


D⁰ - D Mixing at BaBar

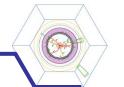
- Some formalism
- $D^0 \to K^+\pi^-$
- D⁰ \rightarrow K+K⁻ or π + π -
- $D^0 \to K^+\pi^-\pi^0$
- $D^0 \to K^+\pi^-\pi^+\pi^-$
- Summary

The BaBar Detector

Formalism

- Produce charmed mesons as flavour eigenstates D⁰ and D⁰.
- Decay according to

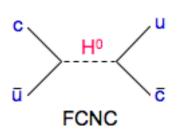
$$irac{\partial}{\partial t}igg(rac{D^0(t)}{D^0(t)}igg) \,=\, ig(\mathbf{M}-rac{i}{2}\mathbf{\Gamma}ig)igg(rac{D^0(t)}{D^0(t)}igg)$$

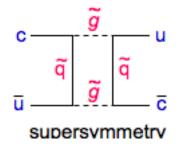

making mass and lifetime eigenstates

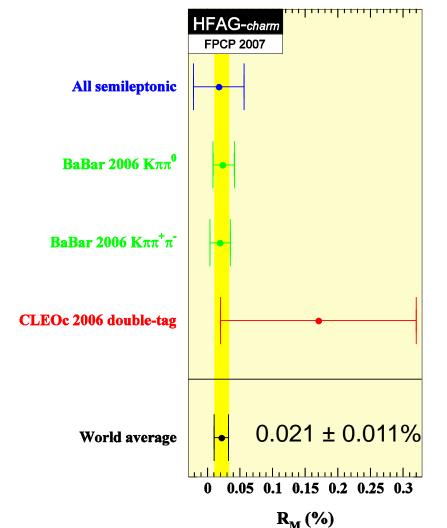
$$egin{array}{ll} |D_1
angle &=& p|D^0
angle + q|\overline{D}^0
angle \ |D_2
angle &=& p|D^0
angle - q|\overline{D}^0
angle \end{array}$$

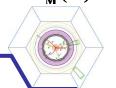
which decay thus:

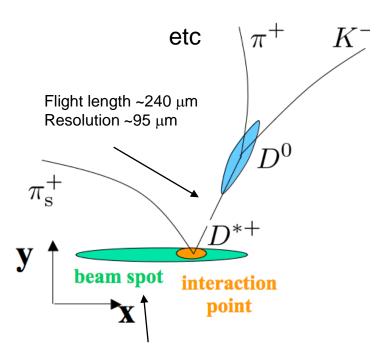
$$\begin{array}{rcl} D_1(t)\rangle &=& e^{-i(m_1-i\Gamma_1/2)t}|D_1\rangle \\ D_2(t)\rangle &=& e^{-i(m_2-i\Gamma_2/2)t}|D_2\rangle \end{array}$$


$$egin{array}{lll} \Delta M &= m_1 - m_2 \ \Delta \Gamma &= \Gamma_1 - \Gamma_2 \ \Gamma &= \left(\Gamma_1 + \Gamma_2\right)/2 \ x &= \Delta M/\Gamma \ y &= \Delta \Gamma/2\Gamma \ R_M &= \left(x^2 + y^2\right)/2 \end{array}$$

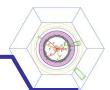



Motivation


- Knowledge of mixing needed to measure CP violation.
- Possible source of New Physics.
- Fill in gap between K and B_d, B_s mixing charm mixing involves down-type quarks.
- Standard Model allows x, y up to ~1%.
- CP violation or |x| >> |y| would establish New Physics.



W

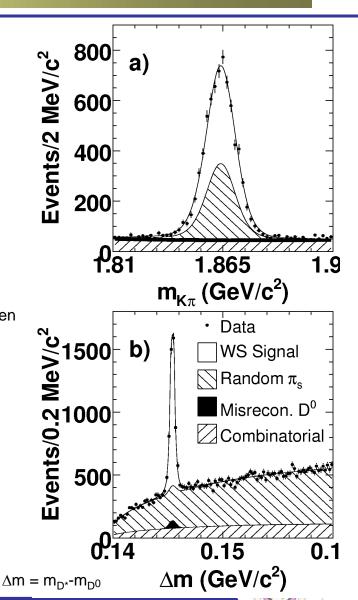

Experimental notation

- Almost always use D⁰ from D* decays for tagging and cleanliness.
- D* decays to slow pion and neutral D;
 charge of pion tags production flavour of D.
- Classify backgrounds :
 - Correct D⁰, random slow pion : 'mistag' if pion has wrong charge.
 - D⁰ has correct tracks, but wrong particle assignments, or is missing a track: 'bad D⁰' or 'mis-reconstructed charm'.
 - Ordinary combinatorics.
- For historical reasons, refer to Cabibbofavoured decays as 'right-sign' (RS), doubly-Cabibbo-suppressed as 'wrong-sign' (WS).

 $σ_z$ 8mm, $σ_x$ 100μm, $σ_v$ 7μm

$D^0 \rightarrow K^+\pi^-$

Interference

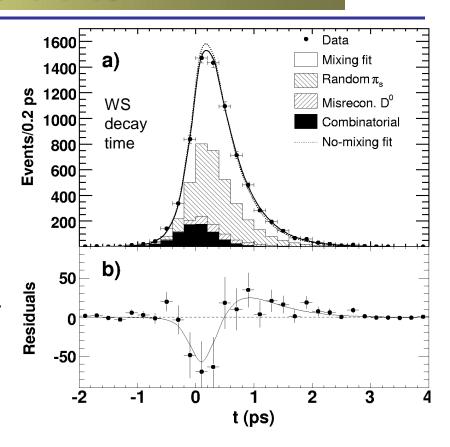

• Decay-time distribution:

• Allow for CP violation by fitting D^0 and $\overline{D^0}$ samples separately.

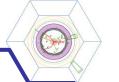
Phase between RS and WS

Yields from 384 fb⁻¹:

	Candidates
RS	1141500 ± 1200
WS	4030 ± 90

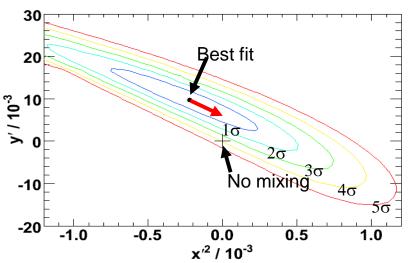


$D^0 \rightarrow K^+\pi^-$: Fit

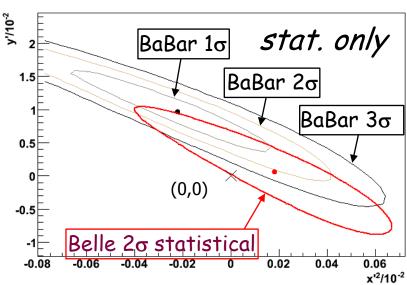


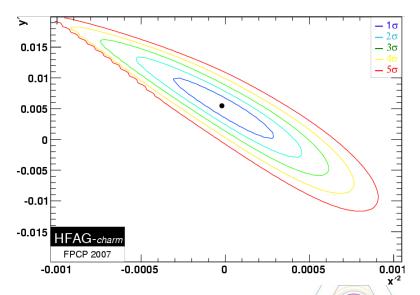
- Fit in three stages:
 - Fit RS and WS to $m_{K\pi}$ and Δm .
 - Fit RS for D0 lifetime and resolution function.
 - Fit WS decay-time distribution.
- Three different models:
 - Impose no mixing and CP conservation.
 - Allow mixing, but keep CP conservation.
 - Allow both mixing and CP violation.
- Signal time resolution modelled as sum of three Gaussians.
- Combinatorial background sum of two Gaussians, with one power-law tail.

 Mis-reconstructed D⁰ and mistag have signal time distribution.



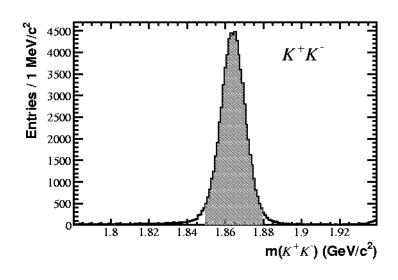
Points show difference between data and no-mixing fit; curve shows difference between fit with and without mixing.

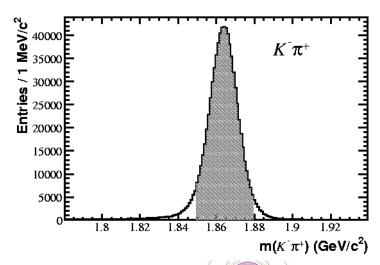




Fit	Parameter	Result $[\times 10^3]$
No CPV, no mix	R_D	$3.53 \pm 0.08 \pm 0.04$
	R_D	$3.03 \pm 0.16 \pm 0.10$
No CPV, mix	$ x'^2 $	$-0.22 \pm 0.30 \pm 0.21$
	y'	$9.7 \pm 4.4 \pm 3.1$
	R_D	$3.03 \pm 0.16 \pm 0.10$
	$ x'^{2+} $	$-0.24 \pm 0.43 \pm 0.30$
CPV and mix	$ \hspace{.05cm} y'^+ \hspace{.05cm} $	$9.8 \pm 6.4 \pm 4.5$
	$ x'^{2-} $	$-0.20 \pm 0.41 \pm 0.29$
	y'^-	$9.6 \pm 6.1 \pm 4.3$

$D^0 \rightarrow h^+h^-$


D mixing changes the decay width of final states with definite CP.


Lifetime for

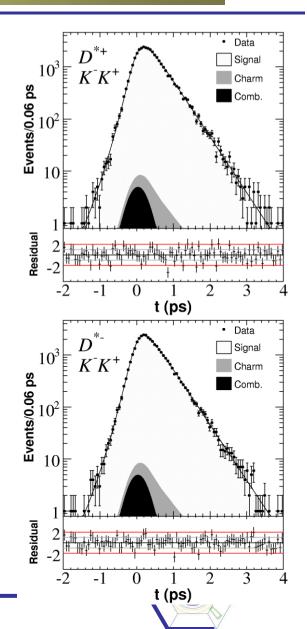
$$au^{0}
ightarrow ext{CP state}$$
 $au^{+}_{CP} = au_{K\pi} \left[1 + \left| rac{q}{p} \right| (y \cos \phi_f - x \sin \phi_f)
ight]^{-1}$ $au^{-}_{CP} = au_{K\pi} \left[1 + \left| rac{p}{q} \right| (y \cos \phi_f + x \sin \phi_f)
ight]^{-1}$ Lifetime for $au^{-}_{D^0}
ightarrow ext{CP state}$

Extract two quantities:

$$y_{CP} = rac{2 au_{K\pi}}{ au_{CP}^{+} + au_{CP}^{-}}$$
 $\Delta Y = rac{2 au_{K\pi}}{ au_{CP}^{+} + au_{CP}^{-}} rac{ au_{CP}^{+} - au_{CP}^{-}}{ au_{CP}^{+} + au_{CP}^{-}} rac{ au_{CP}^{+} - au_{CP}^{-}}{ au_{CP}^{+} + au_{CP}^{-}}$

$D^0 \rightarrow h^+h^- (ctd)$

Reconstruct three modes:

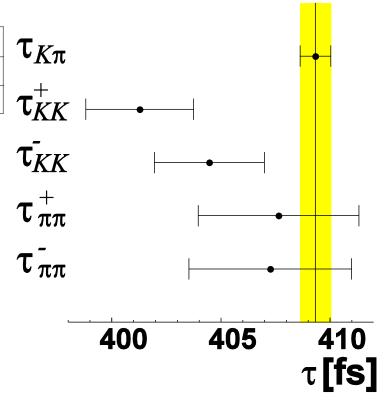

•
$$D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow K\pi$$

• D*+
$$\rightarrow$$
 D⁰ π +, D⁰ \rightarrow KK

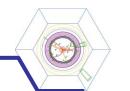
• D*+
$$\rightarrow$$
 D⁰ π +, D⁰ \rightarrow $\pi\pi$

- High purity allows small systematic uncertainty.
- Fit for lifetime of all modes simultaneously.
- Three contributions to fit function:
 - Signal: Exponential convolved with sum of three Gaussians.
 - Combinatorial background: Two Gaussians, power-law tail.
 - Mis-reconstructed charm: Exponential convolved with single Gaussian. Lifetime extracted from fit to Monte Carlo events.

Sample	Size	Purity [%]
$K^-\pi^+$	730880	99.9
K^+K^-	69696	99.6
$\pi^+\pi^-$	30679	98.0


	$y_{CP}\left[\% ight]$	$\Delta Y \left[\% ight]$
K^+K^-	$1.60 \pm 0.46 \pm 0.17$	$-0.40 \pm 0.44 \pm 0.12$
$\pi^+\pi^-$	$0.46 \pm 0.65 \pm 0.25$	$0.05 \pm 0.64 \pm 0.32$

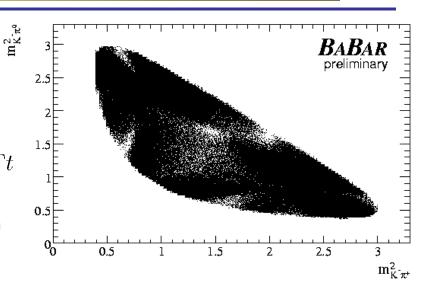
 Combining KK and pp results gives 3sigma evidence of mixing :

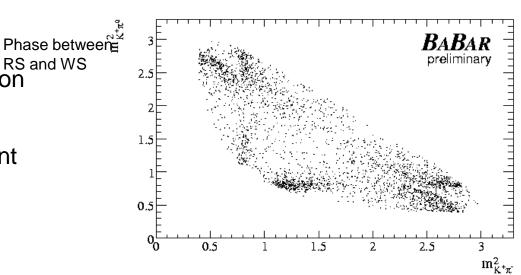

$$y_{CP} = (1.24 \pm 0.39 \pm 0.08)\%$$

- CP violation consistent with zero.
- Combining with earlier measurement using untagged sample:

$$y_{CP} = (1.03 \pm 0.33 \pm 0.19)\%$$

$D^0 \rightarrow K^+\pi^-\pi^0$

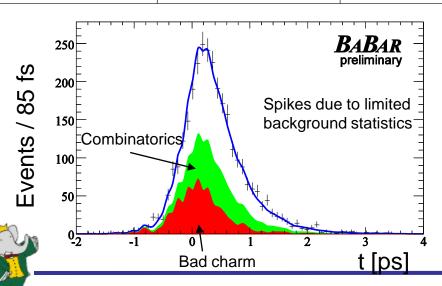

Wrong-sign decay rate varies across
 Dalitz plot:

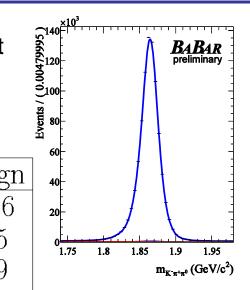

DCS term

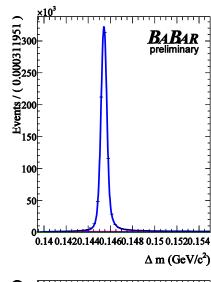
 $\mathcal{A}(m_{K^-\pi^+},m_{K^-\pi^0},t) = e^{-\Gamma t}[|\bar{A}_D|^2 + \underbrace{|\bar{A}_D||A_D|(y''\cos\delta_D - x''\sin\delta_D)\,\Gamma t}_{|A_D|^2(x''^2 + y''^2)(\Gamma t)^2]}$ Interference term

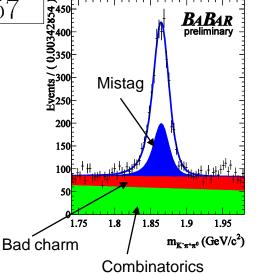
$$egin{array}{ll} x'' &= x\cos\delta_{K\pi\pi^0} + y\sin\delta_{K\pi\pi^0} \ y'' &= y\cos\delta_{K\pi\pi^0} - x\sin\delta_{K\pi\pi^0} \end{array}$$

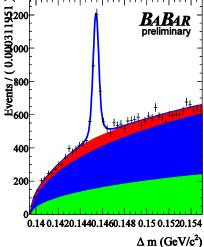
- Subscript D indicates dependence on position in Dalitz plot.
- Determine A_D from time-independent fit to right-sign Dalitz plot.
- Fit for A_D simultaneously with x, y.

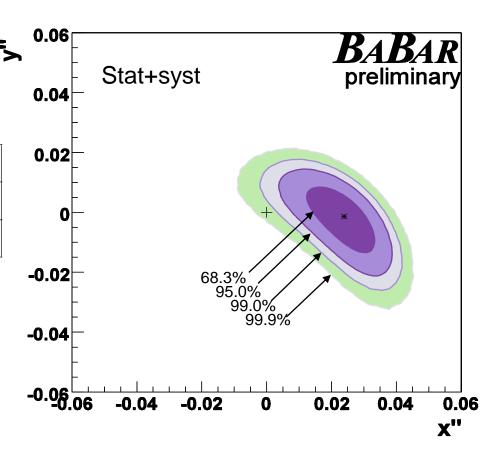


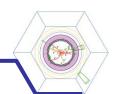

$D^0 \rightarrow K^+\pi^-\pi^0$ (ctd)


W


- Extract background time and Dalitz-plot distributions from D⁰ mass sidebands.
- Yields from 384 fb⁻¹:


Category	Right-sign	Wrong-sign
Signal	639802 ± 1538	1483 ± 56
Bad D^0	3317 ± 93	227 ± 75
Mistag	2384 ± 57	765 ± 29
Combinatoric	1537 ± 57	499 ± 57

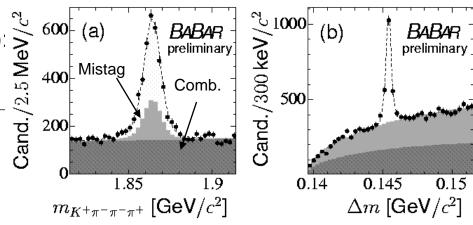




No mixing is excluded at the 99% confidence level.

x'' [%]	$2.39 \pm 0.61 \pm 0.32$
y''[%]	$-0.14 \pm 0.60 \pm 0.40$
R_M [%]	0.029 ± 0.016

0 \longrightarrow K $^{+}$ π $^{-}$ π $^{+}$ π $^{-}$



 Decay time difference integrated over phase space (indicated by tilde):

• Decay time difference integrated over phase space (indicated by tilde)
$$\frac{\Gamma_{\rm WS}(t)}{\Gamma_{\rm RS}(t)} = \tilde{R}_D + \alpha \tilde{y}' \sqrt{\tilde{R}_D} (\Gamma t) + \tilde{\gamma}_D \tilde{y}_D \tilde{$$

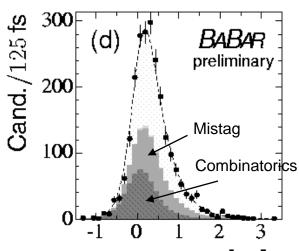
$$\tilde{x}' = x \cos \tilde{\delta} + y \sin \tilde{\delta}
\tilde{y}' = y \cos \tilde{\delta} - x \sin \tilde{\delta}$$

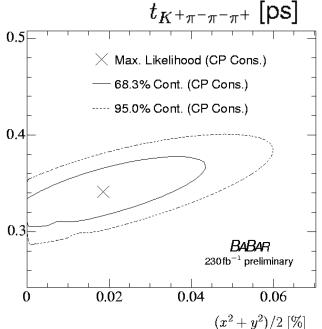
With CP violation:

	D^0 candidates	\overline{D}^0 candidates
RS	351100 ± 600	349200 ± 600
WS	1162 ± 53	1040 ± 51

Yields from 230 fb⁻¹

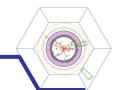
$$\begin{array}{ccc} \left(\tilde{x}'^2 + \tilde{y}'^2\right) & \rightarrow & \left|p/q\right|^{\pm 2} \left(\tilde{x}'^2 + \tilde{y}'^2\right) \\ & \alpha \tilde{y}' & \rightarrow & \left|p/q\right|^{\pm 1} \left(\alpha \tilde{y}' \cos \tilde{\phi} \pm \beta \tilde{x}' \sin \tilde{\phi}\right) \end{array}$$




$D^0 \rightarrow K^+\pi^-\pi^+\pi^-$: Results

CP conserved		CP violation allowed	
R_M [%]	$0.019^{+0.016}_{-0.015} \pm 0.002$	R_M [%]	$0.017^{-0.017}_{-0.016} \pm 0.003$
		$\alpha \tilde{y}' \cos \tilde{\phi}$	$-0.006^{+0.008}_{-0.006} \pm 0.006$
$\alpha \tilde{y}'$	$-0.006^{+0.005}_{-0.005} \pm 0.001$	$\beta \tilde{x}' \sin \tilde{\phi}$	$0.002^{+0.005}_{-0.003} \pm 0.006$
	2.300	p/q	$1.1^{+4.0}_{-0.6} \pm 0.1$

- Fit in two stages:
 - Extract D^0 mass and Δm parameters.
 - Fix shape parameters, fit to $(m_{D0}, \Delta m, t)$.
- Signal shape is exponential convolved with double Gaussian.
- Combinatorial background modelled by Gaussian with power-law tail.
- Fit RS and WS distributions simultaneously.
- Time-resolution parameters and D⁰ lifetime for WS fixed to RS values.
- Data consistent with no-mixing at 4.3% confidence level.


 \tilde{R}_D [%

- BaBar has observed mixing in the neutral D system :
- $D^0 \rightarrow K^+\pi^-$
 - 384 fb⁻¹, 3.9 σ away from no mixing, (x'², y') = (-0.22±0.30±0.21, 9.7±4.4±3.1) × 10⁻³
- $D^0 \rightarrow h^+h^-$
 - 384 fb⁻¹, 3.0 σ away from no mixing, $y_{CP} = 1.24 \pm 0.39 \pm 0.13$
- $D^0 \to K^+\pi^-\pi^0$
 - 384 fb⁻¹, no mixing excluded at 99% CL, $(x'', y'') = (2.39\pm0.61\pm0.32, -0.14\pm0.60\pm0.40)\%$
- $D^0 \to K^+\pi^-\pi^+\pi^-$
 - 230 fb⁻¹, compatible with no mixing at 4.3% CL, $R_M = 0.019 \pm 0.016 \pm 0.020$
- With the final BaBar dataset of roughly 750 fb⁻¹, still more accurate determination of mixing will be possible with these and other modes.

