Observation of the $\pi(1800)$ and $\pi_2(1880)$ mesons in the $\eta\eta\pi$ decay

Paul Eugenio

[Blake Sharin & Alexander Ostrovidov]

Florida State University
Tallahassee, FL USA

Hadron 2007
XII International Conference on Hadron Spectroscopy

Laboratori Nazionali di Frascati, Italy
October 8-13, 2007
Overview

- Motivation
- Experimental Setup
- Features of $\pi \rightarrow \pi^-\pi^-\pi^+\pi^0\eta \rho$
- Partial Wave Analysis of $\eta\eta\pi^-$
- Observation of $\pi(1800)$ & $\pi_2(1880)$
- Conclusions & Summary
Radial Excitations of the Pion

$J^{PC} = 0^{-+}$

π, $\pi(1300)$, $\pi(1800)$

Mass

0 1000 2000 3000 MeV/c2

Width
Radial Excitations of the Pion

\[J^{PC} = 0^{-+} \]

Many† have suggested that the \(\pi(1800) \) is a \(0^{-+} \) hybrid meson

†See for example T. Barnes, F. E. Close, P. R. Page, & E. S. Swanson Phys. Rev. D55 4157 (1997)
Radial Excitations of the Pion

\[J^{PC} = 0^{-+} \]

Many\(^\dagger\) have suggested that the \(\pi(1800)\) is a \(0^{-+}\) hybrid meson

See for example T. Barnes, F. E. Close, P. R. Page, & E. S. Swanson Phys. Rev. D55 4157 (1997)
Radial Excitations of the Pion

\[J^{PC} = 0^{-+} \]

Rather narrow for 2nd excitation of \(\pi \)

\(\pi \)

\(\pi(1300) \)

\(\pi(1800) \)

Does not decay to \(\rho \pi \) \& \(K^*K \)

Many† have suggested that the \(\pi(1800) \) is a \(0^{+-} \) hybrid meson

†See for example T. Barnes, F. E. Close, P. R. Page, \& E. S. Swanson Phys. Rev. D55 4157 (1997)
The π_2/η_2 States [J$^\text{PC}$=2$^{-+}$]
The π_2/η_2 States $[J^{PC}=2^{-+}]$

$\pi_2^{-}(1670)$ $\eta_2(1645)$ $\pi_2^0(1670)$ $\pi_2^+(1670)$

should be mainly $s\bar{s}$
The π_2/η_2 States [$J^{PC}=2^{-+}$]

$\eta_2(1645)$ should be mainly $s\bar{s}$

$\pi_2^-(1670)$ $\pi_2^0(1670)$ $\pi_2^+(1670)$

$\eta_2(1870)$ has been reported in $\gamma\gamma$ interactions, $p\bar{p}$ interactions, & central production
The π_2^*/η_2 States $[J^{PC}=2^{-+}]$

$\eta_2(1645)$ should be mainly $s\bar{s}$

$\eta_2(1870)$ has been reported in $\gamma\gamma$ interactions, $p\bar{p}$ interactions, & central production

However decays are mainly to,

$\eta_2(1870) \rightarrow a_2(1320)\pi$

$\rightarrow f_2(1270)\pi$
The π_2/η_2 States [$J^{PC}=2^{-+}$]

$\eta_2(1645)$ should be mainly ss

$\pi_2^-(1670)$ $\pi_2^0(1670)$ $\pi_2^+(1670)$

$\eta_2(1870)$ has been reported in $\gamma\gamma$ interactions, $p\bar{p}$ interactions, & central production

However decays are mainly to,

$\eta_2(1870) \rightarrow a_2(1320)\pi$

$\rightarrow f_2(1270)\pi$

Close and Page note that the relative decay rate is compatible with a hybrid interpretation
A new \(\pi_2(1880) \) state has been observed

★ Hybrid partner to \(\eta_2(1870) \)?

\[\bar{p} p \rightarrow \eta \eta \pi^0 \pi^0 \] (in flight)

\(\pi_2(1880) \) parameters

- \(M = 1880 \pm 20 \text{ MeV}/c^2 \)
- \(\Gamma = 255 \pm 45 \text{ MeV}/c^2 \)

Data strongly requires

\(\pi_2(1900) \rightarrow a_2(1320) \eta \)

Projections of the data and pwa results

BNL-E852 Analysis

Reaction:
\[\pi^- p \rightarrow p \pi^+ \pi^- \pi^- \pi^0 \eta \]
\[\pi^0 \rightarrow \gamma \gamma \]
\[\eta \rightarrow \gamma \gamma \]

18 GeV/c pion beam

256 Million triggers of this type acquired

Brookhaven Experiment 852

Events reconstructed with:

- 4 photon clusters in LGD
- 3 forward charged particle tracks (total charge of -1) with vertex at the beam
- Consistent recoil track
- Fiducial volume (target & Lead Glass Detector) cuts
- Hadron tagging at the LDG
- CsI barrel rejection
- Kinematic fitting: \(p \pi^+ 2\pi^- \pi^0 \eta \)
Features of the $\pi^- p \rightarrow p\pi^+ \pi^- \pi^- \pi^0 \eta$ System

Kinematic fitting

\times 45600 $\pi^- p \rightarrow \pi^+ \pi^- \pi^- \pi^0 \eta p$

events

\times Rejected $\pi^- p \rightarrow p\pi^+ \pi^- \pi^- \pi^0 \pi^0$

ambiguous events
Selecting $\eta\eta\pi^-$ from $\eta\pi^-\pi^+\pi^0\pi^-$

$\pi(1800)$

First observed by VES
Mass(1770 – 1875) MeV/c²
Also observed by BNL-E852
Intermediate Isobar Decays

\[X \rightarrow \eta[y] \rightarrow \eta[\eta\pi^-] \]

\[X \rightarrow [y]\pi^- \rightarrow [\eta\eta]\pi^- \]

- \(a_0(980) \)
- \(a_2(1320) \)
- \(f_o/f_2 \)

Events/20 MeV/c^2

Mass(\eta\pi^-) GeV/c^2

Mass(\eta\eta) GeV/c^2
Partial Wave Analysis

\[I(\tau) = \sum_{\epsilon \epsilon'} \rho_{\epsilon \epsilon'}(\tau) \sum_{\alpha \alpha'}^{k \epsilon} V_{\alpha}^* A_{\alpha'}^*(\tau) k^{\epsilon} V^{\epsilon} A_{\alpha}(\tau) \]

For pion beam & unpolarized target:

\[I(\tau) = \frac{1}{2} \sum_{k \epsilon} \left| \sum_{\alpha}^{k \epsilon} V^{\epsilon} A_{\alpha}(\tau) \right|^2 \]

Helicity Decay Amplitudes

\[A_{\alpha, M}(\tau) = A_{X}^{\lambda_1 \lambda_2; M} A_{\text{iso}}^{\lambda_1 \lambda_2; M} \ldots \]

\[A_{X}^{\lambda_1 \lambda_2; M} = D_{\lambda M}^{\lambda}(\theta, \phi) \frac{\tilde{L}}{\tilde{J}} (L 0; S \lambda | J \lambda) (S_1 \lambda_1; S_2 - \lambda_2 | S \lambda) K \]

Complex parameters varied in the PWA to fit the data

\[\epsilon A_{\alpha}(\tau) = a [A_{\alpha, M}(\tau) \pm b A_{\alpha, -M}(\tau)] \]

\[\tilde{J} = \sqrt{J (J + 1)} \]
• Considered all Possible States with:
 ✓ \(J^{PC} = 0^{-+}, 1^{++}, 2^{-+}, 3^{++} \)
 ✓ \(L = S, P, D, \& F \)
 ✓ \(|M| \leq 1 \quad \epsilon = \pm 1\)
 ✓ Isobars
 ✓ \(a_0(980)\eta, f_0(1500)^{+}\pi, a_2(1320)\eta\)
 ✓ \(f_0(1300)\pi, f_2(1270)\pi\)

‡\text{Mass}=1480\pm25 \text{ MeV} \quad \Gamma=120^{+50}_{-30} \text{ MeV}

Maximum-Likelihood Fitting in 50 MeV/c^2 \(\eta\eta\pi^- \) mass bins
Acceptance Correction via MC

• Minimal set of waves
 \(J^{PC}M^{\epsilon}L \) (isobar decay)
 \(0^{-+}0^{+}S \ a_0(980)\eta \)
 \(0^{-+}0^{+}S \ f_0(1500)\pi \)
 \(2^{-+}0^{+}S \ a_2(1320)\eta \)
 \(2^{-+}0^{+}D \ a_0(980)\eta \)

 background
Quality of the PWA Fit

The quality of the fit was judged by comparing data distributions with PWA spin-density matrix weighted Monte Carlo events.

(c) \(a_0(980) \)

(d) \(f_0(1500) \)

(b) \(\pi(1800) \)

(e) \(\cos \theta_{GJ} \)

(f) \(\phi_{TY} \) (rad)
The $J^{PC} = 0^{-+} \pi(1800) \rightarrow \eta\eta\pi^-$

Partial Wave Intensities

$0^+ a_0(980)\eta$ S-wave

$0^+ f_0(1500)\pi$ S-wave

\[\eta\eta\pi \text{ mass (GeV)} \]

Smooth lines show results of mass-dependent relativistic Breit-Wigner χ^2 fits

Partial Wave Phase Difference

$\Delta\phi(0^+ S a_0\eta - 2^+ D a_0\eta)$

\[\eta\eta\pi \text{ mass (GeV)} \]

Parameters of the $\pi(1800)$

$M = 1876 \pm 18 \pm 16$ MeV/c2, $\Gamma = 221 \pm 26 \pm 38$ MeV/c2

χ^2/dof = 23.9/20
Relative Branching Ratio for $\pi(1800)$

The fitted Breit-Wigner shapes were integrated to determine the predicted number of events for each state.

The following branching ratio was obtained

$$\frac{BR[\pi(1800) \to f_0(1500)\pi, f_0 \to \eta\eta]}{BR[\pi(1800) \to a_0(980)\eta, a_0 \to \eta\pi]} = 0.48 \pm 0.17$$

A similar value of 0.40 ± 0.15 was obtained in a different maximum-likelihood PWA fit in which the branching ratio itself was one of the fitted parameters.

In both cases our value is higher than the value determined by VES‡ [Ratio = 0.08 ± 0.03]

‡Phys. At. Nucl. 59, 976 (1996)
The Mass of the $\pi(1800)$

- BNL-E852($a_0(980)\eta\to\eta\pi$)
- BNL-E852($f_0(1500)\to\eta\pi$)
- BNL-E852($\omega\rho$)
- BNL-E852($\sigma\pi\to3\pi$)
- BNL-E852($f_0(980)\pi\to3\pi$)
- VES$^\dagger(\eta\eta\pi)$
- VES$^\dagger(3\pi)$
- VES$^\dagger(K^*_0(1430)K)$
- VES$^\dagger(\eta\eta'\pi)$

Average 1812 ± 14 MeV/c2

† PDG 2006
The $J^{PC} = 2^{-+} \pi_2$ Waves

Partial Wave Intensities

Observation of $\pi_2(1880)$

Partial Wave Phase Difference

with $\pi(1800)$ parameters fixed, the intensity of the $2^+a_2\eta$ wave and its phase relative to the $0^+a_0\eta$ wave were fitted

$M = 1929 \pm 24 \pm 18 \text{ MeV}/c^2$, $\Gamma = 323 \pm 87 \pm 43 \text{ MeV}/c^2$

χ^2/dof = 19.9/18
Summary

- A partial-wave analysis of the reaction $\pi^- p \rightarrow \eta \eta \pi^- p$ at 18 GeV/c was performed on a data sample of ~4,000 events.
- The $J^{PC} = 0^{-+} \pi(1800)$ state is observed in the $a_0(980)\eta$ and $f_0(1500)\pi$ decay modes.
 - mass of $1876\pm18\pm16$ MeV/c2 and width of $221\pm26\pm38$ MeV/c2
 - relative branching ratio of $\frac{BR[\pi(1800) \rightarrow f_0(1500)\pi, f_0 \rightarrow \eta \eta]}{BR[\pi(1800) \rightarrow a_0(980)\eta, a_0 \rightarrow \eta \pi]} = 0.48\pm0.17$.
- The $J^{PC} = 2^{-+} \pi_2(1880)$ meson is observed decaying through $a_2(1320)\eta$.
 - mass of $1929\pm24\pm18$ MeV/c2 and width of $323\pm87\pm43$ MeV/c2.
- Both states are potential candidates for non-exotic hybrid mesons.
- These results have been submitted to PLB & are under review.
Is the $\pi(1800)$ a Gluonic Hybrid?

$\pi(1800) \rightarrow f_0(980)\pi \quad \checkmark \quad ?$

$\rightarrow \sigma \pi [f_0(1370)\pi] \quad \checkmark \quad ?$

$\rightarrow f_0(1500)\pi \quad \checkmark \quad ?$

$\rightarrow a_0(980)\eta \quad \checkmark \quad ?$

$\rightarrow \omega \rho \quad \times$

$\rightarrow \eta \eta' \pi$

$\rightarrow K_0^*(1430)K \quad \checkmark$

$\rightarrow q\bar{q}(L=1) + q\bar{q}(L=0)$

$\pi(1800)$ is not likely a qq meson, and probably not a hybrid meson either
The $\pi(1800)$ could be a Multiquark or $K^*(892)\bar{K}^*(892)$ Molecule similar to the $a_0(980)/f_0(980)$

$\pi(1800) \rightarrow K^*(892) \bar{K}^*(892)$

$\eta(1760) \rightarrow K^*(892) \bar{K}^*(892)$
Study of resonance production in diffractive reaction $\pi^- A \rightarrow \pi^+ \pi^- \pi^- A$.

By VES Collaboration (D.V. Amelin et al.)

\[\pi^{(1800)} \rightarrow \pi^+ \pi^- \pi^- \]

\[M = 1774 \pm 18 \pm 20 \text{ MeV}/c^2 \]

\[\Gamma = 223 \pm 48 \pm 50 \text{ MeV}/c^2 \]

\[0^+ \rightarrow f_0(980) \pi \]

\[\text{Events/40 MeV} \]

\[\text{Mass}[\pi^+\pi^+\pi^-] \]

\[0^+ \rightarrow \sigma \pi \]

\[\text{Events/40 MeV} \]

\[\text{Mass}[\pi^+\pi^-\pi^-] \]

\[BR[\pi(1800) \rightarrow f_0(980) \pi, f_0 \rightarrow \pi \pi] \]

\[= 0.44 \pm 0.08 \pm 0.38 \]

\[\text{BNL-E852} \]

\[\pi^{(1800)} \rightarrow \rho \pi \]

\[M = 1863 \pm 9 \pm 10 \text{ MeV}/c^2 \]

\[\Gamma = 191 \pm 21 \pm 20 \text{ MeV}/c^2 \]
$\pi(1800) \rightarrow \omega\rho$

BNL-E852

120k events; 27 waves

Same PWA as $b_1\pi$

$J^{PC} = 0^{-+}$

$M = \sim 1850$ MeV/c^2

$\Gamma = \sim 250$ MeV/c^2

Events: $0^+ 0^+ P_{\omega/\rho^- 1}$

Events/80 MeV/c^2
\(\pi_2(1880) \) observed at BNL

\[\pi^- p \rightarrow p\pi_2(1900) \rightarrow p\omega\pi\pi \]

Events: \(2^+ 0^+ P_{\omega/\rho^-} 1 \)

\[2^+ \rightarrow \omega \rho^- \]

\[\pi^- p \rightarrow p\pi_2(1900) \rightarrow p\eta\eta\pi^- \]

\(2^+ a_2(1320) \eta \) S-wave

\[2^+ \rightarrow a_2(1320) \eta \]
\[\pi_2(1900) \rightarrow \eta \pi^- \pi^- \pi^0 \]

\[R = \frac{BR[\pi_2(1900) \rightarrow a_2(1320)\eta]}{BR[\pi_2(1900) \rightarrow f_1(1285)\pi]} \approx 38 \]

Flux Tube Model Prediction

R = 23

BNL E852

M \sim 2000 \pm 100 \text{ MeV}/c^2

\Gamma \sim 300 \pm 150 \text{ MeV}/c^2