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1. Introduction.

This talk is based on the following papers:

PY05: Peláez, J. R., and Ynduráin, F. J., Phys. Rev. D71, 074016 (2005)
KPY06: Kamiński, R., Peláez, J. R., and Ynduráin, F. J., Phys. Rev. D74,

014001 (2006) and (E), D74, 079903 (2006)

GMPY05: Garćıa-Mart́ın, R., Peláez, J. R., and Ynduráin, F. J., hep-ph/0701025

(to be published in Phys. Rev. D.)

KPY07: Kamiński, R., Peláez, J. R., and Ynduráin, F. J., IV Internat. Conference
on Quarks and Nuclear Physics, Madrid, June 2006 (hep-ph/0610315),
and to appear very soon.

Low energy: 4M2
π ≤ s1/2 <∼ 4m2

K (actually, s1/2 ≤ 932 MeV);
Intermediate energy: 4m2

K
<∼ s1/2 ≤ 1420 MeV .

We will not concern ourselves with higher energies here.
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Experimental situation circa 1976:

Low and intermediate energy:

[Berkeley]: Protopopescu, S. D., et al., Phys Rev. D7, 1279, (1973) several
Solutions.

[Cern-Munich]: Hyams, B., et al., Nucl. Phys. B64, 134, (1973), 1 Sol.;
Estabrooks, P., and Martin, A. D., Nucl. Physics, B79, 301, (1974), 2 Sol.;
Grayer, G., et al., Nucl. Phys. B75, 189, (1974), 4 Sol. (2, A and B).

Only I = 2: Losty, M. J., et al. Nucl. Phys., B69, 185 (1974); Hoogland,
W., et al. Nucl. Phys., B126, 109 (1977); Durusoy, N. B., et al., Phys. Lett.
B45, 517 (1973); the isospin 2 p.w.a. was reasonably well determined.

Intermediate energy:

Hyams, B., et al., Nucl. Phys. B100, 205, (1975): 4 Sol.

Enormous uncertainties:

Protopopescu : a
(0)
0 =

{
0.14
0.6.

Protopopescu : δ0
0(mK)− δ2

0(mK) =
{
40± 4
49± 4

Basdevant, Froggatt and Petersen (Roy Eqs.), PL 41B 178 (1972):

δ0
0(mK)− δ2

0(mK) =

{
36± 5
38± 5
47± 5
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Similarly for the Cern-Munich analysis:
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Old K decay data
NA48/2 (ref.8)
Solution B  (ref.11)
Solution C  (ref.11)
PY05
fit to Solution C
GMPY07

Data for Solutions B and C of Grayer et al. (with the
same P, D, F waves) shown.

A minimum error of 8 - 13 degrees, dominated by systematic errors, had to
be admitted.

However, in the region 810 MeV ≤ s1/2 ≤ 952 MeV, all the various

experiments are compatible, so we have a reliable set of data in this region:

δ
(0)
0 (0.8702 GeV2) = 91± 9◦ ; δ

(0)
0 (0.9102 GeV2) = 99± 6◦ ;

δ
(0)
0 (0.9352 GeV2) = 109± 8◦ ; δ

(0)
0 (0.9122 GeV2) = 103± 8◦ ;

δ
(0)
0 (0.9292 GeV2) = 112.5± 13◦ ; δ

(0)
0 (0.9522 GeV2) = 126± 16◦ ;

δ
(0)
0 (0.8102 GeV2) = 88± 6◦ ; δ

(0)
0 (0.8302 GeV2) = 92± 7◦ ;

δ
(0)
0 (0.8502 GeV2) = 94± 6◦ .

Errors here include systematic errors, estimated by comparing different de-

terminations.
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A series of improvements: at intermediate energy,

ππ → K̄K data: Wetzel, W., et al., Nucl. Phys. B115, 208 (1976); Cohen,
D. et al., Phys. Rev. D22, 2595 (1980); Etkin, E. et al., Phys. Rev. D25,
1786 (1982), all compatible.

This reduces to 1 the 4 solutions in Hyams 75.

Pion form factor [Novosibirsk + LEP data; see de Trocóniz and FJY,

Phys. Rev., D65, 093001, (2002) and D71, 073008 (2005)].

This gives P wave virtually exactly.

Ke4 experiments: Rosselet, L., et al. Phys. Rev. D15, 574 (1977);
Pislak, S., et al. Phys. Rev. Lett., 87, 221801 (2001);
And, above all, CERN/SPS experiment (NA48/2); Bloch-Devaux, B., pre-

sented at QCD06 in Montpellier (France), 3-7 July 2006 and Masetti, L.,

presented at ICHEP06 in Moscow (Russia), 26 July to 2 August 2006.

Very precise S0 wave below 400 MeV.

K2π experiments relate K → 2π decays to δ0
0(mK)− δ2

0(mK)

This provides a very accurate value for S0-S2 at the key

energy of 500 MeV:

δ
(0)
0 (m2

K)−δ
(2)
0 (m2

K) =

{
58.0± 4.3 (exp)± 1.6 (rad) [P.Pascual & FJY] 1974
57.27± 0.82 (exp)± 3 (rad)± 1(ch.p.app.) [KLOE+C.]

[P.Pascual & FJY: NP B83, 362 (1974); V. Cirigliano et al., Eur. Phys. J.

C33 ,369 (2004)+KLOE]
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In addition, for the difference a
(0)
0 − a

(2)
0 one has results form the fol-

lowing independent experimental determinations: from pionic atoms [Adeva,

B., Romero Vidal, A. and Vázquez Doce, O., Eur. Phys. J. 31, 522 (2007)]
that give

a
(0)
0 − a

(2)
0 = 0.280± 0.013 (St.)± 0.008 (Syst.) M−1

π

and from K3π decays [Cabibbo, N., and Isidori, G., JHEP 0503:021 (2005);

NA48 Experiment: see e.g. Balev, S., arXiv: 0705.4183 v2 (2007)] that imply

a
(0)
0 − a

(2)
0 = 0.268± 0.010 (St.)± 0.013 (Syst.) M−1

π .

Since these experiments are independent, and compatible, we can

combine them (adding statistic and systematic errors in quadra-

ture) to find

a
(0)
0 − a

(2)
0 = 0.274± 0.011 M−1

π [ Pionic atoms + K3π decays ].
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2. The intermediate energy region

Here one uses the well-known K-matrix method. Note that this cannot re-

liably be used below s = 4(m2
K − M2

π), as problems with the l.h.cut in the

reaction ππ → K̄K will arise.

The details may be found in KPY06; they are summarized in the

following figures:
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Hyams et al. (---)
Low energy PY05 points used in new fit

0

(0)

K-matrix fit to δ
(0)
0 (solid line and dark area). Dotted lines: the fit in

PY05.
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PY05 Polynomial fit
Cohen et al.
Etkin et al.
Wetzel et al.
Hyams et al.
Kaminski et al.
K-matrix up to 1420 MeV

      KK

K-matrix fit to η
(0)
0 using (2.4), with error given by the shaded area.

The dotted lines represent the central values and error limits of the old fit
in PY05.

An unfortunate fact is that this representation is not very

accurate above s1/2 � 1380 MeV as it does not take into account the
contribution of the 4π states, which become dominant there.
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s
w

s0

The mapping s → w.

3. Low energy: The conformal mapping method

How can one correlate (and parametrize) these data, without intro-

ducing theoretical assumptions, besides causality and unitarity?

The analyticity and unitarity properties of the S0 partial wave am-

plitude imply that the effective range function

ψ(s) ≡ (2k/s1/2) cot δ
(0)
0 (s)

is analytic in the complex plane cut from −∞ to 0 and from where inelasticity

matters s0, to +∞ (figure): it has not the elastic cut. For the S0 wave,

one can take s0 = 4m
2
K .

The standard method to deal with this situation is to make a mapping

s → w(s) =

√
s − √

4m2
K − s√

s+
√
4m2

K − s
:

the cut plane is mapped into the unit disk; the analyticity properties of the

effective range function in the complex plane in the variable s are strictly
equivalent to convergence of a Taylor series for ψ in the variable w.
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To improve this convergence, it is convenient to separate off those

zeros and poles of the effective range function that lie on the real axis. Of

these we have one of each: a pole due to the so-called Adler zero of the partial

wave amplitude, lying near the left hand cut, at s = 1
2z2

0 , z0 � Mπ (with Mπ

the charged pion mass); and then there is a zero due to the phase shift crossing

π/2 for an energy μ0 near 780 MeV. Thus, we can, in all generality, write the

following parametrization:

cot δ(s) =
s1/2

2k

M2
π

s − 1
2z2

0

μ2
0 − s

μ2
0

{
B0 + B1w(s) + · · · }.

or, if not separating the zero (we will need one more parameter),

cot δ(s) =
s1/2

2k

M2
π

s − 1
2z2

0

{
B0 +B1w(s) +B2w(s)

2 · · · }. (1)

The key point for us is that this converges in all the cut plane:

therefore, (1) can be used as it is to evaluate the scattering length

a
(0)
0 or to find the location of the σ resonance.

Perhaps it should be emphasized tha this isn neither a model

nor theory, but merely an approximation.
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0

M2/2 4M2 m2
K 8202MeV2 9522MeV2

|w|=1

|w|=0.56

left hand cut inelastic cut

left hand cut inelastic cut

ref. 2
CCL

Experiment

The w disk, |w| < 1. The dashed line is the line |w| =
0.56. The thick lines are the regions where one has reliable
experimental data. The sigma pole is also shown.

As a matter of fact, all the experimental points (and also the σ
resonance) we have discussed are located, in the w plane, inside the disk

|w| ≤ 0.56, hence we only expect an error of |B4| |w|4 <∼ 3% on the real axis1

and of <∼ 6% inside the |w| ≤ 0.56.

1 B4 can be estimated in terms of the known B3.
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3. A few observables: The scattering length, σ pole,
Phase difference on the K

We find the following results: a phase shift, at low energy, as shown in the

figure:

If we also include medium energy data, as in ref. 5, we find

B0 = 4.3± 0.3, B1 = −26.7± 0.6, B2 = −14.1± 1.4
and

a
(0)
0 = 0.231± 0.009, b

(0)
0 = −0.288± 0.009 [Experiment].

This is compatible, but somewhat displaced, with the estimate given by CGL

based on chiral perturbation theory and Roy equations,

a
(0)
0 = 0.220± 0.005, b

(0)
0 = −0.280± 0.004 [Ch. P. Theory].
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For the parameters of the σ pole: we find

Mσ = 484±6 (St.)±11 (Sys.), Γσ/2 = 255±8 (St.)±2 (Sys.); Experiment.

to be compared with the theoretical estimates,

Mσ = 441± 17 MeV, Γσ/2 = 230± 15 MeV; Theory, Ref. 2

Mσ = 441
+16
−8 MeV, Γσ/2 = 279+9

−12.5 MeV; Theory, Ref. 3.

Mσ =470± 50 MeV, Γσ/2 = 285± 25 MeV; Theory, Ref. 4

2.- Unitarized CH.P.T.: Peláez, J. R., Modern Phys. Lett. A, 19,
2879 (2004); Oller, J. A., Oset, E., and Peláez, J. R., Phys. Rev. D59, 074001
(1999) and Erratum, ibid. D60, 099906 (1999); A. Dobado and Peláez, J. R.,
Phys. Rev. D56, 3057 (1997); Gómez-Nicola, A., and Peláez, J. R., Phys.
Rev. D65, 054009 (2002).

3.- CH.P.T. + Roy Eqs.: Caprini, I., Colangelo, G., and Leutwyler,

H. Phys. Rev. Lett. 96, 132001 (2006).
4.- Unitarized CH.P.T.: Zhou, Z. Y., et al. JHEP 0502, 043 (2005).

Thus, agreement at the 2 σ level.

For the difference δ
(0)
0 (m2

K)− δ
(2)
0 (m2

K):

δ
(0)
0 (m2

K)− δ
(2)
0 (m2

K) =

⎧⎪⎪⎨
⎪⎪⎩
50.1± 1.8 [not using K2π]

51.7± 1.3 [using K2π]

57.3± 4.8 [exp., KLOE+C.]

One can compare this with

δ
(0)
0 (m2

K)− δ
(2)
0 (m2

K) = 47.7± 1.5 [CGL]
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4. Compatibility tests: FDR and Roy equations

Δ00(s) ≡ ReF00(s)− F00(4M
2
π)

− s(s − 4M2
π)

π
P.P.

∫ ∞

4M2
π

ds′
(2s′ − 4M2

π) ImF00(s
′)

s′(s′ − s)(s′ − 4M2
π)(s

′ + s − 4M2
π)

and an identical one, with 00→ 0+; and

Δ1(s) ≡ ReF (It=1)(s, 0)− 2s − 4M2
π

π
P.P.

∫ ∞

4M2
π

ds′
ImF (It=1)(s′, 0)

(s′ − s)(s′ + s − 4M2
π)

.

These quantities would vanish, Δi = 0, if the dispersion relations were exactly

satisfied.

We find, with d̄2 = average (Δ2/δΔ2),

s1/2 ≤ 932 MeV s1/2 ≤ 1420 MeV
π0π0 FDR d̄2 = 0.12 d̄2 = 0.29
π0π+ FDR d̄2 = 0.89 d̄2 = 0.90
It = 1 FDR d̄2 = 0.67 d̄2 = 1.89.

and, for the Roy equations,

d̄2
S0 = 0.54, d̄2

S2 = 1.63, d̄2
P = 0.77.
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5. Observables using info on other waves. Constrained
fits. The scattering length

If we use data on the other waves (and Regge parameters at high energy)

we can repeat the fits, imposing fulfillment of FDR and Roy equations (and

two sum rules), within experimental errors; i.e., adding a weight
∑

i d̄2
i in the

fits to data. We call this CFD. The S0 wave is left essentially unaltered; only

the D2 wave changes by a bit more than one sigma.

Now, however, we can test data involving waves other than S0. Using

the Olsson sum rule one can get a very precise number for the a
(2)
0 scattering

length, finding

a
(2)
0 = −0.0436± 0.0043 [CFD]

This can be compared with CGL: perfect agreement

a
(2)
0 = −0.0444± 0.0011 [CGL]

Combinig this with the a
(0)
0 scattering length, we can get a prediction

for the difference a
(0)
0 − a

(2)
0 , which was not used in our fits. We get

a
(0)
0 − a

(2)
0 = 0.271± 0.012 [CFD],

Experimentally,

a
(0)
0 − a

(2)
0 = 0.274± 0.011 [ Pionic atoms + K3π decays ],

agreeing very well with our result

By comparison, the number from CGL is

a
(0)
0 − a

(2)
0 = 0.264± 0.007 [ CGL].
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Alternatively, we can use

a
(0)
0 − a

(2)
0 = 0.274± 0.011 [ Pionic atoms + K3π decays ],

and the Olsson sum rule, that gives

2a
(0)
0 − 5a(2)

0 = 0.670± 0.018
to determine a

(0)
0 , a

(2)
0 . This gives an ellipse,
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a0
�0�

�0.055

�0.05

�0.045

�0.04

�0.035

�0.03

a 0
�2
�

Ellipse in the a
(0)
0 , a

(2)
0 plane corresponding to 1-sigma (continuous line).

The corresponding scattering lengths are

a
(0)
0 = 0.227± 0.008, a

(2)
0 = −0.0436± 0.0043.

To compare:

a
(0)
0 = 0.220± 0.005 [CGL].

The S0 wave of CGL is slightly distorted (at the 1 to 2-sigma level), probably

because of the faulty input in ACGL, CGL.
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FDR and Roy are now virtually perfect: we have

s1/2 ≤ 932 MeV s1/2 ≤ 1420 MeV
π0π0 FDR d̄2 = 0.13 d̄2 = 0.32
It = 1 FDR d̄2 = 0.22 d̄2 = 0.73,

and, for the Roy equations,

d̄2
S0 = 0.25, d̄2

S2 = 0.26, d̄2
P = 0.01.
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Fulfillment of dispersion relations, with the central parameters
with CFD. The error bands are also shown.
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Besides sum rules and dispersion relations, another independent test

of our amplitudes is the Adler sum rule that relates the pion decay constant to

pion-pion scattering amplitudes with one pion off its mass sell. This has been

recently evaluated with our scattering UDF amplitudes, and a very satisfac-

tory fulfillment of the sum rule is found; the discrepancy Δπ that measures

the accuracy with which the sum rule is fulfilled (and which should vanish if

it was satisfied exactly) is found to be

Δπ = 0.021± 0.023

[CGL would get Δπ = 0.033].
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6. Including isospin breaking corrections

Note added in proof

The precision of the fits is such that we have to worry about isospin

breaking corrections. We have had notice of a calculation by J. Gasser, “The-

oretical progress on cusp effect and Kl4,” [talk at KAON07, May 21-25, 2007,

Frascati, Italy], as yet unpublished * in which account is taken, for Ke4 de-

cays, of the fact that in the real world isospin is broken. A full analysis is

missing; but, if we take the results of the calculation at face value, we can

repeat our best fit incorporating these corrections. We then find:

B0 = 3.80± 0.34, B1 = −27.1± 0.8, B2 = −8.3± 1.8;
a
(0)
0 = 0.211± 0.010 M−1

π , b
(0)
0 = 0.278± 0.010 M−3

π ;

Mσ = 481± 7 MeV; Γσ/2 = 237± 5 MeV.

Mσ = 484±6 (St.)±11 (Sys.), Γσ/2 = 255±8 (St.)±2 (Sys.); Experiment;

a
(0)
0 = 0.231± 0.009, b

(0)
0 = −0.288± 0.009 [Experiment].

The phase shift itself moves very little, by less than 1o.

When fitting including requirement of FDR and Roy equa-

tions, the S0 wave moves closer to the one given before, and the

scattering length becomes quite compatible with what we found

neglecting isospin violations: we now get

a
(0)
0 = 0.219± 0.011,

and the phase shift moves by less than 0.5o.

Although, as stated, a full analysis will be necessary, it does

not seem that including isospin breaking corrections will much affect

our results.

* We are grateful to Drs. Colangelo and Gasser for communicating the

results prior to publication.
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