

G. Pancheri INFN Frascati National Laboratories

Hadron 2007, Frascati October 8th, 2007

IMPACT PARAMETER PICTURE OF HADRONIC COLLISIONS

WHAT IS NEEDED TO CALCULATE THE Survival Probability for Large Rapidity Gaps

Vector boson Vector boson to Híggs or other VV state

 $\mathbf{P}_{no-inel}$ =probability of **no** inelastic interactions

• Only very low-pt particle emission can take place

A(b,s) = probability to find partons which will not undergo hard collisions

10/8/07

$\mathcal{P}_{\text{ND-INEL}}(B,S)$

- Poisson distributed (independent) collisions $\Pi\{k,\bar{n}\} = \frac{\bar{n}^k e^{-\bar{n}}}{k!}$
- Now sum on all possibile distributions

$$\sum_{k} \Pi\{k, \bar{n}\} = 1 - e^{-\bar{n}}$$

In Eikonal representation
• $\sigma_{inel} = \int d^2 \vec{b} [1 - e^{-n(b,s)}]$

AVERAGE NUMBER OF COLLISIONS AT GIVEN ENERGY AND IMPACT PARAMETER

•
$$n(b,s) = n_{soft}(b,s) + n_{hard}(b,s)$$

 $P_t > 1-2 \ GeV$
• $n_{soft/hard}(b,s) = A_{BN}^{soft/hard}(b,s)\sigma_{soft/hard}(s)$

b and s need not be factorized

10/8/07

Hadron07

MODEL FOR HARD AND SOFT INTERACTIONS

- Eikonal mini-jet model with soft gluon resummation
 - A. Corsetti, A. Grau, G. P., Y.N. Srivastava, PLB 1996
 - A. Grau, G.P, Y.N. Srivastava, PRD60 1999, hep-ph/9905228
 - A. Achilli, R.M. Godbole, A. Grau, R. Hedge, G.P., Y.N.
 Srivastava, hep-ph/ 07083626, to appear in PLB

WITH HARD POMERON MODELS

10/8/07

OUR MODEL IS BASED ON

- eikonal transformation which implies multiple scattering and requires impact parameter distributions inside scattering particles and basic scattering cross-sections
- 2. hard component of scattering responsible for the rise of the total cross-section
- 3. soft gluon emission from scattering particles which softens the rise and gives b-distribution

3. SOFT GLUON EMISSION FROM SCATTERING PARTICLES WHICH SOFTENS THE RISE AND GIVES B-DISTRIBUTION

$$A_{BN}(b,s) = N \int d^2 K_{\perp} \ e^{-iK_{\perp} \cdot b} \frac{d^2 P(K_{\perp})}{d^2 K_{\perp}}$$
$$\frac{d^2 P(K_{\perp})}{d^2 K_{\perp}} = \frac{1}{(2\pi)^2} \int d^2 \vec{b} \ e^{iK_{\perp} \cdot b - h(b,q_{max})}$$
$$h(\vec{b}, q_{max}) = \int_0^{q_{max}} d^3 \bar{n}(k) [1 - e^{-ik_t \cdot b}]$$
$$\approx \int_0^{q_{max}} \frac{\alpha_s(k_t^2)}{8\pi} \frac{dk_t}{k_t} \log \frac{2q_{max}}{k_t} [1 - e^{-ik_t \cdot b}]$$
$$\bigwedge$$
Soft gluon emission factor

10/8/07

Hadron07

11

Soft gluon emission factor

$$\int_{0}^{q_{max}} \frac{\alpha_s(k_t^2)}{8\pi} \frac{dk_t}{k_t} \log \frac{2q_{max}}{k_t} [1 - e^{-ik_t \cdot b}] \sim$$

q_{max} is the maximum transverse momentum allowed by kinematics to single soft gluon emission in a given hard collision, averaged over the parton densities.

M. Greco and P. Chiappetta

KINEMATICAL CONSTRAINTS ON SINGLE GLUON EMISSION

 $q(p_1) + q(p_2) \longrightarrow g + Q$

 $Q^2 = s_{jet-jet}$

$$s = (p_1 + p_2)^2$$

Hadron07

10/8/07

Averaging over the densities

$$q_{max}(s) = rac{\sqrt{s}}{2} rac{\sum_{i,j} \int rac{dx_1}{x_1} f_{i|A}(x_1) \int rac{dx_2}{x_2} f_{j|B}(x_2) \sqrt{x_1 x_2} \int_{z_{min}}^1 dz (1-z)}{\sum_{i,j} \int rac{dx_1}{x_1} f_{i|A}(x_1) \int rac{dx_2}{x_2} f_{j|B}(x_2) \int_{z_{min}}^1 (dz)}$$

$$\int_{0}^{q_{max}} \frac{\alpha_{s}(k_{t}^{2})}{8\pi} \frac{dk_{t}}{k_{t}} \log \frac{2q_{max}}{k_{t}} [1 - e^{-ik_{t} \cdot b}]$$

What about the $k_t \rightarrow 0$ limit for α_s ?

- frozen
- •Our choice : singular but integrable, phenomenological choice

SOFT GLUON RESUMMATION EFFECTS

2. Hard component of scattering responsible for the rise of the total cross-section

$$\sigma_{hard}\equiv\sigma_{ ext{jet}}^{AB}(s,p_{tmin})$$

2.

1. EIKONAL TRANSFORMATION

$$\sigma_{total} = 2 \int d^2 \vec{b} [1 - e^{-\chi(b,s)}]$$

With $\Re \chi(b,s) \approx 0$ and $\Im \chi(b,s) = n(b,s)/2$

•
$$\sigma_{inel} = \int d^2 \vec{b} [1 - e^{-n(b,s)}]$$

•
$$\sigma_{total} = 2 \int d^2 \vec{b} [1 - e^{-n(b,s)/2}]$$

SURVIVAL PROBABILITY

Probability of not having an inelastic collision

$$P_{no-inel} = e^{-n(b,s)}$$

Can be used to calculate the survival probability of Large Rapidity Gaps for collisions at given b-value in a colorless exchange

Hadron07

V. Khoze, J. Bjorken,...

SURVIVAL PROBABILITY

$$<|S|^2>=\int d^2\vec{b}A(\vec{b},q_{max}^{soft})|S(\vec{b})|^2$$

we use the soft b-distribution $A(\vec{b}, q_{max}^{soft})$

$$d^2 \vec{b} A(\vec{b}, q_{max}^{soft}) = 1$$

$$|S(\vec{b})|^2 = P_{no-inel}$$

COMPARING WITH OTHER MODELS

CONCLUSIONS

- We have built a model for the total crosssection which
 - Incorporates hard and soft gluon effects
 - Satisfies the limits from the Froissart bound
 - Can be used to study other minimum bias effects like Survival Probability of Large Rapidity Gaps
 - Easily extended to $\gamma \, p$ and $\gamma \, \gamma$

EXTRA TRANSPARENCIES

THE QUESTIONS ARE :

• What makes the cross-section rise?

 What makes the cross-section rise within the limits imposed by the Froissart bound?

TWO MECHANISMS

- Rise is due to increasing number of gluons which undergo "hard|" collisions, namely PQCD calculable interactions
- Saturation of Froissart bound is due to increasing acollinearity of "hard" partons because of initial state energy dependent soft gluon emission

MODEL FOR HARD AND SOFT INTERACTIONS

- Work with A. Achilli, A. Grau, R.M. Godbole, Y.N. Srivastava
- Eikonal mini-jet model with soft gluon resummation

JET CROSS-SECTIONS AT

 $\sigma_{\text{iet}}^{AB}(s, p_{tmin}) =$

Using current DGLAP evoluted PDF's :

GRV, MRST, CTEQ

 $\int_{p_{tmin}}^{\sqrt{s/2}} dp_t \int_{4p_t^2/s}^{1} dx_1 \int_{4p_t^2/(x_1s)}^{1} dx_2 \times$

 $\sum_{i,j,k,l} f_{i|A}(x_1) f_{j|B}(x_2) \frac{d\widehat{\sigma}_{ij}^{kl}(\widehat{s})}{dp_{t}}.$

Hadron07

SOFT GLUON EMISSION

According to our model, soft gluon emission down to zero momentum modes is responsible for the initial decrease in *p p*, as well as for the

transformation of the sharp rise due to the increase in gluon-gluon interactions

into a smooth behavior

3. SOFT GLUON EMISSION FROM SCATTERING PARTICLES WHICH SOFTENS THE RISE AND GIVES B-DISTRIBUTION

$$A_{BN}(b,s) = N \int d^2 K_{\perp} \ e^{-iK_{\perp} \cdot b} \frac{d^2 P(K_{\perp})}{d^2 K_{\perp}}$$
$$\frac{d^2 P(K_{\perp})}{d^2 K_{\perp}} = \frac{1}{(2\pi)^2} \int d^2 \vec{b} \ e^{iK_{\perp} \cdot b - h(b,q_{max})}$$
$$h(\vec{b}, q_{max}) = \int_0^{q_{max}} d^3 \bar{n}(k) [1 - e^{-ik_t \cdot b}]$$
$$\approx \int_0^{q_{max}} \frac{\alpha_s(k_t^2)}{8\pi} \frac{dk_t}{k_t} \log \frac{2q_{max}}{k_t} [1 - e^{-ik_t \cdot b}]$$
$$\bigwedge$$
Soft gluon emission factor

10/8/07

Hadron07

WHAT ONE NEEDS TO CALCULATE A(B,S)

- Limits of integration for soft gluon factor $\int dn_g(k)[1-e^{ikb}]$
- upper limit **q**_{max}^(s)
- lower limit k=0 but then need to model $\int dk \, \alpha_s(k)$ down into the infrared region

OUR MODEL IN THE INFRARED

• Singular but integrable

$$\alpha_s(k_t^2) = \frac{12\pi}{33 - 2N_f} \frac{p}{\log[1 + p(\frac{k_t^2}{\Lambda^2})^p]}$$

• Singularity regulated by p < 1

HOW ABOUT N_{soft}?

$$n_{soft}(b,s) = A_{BN}^{soft}(b,s)\sigma_0(1+\epsilon\frac{2}{\sqrt{s}})$$

 $\epsilon=0,1$ depending upon the process being pp or pbarp

•Parametrized with a constant σ_o •With p_{tmin} dependence through A(b,s)

Comparing with data and other models

GRV MRST

10/8/07

AT VERY LARGE ENERGIES :

$$\bar{\sigma}_{T}(s) \approx 2\pi \int_{0}^{\infty} (db^{2})[1 - e^{-n_{hard}(b,s)/2}],$$

$$n_{hard}(b,s) = \sigma_{jet}(s)A_{hard}(b,s)$$

$$A_{hard}(b,s) \propto e^{-h(b,s)}$$
where
$$h(b,s) = \int d^{3}n_{g}(k)[1 - e^{-i\mathbf{k}_{t}\cdot\mathbf{b}}]$$
10/8/07

FROM POWER LAW TO LOG BEHAVIOUR

$$A_{hard}(b) \propto e^{-(bq)^{2p}}$$
 $C(s) = A_o(s/s_o)^{\epsilon} \sigma_1$

$$ar{\sigma}_T(s) = 2\pi \int_o^\infty db^2 [1 - e^{-C(s)e^{-(bq)^{2p}}}]$$

$$q^2 ar{\sigma}_T(s)]
ightarrow (2\pi) [lnC(s)]^{1/p}$$
 Main
result
 $\sigma_T(s) \approx
ightarrow [\ln s^{\epsilon}]^{1/p} pprox [\epsilon \ln s]^{(1/p)}$