

Open Flavour Charmed mesons

P.C.Vinodkumar Department of Physics Sardar Patel University, Vallabh Vidyanagar pothodivinod@yahoo.com

Plan of the Talk

- > Introduction
- > Spectroscopy & New Particles from Recent experiments
- > Quark model Analysis:
 - A Potential model Predictions of Open Charm mesons (CPP)
- > Puzzles about these new states
- > A Potential model study of *Di* mesonic systems
- Weak processes and related Aspects of Heavy flavour Physics
- > Future Experiments and Expectations

Introduction

Field of hadron spectroscopy has under gone a revival in recent years with the observation of many new states such as $D_0^{*0}(2351), D_0^{*+}(2403), D_1^{'0}(2438), D_{sJ}^{*}(2317), D_{SJ}^{+}(2460)$

X(3872), Y(3140) etc.

Could be new excited charmed mesonic states.

But require more confirmatory mesurments for defenite identification.

Spectroscopy & New Particles from BaBar, Belle, Cleo and Focus Collaborations

Evidence of Broad $c\overline{u}$, $c\overline{d}$ states D_0^{*0} , D_0^{*+} and $D_1^{'0}$:-

The first evidence of $c\bar{q}$ broad states was provided by Cleo Collaboration (2000). Further support came recently from Belle (2003) and Focus (2004) Collaborations.

 $\begin{array}{cccc} D_0^{*0}(2351) & D_0^{*+}(2403) & D_1^{*0}(2438) \\ M(MeV) & 2308 \pm 17 \pm 15 \, (\text{Belle}) & 2403 \pm 14 \pm 35 \, (\text{Focus}) & 2427 \pm 26 \pm 20 (Belle) \\ & 2407 \pm 21 \pm 35 \, (\text{Focus}) & 2461_{-34}^{+41} \pm 10 & (Cleo) \\ \hline \Gamma(MeV) & 276 \pm 21 \pm 18 \, (\text{Belle}) & 283 \pm 24 \pm 34 \, (\text{Focus}) & 384_{-75}^{+107} \pm 24 (\text{Belle}) \\ & 240 \pm 55 \pm 59 \, (\text{Focus}) & 290_{-70}^{+101} \pm 26 \, (Cleo) \\ \hline \end{array}$

BABAR experiment is an e^+e^- collider experiment running just below $\gamma(4s)$ resonance designed to perform precision measurements of CP violation in *B*-system, but has proven to have significantly broader physics reach. Among many things it was the first experiment to observe $D_{SI}^+(2317)$ state.

$D_{sJ}^{*}(2317)$	$D_{sJ}(2460)$		Collab	oration	
M(MeV)	$\Gamma(MeV)$	M(MeV)	Г(MeV)		
2317.3±0.4±0.8	< 10	2458.0±1.0±1.0	< 10	BaBar[PRL(2003),PRD	(2004)]
2317.2±0.5±0.9	<4.6	2456.5±1.3±1.3	< 5.5	Belle[PRL(2003)]	
2318.5±1.2±1.1	<7	$2463.6 \pm 1.7 \pm 1.2$	<7	Cleo [PRD(2003)]	

> Quark model Analysis:

Potential Models HQET QCD Sum rule Chiral Model Lattice etc...

A potential model Predictions (CPP)

The Hamiltonian for the case be written as [Hwang et al,1996]

$$H = M + \frac{p^2}{2M} + \sqrt{p^2 + m^2} + V(r)$$

Where M is the heavy quark mass, m is the light quark mass, p is the relativistic momentum of each quark and V(r) is the quarkantiquark potential.

$$V(r) = \frac{-\alpha_c}{r} + Ar^{\nu}$$

Mesonic	u	$M_V - M_P$		M_{I}	P	$M_{ m I}$	7
System		Present	Lattice*	Present	Exp**	Present	Exp**
	0.5	0.017		5.319		5.336	
	0.5	0.017		5.390		5.425	
$u\overline{b}$						5.516	
	0.9	0.063	0 0 0 1	5.453			
(B^*,B)	1.0	0.080	0.034	5.519	5.279	5.599	5.325
	1.4	0.172		5.543		5.715	
	1.8	0.288		5.563		5.851	
	2.0	0.352		5.737		6.089	
	0.5	0.019		5.382		5.401	
	0.7	0.032		5.441		5.481	
$s\overline{b}$	0.9	0.052		5.500		5.552	
(B_s^*, B_s)	1.0	0.065	0.027	5.558	5.369	5.623	5.416
	1.4	0.131		5.601		5.731	
	1.8	0.214		5.641		5.855	
	2.0	0.260		5.781		6.041	

Mesonic	ic $ u \qquad M_V - M_P$		M_{I}	D	M_V		
System		Present	Lattice*	Present	Exp**	Present	Exp**
	0.5	0.060		2.016		2.076	
	0.7	0.095		2.080		2.175	
$c\overline{s}$	0.9	0.148		2.134		2.282	
(D_s^*, D_s)	1.0	0.181	0.066	2.154	1.968	2.335	2.112
	1.4	0.359		2.196		2.555	
	1.8	0.593		2.177		2.770	
	2.0	0.724		2.150		2.874	
	0.5	0.054		1.947		2.001	
	0.7	0.102		2.019		2.120	
$car{u}$	0.9	0.177		2.066		2.243	
(D^*,D)	1.0	0.225	0.067	2.080	1.865	2.305	2.007
	1.4	0.475		2.077		2.552	
	1.8	0.802		1.994		2.796	
	2.0	0.985		1.930		2.915	

* Ma J P and Mckellar B H J (1998).
** Caso et al (1998) Particle Data Group.

v	$1^{1}S_{0}$	$1 {}^{3}S_{1}$	$1 {}^{3}P_{0}$	$1 {}^{3}P_{1}$	$1^{1}P_{1}$	$1 {}^{3}P_{2}$	$2^{1}S_{0}$	$2 {}^{3}S_{1}$	$3^{1}S_{0}$	$3 {}^{3}S_{1}$
0.5	1.922	1.992	2.195	2.203	2.210	2.218	2.286	2.294	2.497	2.501
1.0	1.912	1.993	2.347	2.367	2.390	2.414	2.580	2.639	3.342	3.357
1.5	1.905	2.003	2.388	2.435	2.481	2.527	2.599	2.709	3.920	3.959
2.0	1.870	2.015	2.297	2.385	2.472	2.560	2.790	2.903	-	-
Expt.[1]	1.864	2.006						2.540 [7]		
Ebert[8]	1.875	2.009	2.414	2.438	2.459	2.501	2.579	2.629		
Pandya[9]	1.815	1.909	2.385	2.417	2.449	2.481	2.653	2.690	3.162	3.175

S-Wave and P-Wave masses (in GeV) of D meson

S-Wave and P-Wave masses (in GeV) of D_s meson

v	$1^{1}S_{0}$	$1 {}^{3}S_{1}$	$1 {}^{3}P_{0}$	$1 {}^{3}P_{1}$	$1^{1}P_{1}$	$1 {}^{3}P_{2}$	$2^{1}S_{0}$	$2 {}^{3}S_{1}$	$3^{1}S_{0}$	$3 {}^{3}S_{1}$
0.5	2.042	2.089	2.353	2.364	2.375	2.386	2.466	2.476	2.723	2.728
1.0	2.003	2.104	2.512	2.544	2.576	2.608	2.813	2.847	3.412	3.432
1.5	1.937	2.135	2.607	2.678	2.750	2.821	3.149	3.228	4.027	4.098
2.0	1.913	2.152	2.463	2.597	2.731	2.865	3.104	3.276	3.982	4.126
Expt.[1]	1.9685	2.112			2.535	2.5735				
Ebert[8]	1.981	2.111	2.508	2.515	2.560	2.569	2.670	2.716		
Pandya[9]	2.009	2.110	2.385	2.417	2.449	2.481	2.778	2.2805	3.264	3.277

[1] PDG 2006; [7] G. L. Wang PLB633,2006; [8] D. Ebert et. al PRD57,1998; [9] JNP & PCV 10 Pramana57, 2001.

Decay Constant of D meson

Models	$R_p(0)$	$R_{v}(0)$	fP	$f_P(cor.)$	fv	$f_V(cor.)$	$\Gamma(total)$	τ
	$GeV^{3/2}$	$GeV^{3/2}$	MeV	MeV	MeV	MeV	$10^{-4} eV$	ps
v = 0.5	0.3288	0.3412	231	157	236	160	6.126	1.074
1.0	0.3541	0.3698	250	170	256	174	6.142	1.072
1.5	0.3800	0.4113	276	187	284	195	6.167	1.067
2.0	0.5082	0.4687	335	277	350	237	6.165	1.068
Others				230[15]		339±22[7]		$1.040\pm$
				195±20[16]				0.007[1]
				243±25[17]				

Decay Constant of D_s **meson**

Models	F	$\begin{array}{c} R_v(0)\\ GeV^{3/2} \end{array}$		$f_P(cor.)$ MeV		$f_V(cor.)$ MeV	$\Gamma(total)$ $10^{-4}eV$	τ ps
v = 0.5	0.3189	0.3263	218	156	221	158	9.148	0.719
1.0	0.4053	0.4901	321	229	330	236	12.630	0.521
1.5	0.6419	0.7160	451	322	479	342	18.515	0.356
2.0	0.6993	0.8011	494	353	534	381	20.771	0.317

Some Results *f*_D=208MeV and *F*_{Ds}=241 Mev hep-lat/0706.1726 *f*_D=215MeV *f*_D*=348MeV and *F*_{Ds}=222 Mev, *F*_{D*s}=329 Mev M.A. Ivanov, J.G. Körner, O.N. Pakhomova, Physics Letters B 555 (2003)

[1] PDG 2006; [7] G. L. Wang, PLB633,2006; [15] G Cvetic et. al, PLB596,2004;

[16] A.A Peninand et. al, PRD65, 2002; [17] D Ebert et. al, MPLA17, 2002.

Quark model analysis: a summary of the masses of p-wave $c\bar{q}$ and $c\bar{s}$ mesons:

$D_0^*(GeV)$	$D_{s0}^*(GeV)$	$D_1'(GeV)$	$D_{s1}'(GeV)$
2.200	2.357	2.350	2.453 [Fayyazuddin & Riazuddin,PRD(2004)]
2.200	2.288	2.383	2.465 [M Sadzikowski,PLB(2004)]
2.195	2.353	2.206	2.369 [$v = 0.5 \text{ CPP}_{v}$ model, A K Rai & P C V 2007]
2.347	2.512	2.378	2.560 [$\nu = 1.0 \text{ CPP}_{\nu}$ model, A K Rai & P C V 2007]
2.388	2.607	2.458	2.714 [$v = 1.5 \text{ CPP}_{v}$ model, A K Rai & P C V 2007]
	2.420 [Y B	Dai et al.(QCI	D sum rule), PRD68(2003)]
	2 202 E 🔪	Chiral model	2552 FEEK clomeitsen & MEMI utz DI B582(2004)

2.303 [\rightarrow Chiral model \leftarrow 2.552 [E E Kolomeitsev & M F M Lutz, PLB582(2004)]

Pre 2003 Predictions:

2.385	2.514	2.417	2.550 [JNP&PCV, Pramana57(2001)]
2.377	2.487	2.490	2.535 [M Di Pierro and E Eichten, PRD64(2001)]
2.341	2.455	2.389	2.502 [T A Lahde et al.,NPA674(2000)]

In general, adjustment of input parameters produce *a posteriori* results in better agreement with observation. But in the case of Coulomb plus linear potential with lowest order relativistic corrections, the two newly observed $c\bar{s}$ states do not fit with the theoretical results. Thus suggesting a different interpretations.

Lattice : Yes [A Dougall et al., PLB569(2003)] and No [G S Bali PRD68(2003)] for simple $q\bar{q}$ interpretation.

By incorporating the subleading terms in the chiral expansion and adjusting three new input parameters to reproduce the observed spectrum, the values of 2.352 and 2.416 GeV for 0^+ and 1^+ states are obtained together with prediction of a scalar S=0 state with mass 2.389GeV [J Hofmann and M F M Lutz, NPA733(2004)].

However no evidence has been collected of the new predicted state. The question that remains : Why previous predictions resulted to be incorrect and what is the new physics information that must be encoded in models to reproduce the experimental measurements? Are $D_{sJ}^{*}(2317)$, and $D_{sJ}(2460)$ unconventional States?

Possibilities of Multi-quark states such as Four quark states or molecular like are being considered :

 $D_{sJ}^*(2317)$ as $c\overline{s}q\overline{q}$ four quark state -with I = 0, q = u, d; the observed transition to $D_s^+\pi^0$ would be isospin violating, that explains the observed narrowness.

On the other hand with I = 1, predicted with nearby mass, would be broad.

In the molecular interpretation $D_{sJ}^*(2317)$ could be viewed as *DK* molecule, mass very close to DK threshold [H J Lipkin(2004)]. Corresponding interpretation for $D_{sJ}(2460)$, would be D^*K molecule.

Numerical estimates are infavour of molecular interpretation. In this interpretation, two other scalar resonances (D_0^*, D_{s0}^*) with masses of : $M_{D_0^*} = 2.15 - 2.30 GeV$, and $M_{D_{s0}^*} = 2.44 - 2.55 GeV$, are to be experimentally confirmed.

Puzzles about these states

- * Near equality of the masses of non strange and strange charmed states Not theoretically reproduced.
- * The missing evidence of the radiative decay mode $D_{sJ}^{*}(2317) \rightarrow D_{sY}^{*}$ (deserve further Experimental Investigations)
- One could look at The modes-

 $B \rightarrow D_{sJ}M$ ($M=D,K,\pi$) \rightarrow can further discriminate between quark antiquark and multiquark interpretations.

 $\psi(4415) \rightarrow D_{s}^{*} D_{sJ}(2317) \rightarrow$ can also investigate charmed resonances

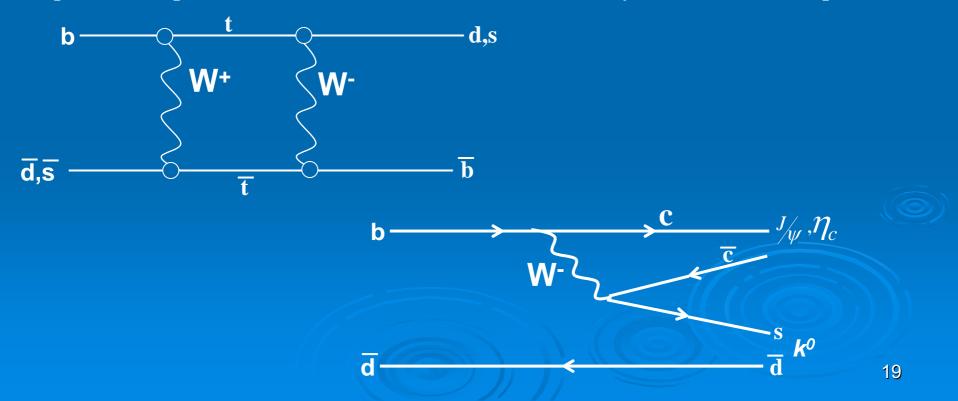
Spectroscopy and new particles at Belle

There is an impressive list of new particles diascovered by Belle in the last few years. *X*(3872) when analysing B^+ decay $\rightarrow J/\psi \pi^+\pi^-K^+$ soon confirmed by CDF, D ϕ and BaBar.

- \Rightarrow New decay modes have been found and the J^{PC} assignment has been establised.
- \Rightarrow Found difficult to identify with any conventional charmonium state.
- $\Rightarrow X(3872) \text{ mass equal to the } D^0 \overline{D}^{0*} \text{ threshold suggests that it could be}$ $D\overline{D}^* \text{ like meson-meson state.}$
- $\Rightarrow J^{PC} = 1^{++} \text{ assignment for } D\bar{D}^{0*} \text{ molecule is strongly favoured}$ [Swanson Phys. Lett. B588(2004)189]
- ⇒ Further the observation of the decay $X \rightarrow \gamma J/\psi$ would unambiguously establish C = +1 for X.
- \Rightarrow This has been achieved by Belle in consistent with Swanson's prediction.

 \Rightarrow Further $J^{PC} = 0^{-+}, 0^{++}$ has proved disfavoured while $J^{PC} = 1^{++}$ is compatible with fit and strongly supports its molecular interpretation.

Potential model study of
$$Di$$
 - mesonic
systems:
$$H = M + \frac{P_i^2}{2\mu} + V(R_{12}) + V_{SD}(S_iS_j)$$
$$V(R_{12}) = \frac{-k_{mol}}{R_{12}}e^{-C^2 R_{12}^2/2}$$
$$V_{SD}(S_iS_j) = \frac{8}{9}\frac{\alpha_s}{m_{h_1}m_{h_2}} \vec{S_i} \cdot \vec{S_j} 4\pi\delta(r)$$
$$E(\Omega) = M + \frac{3\Omega}{4\mu} - \frac{4k_{mol}\Omega^{3/2}}{c^2 + 2\Omega} + \frac{8}{9}\frac{\alpha_s}{m_{h_1}m_{h_2}} \vec{S_i} \cdot \vec{S_j} 4\pi\delta(r)$$


w-iying ma		~					
System			ψ	BE	Mass	$\operatorname{Expt}[\operatorname{Ref}]$	Theory[Ref]
$h_1 - h_2$		GeV^2	$GeV^{3/2}$	GeV	GeV	GeV	GeV
π -D	0++	0.0186	0.0757	0.022	2.027		
π - D^*	1^{+-}	0.0188	0.0762	0.022	2.169		
K- D	0^{++}	0.1415	0.3465	0.015	2.344	$D_{sj}^+(2.317)$	
K - D^*	1^{+-}	0.1455	0.3539	0.016	2.485	$D_{si}^{+}(2.460)$	
ho -D	1^{+-}	0.2684	0.5602	0.033	2.603		$D_{sJ}(2.632)$
K^* - D	1^{+-}	0.3265	0.6489	0.039	2.718		
	CW	0.2795	0.5775	0.034	2.744		
	0^{++}			0.235	2.543		
$ ho$ - D^*	1^{++}			0.134	2.644		
'	2^{++}			0.064	2.845		
	CW	0.3420	0.6718	0.040	2.859		
	0^{++}			0.158	2.624		
K^* - D^*	1^{++}			0.040	2.741		
	2^{++}			0.077	2.976		
D-D	0++	0.3568	0.6935	0.008	3.738		
<i>D</i> - <i>D</i> *	1^{+-}	0.3810	0.7285	0.006	3.878	X(3.870)	
	CW	0.4081	0.7670	0.004	4.018		i
	0^{++}			0.084	3.930		
$D^{*}-D^{*}$	1^{++}			0.040	3.974		
	2^{++}			0.048	4.062	$\psi(4.040)$	

Low-lying masses of tetraquarks as di-mesons molecule

Weak processes and related Aspects of Heavy flavour Physics

B meson mixing & Lifetimes

 B_d and B_s meson systems play fundamental role to test and improve our under standing of SM flavour dynamics. The mixing parameter $\Delta m_{d,s}$ represents important constraints in the unitary triangle analysis. Their theoretical estimates requires non-pertarbative calculations of *B*-meson decay constants and *B*- parameters.

TEVATRON, Fermi Lab's pp Collider: $D\phi$ CDF detectors

The B_s Program in RUN II Offers large sample of semileptonic B_s decays.

 B_s lifetime(τ) = 1.434 ± 0.05 ps (average)

 $B_s \rightarrow D_s \mu X$: $(\tau = 1.42 \pm 0.043 \pm 0.057 \, ps \, (D\phi 2002 - 04))$

Searches for : $B_s^0, B_d^0 \to \mu^+ \mu^-$ and $B_s^0 \to \mu^+ \mu^- \phi$ rare decays and measurements of \overline{B}_c meson are persued at CDF & $D\phi$ using RUN-II data HQE (Heavy quark expansions) have become a powerful tool for calculating perturbative and non perturbative QCD corrections. $\left(\frac{1}{m_b} \text{ Expn \& } \alpha_s(m_b)\right)$

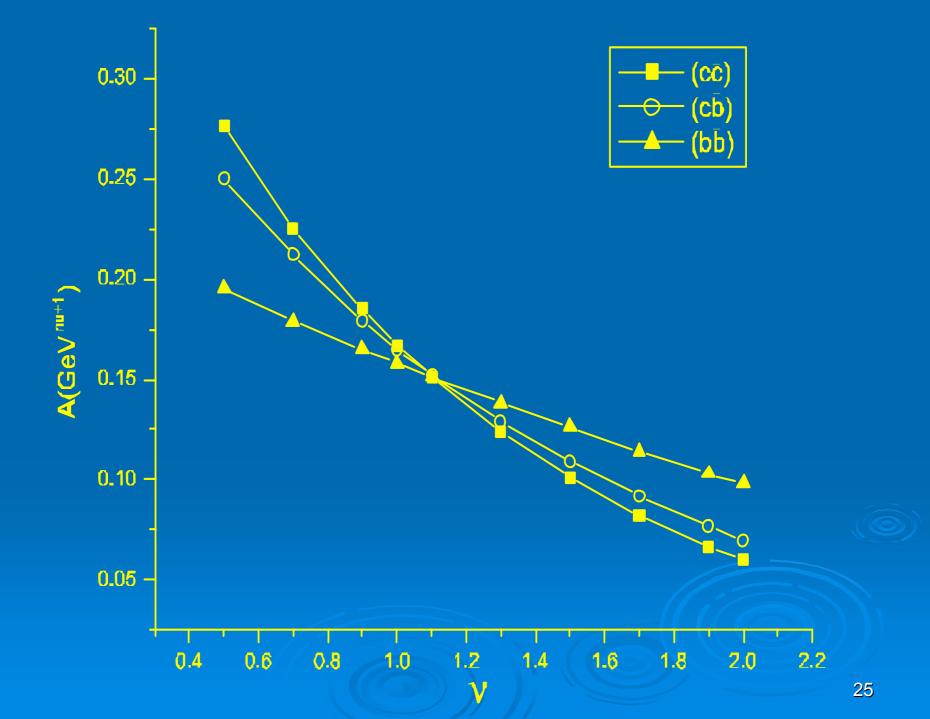
To order O $\left(\frac{1}{m_{\star}^3}\right)$ there are six parameters:

The running kinetic masses of the *b*, *c* quarks: $m_b(\mu)$, $m_c(\mu)$

and four non perturbative parametrs: $\mu_{\pi}^{2}(\mu), \mu_{G}^{2}(\mu), \rho_{D}^{3}(\mu)$

and $\rho_{LS}^3(\mu)$ – The expectation values of the kinetic chrmomagnetic, Darwin and spin-orbit operators - respectively.

All these parameters depend on the scale μ , separating short distance from long distance QCD effects.


Pseud	oscalar I	Decay Co	onstants	of the M	esons (f_I)	r) in GeV.
Power	Pseudos	scalar Dec	ay Consta	nts of the	e Mesonic	Systems
ν	η_b	B_s	B	η_c	D_s	D
0.5	0.346	0.133	0.106	0.200	0.186	0.152
0.7	0.390	0.171	0.151	0.251	0.233	0.207
0.9	0.429	0.216	0.202	0.298	0.285	0.269
1.0	0.447	0.239	0.226	0.321	0.305	0.291
1.4	0.513	0.338	0.331	0.414	0.413	0.405
1.8	0.572	0.430	0.427	0.496	0.515	0.510
2.0	0.595	0.467	0.462	0.526	0.561	0.558

B_c meson mass spectrum (in GeV)

State $n^{2S+1}L_J$	Our	ALV[4]	EQ[3]	EFG[5]	Lattice[6]
1^1S_0	6.300	6.356	6.264	6.270	$6.280 \pm 30 \pm 190$
$1^{3}S_{1}$	6.327	6.397	6.337	6.332	6.321 ± 20
$1^{3}P_{0}$	6.691	6.673	6.700	6.699	6.727 ± 30
$1^{3}P_{1}$	6.704	-	6.730	6.734	$6.743 {\pm} 30$
$1^{1}P_{1}$	6.718	_	6.736	6.749	$6.765 {\pm} 30$
$1^{3}P_{2}$	6.732	6.751	6.747	6.762	$6.783 {\pm} 30$
$2^{1}S_{0}$	6.805	6.888	6.856	6.835	6.960 ± 80
$2^{3}S_{1}$	6.857	6.910	6.899	7.072	$6.990 {\pm} 80$
$2^{3}P_{0}$	7.142	-	7.108	7.091	_
$2^{3}P_{1}$	7.164	-	7.135	7.126	
$2^{1}P_{1}$	7.188	-	7.142	7.145	-
$2 {}^{3}P_{2}$	7.211	-	7.153	7.156	
$3^{1}S_{0}$	7.205	-	7.244	7.193	
$3^{3}S_{1}$	7.285		7.280	7.235	
					23

Pseudoscalar decay constant of B_c meson (f_P) (in MeV)

Models		M_{B_c}	f_{B_c}
potential			
models	0.5	6.311	399
with	0.7	6.309	457
u =	0.9	6.305	506
	1.0	6.303	528
	1.1	6.302	548
	1.3	6.300	585
	1.5	6.298	618
	2.0	6.292	679
EQ[3]		6.264	500
ALV[4]		6.356	578
EFG[5]		6.270	562
$\mathrm{FL}[7]$		6.286	500 ± 80
GKLT $[8]$		6.253	517
EXPT.[PDG,2006]		6.286	

Comparison of the lifetime of B_c meson (in ps) in different models. Our Expt[1] ALV[4] GKLT [8] VVK[14] SG[15] 0.47 $\tau = 0.46^{+0.18}_{-0.16}$ 0.47 0.55 ± 0.15 0.50 0.75

Future Experiments and Expectations:

LHCb(Cern) can contribute studies of B_S , $B_c & \Lambda_b$ and numerous excited states. Super *B*-factories (Future) Expected to be in operation by 2007

- High statistics samples of *B*-decays
 - ⇒ Unique & clean envirment to study meson spectroscopy from light to charmed & charmonium mesons.
 - \Rightarrow Many new particles have been discovered and others are being accurately studied.
 - \Rightarrow Broad resonaces can be reliably studied.
- Charmless *B*-decays allows search for still missing pieces in meson spectroscopy: the Glueballs & hybrid mesons.

 $\Rightarrow B \rightarrow \eta' X(b \rightarrow sg)$ can be a window for discovering glueballs.

- \Rightarrow Unfortunately branching fractions of these decays are very small and can be studied only at very high luminicity collider.
- \Rightarrow May new charm baryons are also expected with better statistics₂₇

- ⇒ Exotic gluonim excitation by lattice QCD predicts $J^{PC} = 1^{-+}$ between 4.04 and 4.4 GeV proximity of D^*D threshold could make it narrow.
- \Rightarrow Some hybrids can have exotic quantum numbers such as $J^{PC} = 0^{-+}, 2^{+-}, 1^{-+}$
- $\Rightarrow \eta_c(2s) \text{ has been observed in } \gamma\gamma \text{ collisions}$ B.Albert *et. al*, PRL 92(2004),142002
- ⇒ The Y(3940), Y(4260) resonances have been discovered.but large luminocity at super B factory can not only provide its status but also can discover new charmonium states.

