The search for bound kaonic states in nuclei, experimental status and theoretical predictions

Stefano Piano (INFN sez. Trieste)

Outline

- Introduction and theoretical overview
- Overview of experimental methods and "evidences"
- Recent experimental results
 - Study of strange systems with two nucleons
 - Study of strange systems with three nucleons
 - Critical revision of experimental results vs theoretical expectations
- Summary and Conclusions

Introduction – theoretical approach

- General understanding of KN (KA) interaction
 - Small binding energies: 30-50 MeV
 - Large decay widths: 80-100 MeV
 - ... practically impossible to observe
- Recent theoretical developments:
 - YES! DBKS exist as narrow states, they can be experimentally observed
 - NO! nuclear-antikaon interaction provides a shallow and wide potential, the KA states cannot be observed

Introduction – theoretical approach

- General understanding of KN (KA) interaction
 - Small binding energies: 30-50 MeV
 - Large decay widths: 80-100 MeV
 - ... practically impossible to observe
- Recent theoretical developments:
 - YES! DBKS exist as narrow states, they can be experimentally observed
 - NO! nuclear-antikaon interaction provides a shallow and wide potential, the KA states cannot be observed

Akaishi & Yamazaki: What a Deeply Bound Kaon Nuclear State is

- Nuclear bound states formed by a single (double) K- and few nucleons, S = -1
- Deeply bound due to the strength of the KN strongly attractive interaction, I = 0
 - Simplest case: $(\overline{K}N)$ bound state: $\Lambda(1405)$
- The presence of $\Lambda(1405)$ prevents a reliable perturbative treatment
- More composite states: can be interpreted as molecules formed by Λ(1405)+xN
 - covalent bonding K⁻-nucleons, much stronger than the nuclear force
 - The $\Lambda(1405)$ should persist as such in a nuclear system

High nuclear density in a low temperature system !!!

Akaishi & Yamazaki (PLB535(2002), 70; PRC65(2002)...)

Introduction – theoretical approach

- General understanding of KN (KA) interaction
 - Small binding energies: 30-50 MeV
 - Large decay widths: 80-100 MeV
 - ... practically impossible to observe
- Recent theoretical developments:
 - YES! DBKS exist as narrow states, they can be experimentally observed
 - NO! nuclear-antikaon interaction provides a shallow and wide potential, the KA states cannot be observed

Oset, Weise, Mares ...the skeptical side I

- Akaishi-Yamazaki use a G-matrix treatment simplifying some absorption effects, and neglecting some couplings $(\pi\Sigma, \pi\Lambda)$
- Common view (Gal, Weise, Schaffner-Bielich, Wychech)
 - K⁻ -nuclear aggregates existence is not denied, but the potential is shallow and the expected widths are large.
 - ⇒ possible signals only from heavy systems
- Microscopic chiral approach (Ramos, Oset NPA671 (2000) 481):
 - Shallow nuclear potential, weak attractive KN interaction
 - Small binding energy (30-40 MeV) and large width (80-100 MeV)
- Density dependent potential (Mares et al. NPA770 (2006) 84)
 - Sizeable binding energy (100-200 MeV), widths > 50 MeV but only for heavy nuclei

Oset, Weise, Mares ...the skeptical side II

- 3-body Faddeev calculations (Shevchenko et al. PRL98 (2007), 082301)
 - Small binding energy (~50 MeV) and large width (~100 MeV)
- Green function method (Yamagata, Nagahiro, Hirenzaki PRC74 (2006), 014604)
 - Phenomenological optical potential: small structures
 - Chiral unitary optical potential: not observable structures
 - The signals of the kaonic nuclear states formation are very small
- Interpretations of observed signals via FSI
 - Magas et al. PRC74 (2006), 025206
 - Oset, Toki PRC74(2006), 015207

Where to observe DBKS?

Akaishi-Yamazaki

Weise

What is:

- 1. Decay signature
- 2. Role of FSI

Hadron 07 - LNF - 11/10/2007 - S.Piano - The search for bound kaonic states...

Experimental approaches

Missing mass spectroscopy

- Measurement of the momentum of monochromatic recoiling particles in the A(K⁻,N)X reaction
 - KEK-PS E471 (K⁻_{stop})
 - AGS E930 (K-in-flight)
 - FINUDA (K-stop)
 - KEK-PS E549 (K-stop)

Invariant mass spectroscopy

- Based on the kaonic nuclear state decaying into YN pairs
 - $(K^-pp) \rightarrow \Lambda + p$
 - (K⁻ppn) → Λ + d
 - · Typically:
 - $p_{p(\Lambda)} \sim 500 \text{ MeV/c}$
 - $p_{\pi(\Lambda)} < 200 \text{ MeV/c}$
 - p_p ~ 500 MeV/c

- Full event reconstruction desirable (necessary)
- Angular correlation between the emitted pairs necessary (desirable)
 - FOPI (heavy ion collisions)
 - FINUDA (K⁻_{stop})
 - OBELIX (p He)
 - KEK-PS E549 (K⁻_{stop})

- Hunting K⁻ bound systems [K⁻NNN] with (semi) inclusive reactions ⁴He(K⁻_{stop}, N) by KEK-PS E-471
 - Peak in the recoiling nucleon momentum at \sim 500 MeV/c, observed in coincidence with a fast π
 - Results compatible with the predictions by Akaishi-Yamazaki
 - 4He(K⁻_{stop}, p): withdrawn (arXiv:0708.2968v1)
 - ⁴He(K⁻_{stop}, n): currently under revision

- A further observation: E930@AGS
 - ¹⁶O(K⁻_{in-flight}, n)¹⁵_K-O
 ¹⁵_K-O: bound state at ~90 MeV
 - ⇒ Careful about relying on (missing mass) inclusive measurements only!

Hunting K⁻ bound systems [K⁻NNN] with (semi) inclusive reactions ⁴He(K⁻_{stop}, N) by KEK-PS E-471

⁴He(K⁻_{stop}, p)

- Peak in the recoiling nucleon momentum at \sim 500 MeV/c, observed in coincidence with a fast π
 - Results compatible with the predictions by Akaishi-Yamazaki
- 4He(K⁻_{stop}, p): withdrawn (arXiv:0708.2968v1)
- 4He(K⁻_{stop}, n): currently under revision

- A further observation: E930@AGS
 - ¹⁶O(K⁻_{in-flight}, n)¹⁵_K-O
 ¹⁵_K-O: bound state at ~90 MeV
 - ⇒ Careful about relying on (missing mass) inclusive measurements only!

⁴He(K⁻_{stop}, p)

- Hunting K⁻ bound systems [K⁻NNN] with (semi) inclusive reactions ⁴He(K⁻_{stop}, N) by KEK-PS E-471
 - Peak in the recoiling nucleon momentum at \sim 500 MeV/c, observed in coincidence with a fast π
 - Results compatible with the predictions by Akaishi-Yamazaki
 - 4He(K⁻_{stop}, p): withdrawn (arXiv:0708.2968v1)
 - 4He(K⁻_{stop}, n): currently under revision

- A further observation: E930@AGS
 - ¹¹⁶O(K⁻_{in-flight}, n)¹¹⁵_K-O
 ¹⁵_K-O: bound state at ~90 MeV
 - ⇒ Careful about relying on (missing mass) inclusive measurements only!

Hunting K⁻ bound systems [K⁻NNN] with (semi) inclusive reactions ⁴He(K⁻_{stop}, N) by KEK-PS E-471

⁴He(K⁻_{stop}, p)

- Peak in the recoiling nucleon momentum at \sim 500 MeV/c, observed in coincidence with a fast π
 - Results compatible with the predictions by Akaishi-Yamazaki
- 4He(K⁻_{stop}, p): withdrawn (arXiv:0708.2968v1)
- ⁴He(K⁻_{stop}, n): currently under revision

- A further observation: E930@AGS
 - ¹⁶O(K⁻_{in-flight}, n)¹⁵_K-O
 ¹⁵_K-O: bound state at ~90 MeV
 - ⇒ Careful about relying on (missing mass) inclusive measurements only!

Hunting K⁻ bound systems [K-NNN] with (semi) inclusive reactions ⁴He(K-_{stop}, N) by KEK-PS E-471

⁴He(K⁻_{stop}, p)

- Peak in the recoiling nucleon momentum at ~
 500 MeV/c, observed in coincidence with a fast π⁻
 - Results compatible with the predictions by Akaishi-Yamazaki
- 4He(K⁻_{stop}, p): withdrawn (arXiv:0708.2968v1)
- ⁴He(K⁻_{stop}, n): currently under revision

⁴He(K⁻_{stop}, n)

See talk of Sato, M.

- A further observation: E930@AGS
 - ¹⁶O(K⁻_{in-flight}, n)¹⁵_K-O ¹⁵_{K-}O: bound state at ~90 MeV
 - ⇒ Careful about relying on (missing mass) inclusive measurements only !

FINUDA: Study of the ⁶Li(K⁻,p)X reaction

- Study of the proton missing mass:
 - Peak found at about 500 MeV/c
 - Interpretation: the proton peak is simply due to two nucleon absorption reaction:

Nothing exotic: simple reaction mechanism

FINUDA Coll., NPA 775 (2006), 35

Yamazaki, Akaishi, NPA 792 (2007), 229

Semi-inclusive p spectra (in coincidence with a fast π^{-})

The Σ^- hyperon does not come from the decay of a [K-NNN] cluster

Back-to-back angular correlation proper of a two-body reaction (isotropy expected from DBKS p π^-)

capture rate $K^{-}(np) \rightarrow \Sigma^{-}p$:

- 1.6%/stopped K⁻
- OK!

The p and the high momentum π^- produced in two different vertices

The π⁻ comes from the decay of a Σ⁻ hyperon

No need to DBKS to explain the signal: agreement with the Oset-Toki expectations

Missing mass combined with π^- vs p momenta, $\cos(p\pi^-)$, topological constraint ...

Hadron 07 - LNF - 11/10/2007 - S.Piano - The search for bound kaonic states...

Experimental approaches

- Missing mass spectroscopy
 - Measurement of the momentum of monochromatic recoiling particles in the A(K-,N)X reaction
 - KEK-PS E471 (K⁻_{stop})
 - AGS E930 (K-in-flight)
 - FINUDA (K-stop)
 - KEK-PS E549 (K-stop)
- Invariant mass spectroscopy
 - Based on the kaonic nuclear state decaying into YN pairs
 - $(K^-pp) \rightarrow \Lambda + p$
 - $(K^{-}ppn) \rightarrow \Lambda + d$
 - Typically:

 - $p_{\Lambda,p} \sim 500 \text{ MeV/c}$ $p_{\Lambda,\pi} < 200 \text{ MeV/c}$ $p_{\text{decay p}} \sim 500 \text{ MeV/c}$

- Full event reconstruction desirable (necessary)
- Angular correlation between the emitted pairs necessary (desirable)
 - FOPI (heavy ion collisions)
 - FINUDA (K-stop)
 - OBELIX (p He)
 - KEK-PS E549 (K⁻_{ston})

K-pp invariant mass studies with FINUDA

FINUDA is equipped with a variety of nuclear targets: A = ⁶Li, ⁷Li, ⁹Be, ¹²C, ¹³C, ¹⁶O, ²⁷Al, ⁵¹V

[K-pp] system identification in FINUDA

1. reconstruction of Λ 's

- p_{Λ} > 300 MeV/c
- 6 MeV FWHM

2. Λ and p angular correlation

- Events with a Λ-p coincidence: ~ 5%
- Light targets only (3x ¹²C, 2x ⁶Li, 1x ⁷Li)
- Λ p should be oppositely emitted, apart from FSI

(Λp) invariant mass in FINUDA: observation of a possible bound state I

- High resolution tracks only
- A bump is observed
 - Two nucleon absorption
 - K⁻ + (pp) → Λp
 peak expected at 2.34 GeV
 - K⁻ + (pp) → Σ⁰p → Λγ p
 74 MeV lower distribution, and broadened
 - Kaon nuclear bound state formation
 - K-(pp) \rightarrow X \rightarrow Λ p \rightarrow Σ 0p \rightarrow $\Lambda\gamma$ p

B =
$$115^{+6}_{-5}$$
 (stat) $^{+3}_{-4}$ (sys) MeV
 Γ = 67^{+14}_{-11} (stat) $^{+2}_{-3}$ (sys) MeV
Yield $\approx 0.1\%$ /stopped K

SEMI-EXCLUSIVE ANALYSIS

FINUDA Coll., PRL 94(2005)212303

A different interpretation of the $M_{p\Lambda}$ bump

- Magas, Oset et al, PRC74 (2006), 0252006
 - The peak is due to a rescattering effect of p and/or Λ, no need for DBKS
 - The bump is a result of the angular cuts applied in the analysis (i.e., a deformation of a flat distribution)
 - 115 MeV as a binding energy is quite too much!

...but:

- The newest analysis shows that the deformation of the spectrum is not due to angular cuts
 - Rescattering alone cannot explain the full spectrum
 - Back-to-back correlation belongs to the data themselves

...moreover:

 A similar bump was observed in a different reaction, p̄ ⁴He, where the rescattering effects should be less sizeable

(pp π -) invariant mass in FINUDA: observation of a possible bound state II

Shorter tracks with less resolution included

- Larger acceptance
- Larger background
- Bump confirmed below the mass threshold of the unbound K⁻pp system: m=2274 MeV, Γ= 56 MeV (slightly narrower)
 - Good agreement with the first result
 - 750 events in the bump (statistics 8x)
 - No angular cuts
- Angular correlations:
 - Back-to-back trend
 - Bump events: strong back-to-back correlation (1 or 2 bins populated)
 - unlikely to be obtained by FSI's

INCLUSIVE ANALYSIS

Angular distributions: a closer look

- All the experimental spectra are corrected for acceptance
- Inclusive analysis: FSI simulation normalized to the data
 - They account for 30% on the whole reaction strength
- Exclusive analysis: at the variance of the theoretical predictions, the experimental distribution is sharply peaked at $\cos(\Theta_{\Lambda p}) = -1$

Hadron 07 - LNF - 11/10/2007 - S.Piano - The search for bound kaonic states.

(Λp) Invariant mass from p̄ annihilation at rest in ⁴He (OBELIX data)

- Antiproton annihilation at rest: a good environment for the production of strangeness
- OBELIX data: p⁴He → 5 prongs:
 - \overline{p}^4 He \rightarrow (pπ⁻)p K⁰X
- Study of the (p∧) system
 - Experiment not suitable for detection of particles out of a secondary vertex
 - Limited statistics
 - Background due to phase-space and N and Δ resonances (large)
- Signal found in the $(pp\pi^{-})$ channel while is absent in the $(pp\pi^{+})$ channel:
 - Statistical significance 3.7σ
 - $Y < 1.5 \times 10^{-4} / stopped p$
 - FSI effect?
 - Lower number of residual nucleons
 - No angular cuts

G. Bendiscioli et al., NPA789(2007)222

(ppπ -)

 τ^{-}) (pp π^{+})

invariant mass spectrum

 $M = 2212.1 \pm 4.9 \text{ MeV}$

 $B = 169 \pm 4.9 \text{ MeV}$

 Γ = < 24.4 ± 8.0 MeV

NPA789(2007), 222

Search for a 3-baryon [K-NNN] kaon-nuclear state: invariant mass of the \(\Lambda \) d system

- FOPI GSI
 - Ni+Ni @ 1.93 AGeV
 - Use of invariant mass spectroscopy to search for short-lived \(\Lambda\X\) resonances
 - [K⁻ppn] → Λd

$$M = 3159 \pm 20 \text{ MeV}$$

 $B = 151 \pm 20 \text{ MeV}$
 $\Gamma = 100 \pm 50 \text{ MeV}$

- OBELIX p⁴He
 - Hints of a Λ d signal at 2.6 σ
 - Fewer statistics
 - Lower background

```
M = 3190 \pm 15 \text{ MeV}

B = 120 \pm 15 \text{ MeV}

\Gamma = < 60 \text{ MeV}
```

PRELIMINARY (AND ONLY) RESULTS EXA05

∧d invariant mass

Ad invariant mass

 Use of ⁶Li target: low background

- ⁶Li is a well known [α+d] cluster
 - Bump observed at $M_{\Lambda d}$ = 3251 MeV, $\Gamma_{\Lambda d}$ =37 MeV
 - 25 events in the peak, statistical significance
 3.9σ

- The shape of the missing kinetic energy distribution is reproduced only by the
 ⁶Li(K-_{stop}, Λd)nd reaction channel, with:
- 1. a spectator deuteron and
- 2. the neutron carrying away the whole momentum

- The shape of the missing kinetic energy distribution is reproduced only by the
 ⁶Li(K⁻_{stop}, Λd)nd reaction channel, with:
- 1. a spectator deuteron and
- 2. the neutron carrying away the whole momentum

 $^6\text{Li}(\text{K-}_{\text{stop}},\,\Lambda\text{d})\text{nd}$ for events under the bump, 3220
<M $_{\Lambda\text{d}}$ <
3280 MeV/c²

- The shape of the missing kinetic energy distribution is reproduced only by the
 ⁶Li(K⁻_{stop}, Λd)nd reaction channel, with:
- 1. a spectator deuteron and
- 2. the neutron carrying away the whole momentum

Simulation: ⁶Li(K⁻_{stop}, Λd) t

 $^6\text{Li}(\text{K-}_{\text{stop}},~\Lambda\text{d})\text{nd}$ for events under the bump, 3220
<M $_{\Lambda\text{d}}$ <3280 MeV/c²

- The shape of the missing kinetic energy distribution is reproduced only by the
 ⁶Li(K-_{stop}, Λd)nd reaction channel, with:
- 1. a spectator deuteron and
- 2. the neutron carrying away the whole momentum

 K_{stop}^{-} $^{6}Li \rightarrow \Lambda d n d_{spect}$

 6 Li(K $^-$ _{stop}, Λ d)nd for events under the bump, 3220<M $_{\Lambda}$ d<3280 MeV/c 2

Simulation: $^6\text{Li}(K^-_{\text{stop}}, \Lambda d)$ nd for events with 3220<M $_{\Lambda d}$ <3280 MeV/c 2 and a spectator deuteron with T $_d$ < 3 MeV

- The shape of the missing kinetic energy distribution is reproduced only by the
 ⁶Li(K⁻_{stop}, Λd)nd reaction channel, with:
- 1. a spectator deuteron and
- 2. the neutron carrying away the whole momentum

K_{stop}^{-} $^{6}\text{Li} \rightarrow \Lambda \text{ d n d}_{\text{spect}}$

 The events in the bump are strongly back-to-back correlated

 6 Li(K $^-$ _{stop}, Λ d)nd for events under the bump, 3220<M $_{\Lambda}$ d<3280 MeV/c 2

Simulation: 6 Li(K^{-}_{stop} , Λd)nd for events with 3220< $M_{\Lambda d}$ <3280 MeV/ c^{2} and a spectator deuteron with T_{d} < 3 MeV

E549: Λd correlation from ⁴He(K-_{stop}, d)

arXiv:0709.0996v1 [nucl-ex]

- K⁻ ⁴He → Λ d (n)
- detected back-to-back d p pairs with π^- in coincidence
- Λ discriminated from Σ^0 ($\Lambda\gamma$) event by missing mass
- A d peak at 3282 MeV/c² just below mass threshold
- interpreted as 3N absorption K⁻ppn (n) → Λ d (n)
- accepted d p back-to-back only, spectra are shaped by the limited phase-space

Mass, Binding Energy and Width

ppK-

M (MeV)	E _K (MeV)	Γ(MeV)	Reference
2255	115	67	FINUDA EXP
2212	161	<24	OBELIX EXP
	55-70	95-100	Shevchenko
	48	61	A-Y model
	118	58	Ivanov et al.

New calculation with Skyrme model: see talk of Nishikawa, T.

ppnK-

M (MeV)	E _K (MeV)	Γ(MeV)	Reference
3251	58	37	FINUDA EXP
3190	120	<60	OBELIX EXP
3159	151	100	FOPI EXP
	108	20	A-Y model

Summary

- The search for bound kaonic states in nuclei is a recent field in hadron physics raising considerable theoretical and experimental interest
- Several theoretical approaches, rather strong disagreement
 - Hot debate!
- Only few and very recent experimental results claiming the observation of the bound kaonic states
 - AGS E930
 - K⁻ on ¹⁶O
 - FINUDA @ LNF
 - K⁻-nuclei interaction at rest
 - FOPI @ GSI
 - · ion collisions: high temperature regime
 - OBELIX @ CERN
 - Antiproton annihilation at rest on ⁴He
- ... but how do we know we are dealing with a "genuine" nuclear bound kaonic states?
 - Y-A recipe for K⁻pp (NPA792(2007)229):

the $M_{\Lambda p}$ spectrum is not enough $\Theta_{\Lambda p}$, p_p , p_{Λ} distribution also needed

Outlook and Conclusions

- FINUDA [@] DAΦNE in the last year has collected ~1 fb⁻¹ of K⁻_{stop} on ⁶Li, ⁷Li, ⁹Be, ¹³C, ¹⁶O, new results coming soon:
 - $-\Lambda p vs A$
 - $-\Lambda dvsA$
 - Λ n, Λ pn, Λ t (?)
- Other experiments presently on floor:
 - KEK: E549 an extension of E471 (see talk of Sato,M.)
 - GSI, FOPI: study also in p+p collisions at 3.5 AGeV
- New analysis of old data:
 - OBELIX: S=-2 strangeness production in p⁴He (see talk of Panzarasa,A.)
- Future Projects dedicated to the search for bound kaonic states:
 - E15 @ J-PARC: study of ³He(K⁻, n) in flight
 - AMADEUS @ LNF: K⁻ on cryogenic ⁴He (see talk of Sirghi, F.C.)
- Measurement of the strong interaction level shift of kaonic-³He atoms:
 - SIDDHARTA@DAΦNE
 - KEK-PS E570 and J-PARC E17
- Increasing theoretical interest in obtaining a reliable physical framework for analysis of recent data is evidenced by the number of recent publications on this topic!