{b} and Z_{V} : renormalization constants for the pair production terms
- the power r in the non-valence vertex function in the SL
- $G_{E}^{p} \mu_{p} / G_{M}^{p}$ and G_{E}^{n}
- G_{M}^{p} / G_{D} and G_{M}^{n} / G_{D}

$$
\text { with } G_{D}=1 /\left(1-q^{2} / 0.71\right)^{2}
$$

Solid line: full calculation $\equiv \mathcal{F}_{\triangle}+Z_{b} \mathcal{F}_{\text {bare }}+Z_{V} \mathcal{F}_{V M D}$
Dotted line: \mathcal{F}_{\triangle} (elastic contribution only)
Data: www.jlab.org/ cseely/nucleons.html and Refs. therein.
The possible zero in G_{E}^{p} seems in strong relation to the Z-diagram contribution, i.e. higher Fock components of the proton state.

Solid line: full calculation $\equiv \mathcal{F}_{\triangle}+Z_{B} \mathcal{F}_{\text {bare }}+Z_{V} \mathcal{F}_{V M D}$
Dotted line: \mathcal{F}_{\triangle} (elastic contribution only)
Data: www.jlab.org/ cseely/nucleons.html and Refs. therein.

Definition: Experimental TL form factors ($\eta=2 M_{N}^{N} / q^{2}$)

$$
G_{e x p}^{p(n)}\left(q^{2}\right)=\sqrt{\left|G_{M}^{p(n)}\left(q^{2}\right)\right|^{2}+\eta\left|G_{E}^{p(n)}\left(q^{2}\right)\right|^{2} /(1+\eta)}
$$

Solid line: full calculation $\equiv Z_{b} \mathcal{F}_{\text {bare }}+Z_{V} \mathcal{F}_{V M D}$ - Dashed line: $Z_{V} \sim Z_{b}$

Data: BaBar, PRD 73, 012005 (2006), and refs. therein quoted; R. Baldini - S. Pacetti, priv. com.

Conclusions \& Perspectives

- We developed a microscopical, Poincaré covariant model for the hadron em form factors in both SL and TL region
- The Quark-photon vertex has been approximated by a microscopical VMD model plus a bare term
- The Z-diagram (higher Fock components) are essential for both Pion and Nucleon, in the reference frame adopted $\left(q^{+} \neq 0\right)$
- Pion: Results yielded a first successful test for our model.
- Nucleon: a new insight in the challenging result from TJLAB: the possible zero in G_{E}^{p} seems in strong relation to the Z-diagram contribution, i.e. to the nonvalence component of the nucleon state. A great deal of info from the TL region: proton/neutron puzzle?

Next step, GPD's

