The search for bound kaonic states in nuclei, experimental status and theoretical predictions Stefano Piano (INFN sez. Trieste) ### **Outline** - Introduction and theoretical overview - Overview of experimental methods and "evidences" - Recent experimental results - Study of strange systems with two nucleons - Study of strange systems with three nucleons - Critical revision of experimental results vs theoretical expectations - Summary and Conclusions # Introduction – theoretical approach - General understanding of KN (KA) interaction - Small binding energies: 30-50 MeV - Large decay widths: 80-100 MeV - ... practically impossible to observe - Recent theoretical developments: - YES! DBKS exist as narrow states, they can be experimentally observed - NO! nuclear-antikaon interaction provides a shallow and wide potential, the KA states cannot be observed # Introduction – theoretical approach - General understanding of KN (KA) interaction - Small binding energies: 30-50 MeV - Large decay widths: 80-100 MeV - ... practically impossible to observe - Recent theoretical developments: - YES! DBKS exist as narrow states, they can be experimentally observed - NO! nuclear-antikaon interaction provides a shallow and wide potential, the KA states cannot be observed # Akaishi & Yamazaki: What a Deeply Bound Kaon Nuclear State is - Nuclear bound states formed by a single (double) K- and few nucleons, S = -1 - Deeply bound due to the strength of the KN strongly attractive interaction, I = 0 - Simplest case: $(\overline{K}N)$ bound state: $\Lambda(1405)$ - The presence of $\Lambda(1405)$ prevents a reliable perturbative treatment - More composite states: can be interpreted as molecules formed by Λ(1405)+xN - covalent bonding K⁻-nucleons, much stronger than the nuclear force - The $\Lambda(1405)$ should persist as such in a nuclear system High nuclear density in a low temperature system !!! Akaishi & Yamazaki (PLB535(2002), 70; PRC65(2002)...) # Introduction – theoretical approach - General understanding of KN (KA) interaction - Small binding energies: 30-50 MeV - Large decay widths: 80-100 MeV - ... practically impossible to observe - Recent theoretical developments: - YES! DBKS exist as narrow states, they can be experimentally observed - NO! nuclear-antikaon interaction provides a shallow and wide potential, the KA states cannot be observed # Oset, Weise, Mares ...the skeptical side I - Akaishi-Yamazaki use a G-matrix treatment simplifying some absorption effects, and neglecting some couplings $(\pi\Sigma, \pi\Lambda)$ - Common view (Gal, Weise, Schaffner-Bielich, Wychech) - K⁻ -nuclear aggregates existence is not denied, but the potential is shallow and the expected widths are large. - ⇒ possible signals only from heavy systems - Microscopic chiral approach (Ramos, Oset NPA671 (2000) 481): - Shallow nuclear potential, weak attractive KN interaction - Small binding energy (30-40 MeV) and large width (80-100 MeV) - Density dependent potential (Mares et al. NPA770 (2006) 84) - Sizeable binding energy (100-200 MeV), widths > 50 MeV but only for heavy nuclei # Oset, Weise, Mares ...the skeptical side II - 3-body Faddeev calculations (Shevchenko et al. PRL98 (2007), 082301) - Small binding energy (~50 MeV) and large width (~100 MeV) - Green function method (Yamagata, Nagahiro, Hirenzaki PRC74 (2006), 014604) - Phenomenological optical potential: small structures - Chiral unitary optical potential: not observable structures - The signals of the kaonic nuclear states formation are very small - Interpretations of observed signals via FSI - Magas et al. PRC74 (2006), 025206 - Oset, Toki PRC74(2006), 015207 # Where to observe DBKS? ### Akaishi-Yamazaki #### Weise ### What is: - 1. Decay signature - 2. Role of FSI Hadron 07 - LNF - 11/10/2007 - S.Piano - The search for bound kaonic states... ### Experimental approaches #### Missing mass spectroscopy - Measurement of the momentum of monochromatic recoiling particles in the A(K⁻,N)X reaction - KEK-PS E471 (K⁻_{stop}) - AGS E930 (K-in-flight) - FINUDA (K-stop) - KEK-PS E549 (K-stop) #### Invariant mass spectroscopy - Based on the kaonic nuclear state decaying into YN pairs - $(K^-pp) \rightarrow \Lambda + p$ - (K⁻ppn) → Λ + d - · Typically: - $p_{p(\Lambda)} \sim 500 \text{ MeV/c}$ - $p_{\pi(\Lambda)} < 200 \text{ MeV/c}$ - p_p ~ 500 MeV/c - Full event reconstruction desirable (necessary) - Angular correlation between the emitted pairs necessary (desirable) - FOPI (heavy ion collisions) - FINUDA (K⁻_{stop}) - OBELIX (p He) - KEK-PS E549 (K⁻_{stop}) - Hunting K⁻ bound systems [K⁻NNN] with (semi) inclusive reactions ⁴He(K⁻_{stop}, N) by KEK-PS E-471 - Peak in the recoiling nucleon momentum at \sim 500 MeV/c, observed in coincidence with a fast π - Results compatible with the predictions by Akaishi-Yamazaki - 4He(K⁻_{stop}, p): withdrawn (arXiv:0708.2968v1) - ⁴He(K⁻_{stop}, n): currently under revision - A further observation: E930@AGS - ¹⁶O(K⁻_{in-flight}, n)¹⁵_K-O ¹⁵_K-O: bound state at ~90 MeV - ⇒ Careful about relying on (missing mass) inclusive measurements only! Hunting K⁻ bound systems [K⁻NNN] with (semi) inclusive reactions ⁴He(K⁻_{stop}, N) by KEK-PS E-471 ⁴He(K⁻_{stop}, p) - Peak in the recoiling nucleon momentum at \sim 500 MeV/c, observed in coincidence with a fast π - Results compatible with the predictions by Akaishi-Yamazaki - 4He(K⁻_{stop}, p): withdrawn (arXiv:0708.2968v1) - 4He(K⁻_{stop}, n): currently under revision - A further observation: E930@AGS - ¹⁶O(K⁻_{in-flight}, n)¹⁵_K-O ¹⁵_K-O: bound state at ~90 MeV - ⇒ Careful about relying on (missing mass) inclusive measurements only! ⁴He(K⁻_{stop}, p) - Hunting K⁻ bound systems [K⁻NNN] with (semi) inclusive reactions ⁴He(K⁻_{stop}, N) by KEK-PS E-471 - Peak in the recoiling nucleon momentum at \sim 500 MeV/c, observed in coincidence with a fast π - Results compatible with the predictions by Akaishi-Yamazaki - 4He(K⁻_{stop}, p): withdrawn (arXiv:0708.2968v1) - 4He(K⁻_{stop}, n): currently under revision - A further observation: E930@AGS - ¹¹⁶O(K⁻_{in-flight}, n)¹¹⁵_K-O ¹⁵_K-O: bound state at ~90 MeV - ⇒ Careful about relying on (missing mass) inclusive measurements only! Hunting K⁻ bound systems [K⁻NNN] with (semi) inclusive reactions ⁴He(K⁻_{stop}, N) by KEK-PS E-471 ⁴He(K⁻_{stop}, p) - Peak in the recoiling nucleon momentum at \sim 500 MeV/c, observed in coincidence with a fast π - Results compatible with the predictions by Akaishi-Yamazaki - 4He(K⁻_{stop}, p): withdrawn (arXiv:0708.2968v1) - ⁴He(K⁻_{stop}, n): currently under revision - A further observation: E930@AGS - ¹⁶O(K⁻_{in-flight}, n)¹⁵_K-O ¹⁵_K-O: bound state at ~90 MeV - ⇒ Careful about relying on (missing mass) inclusive measurements only! Hunting K⁻ bound systems [K-NNN] with (semi) inclusive reactions ⁴He(K-_{stop}, N) by KEK-PS E-471 ⁴He(K⁻_{stop}, p) - Peak in the recoiling nucleon momentum at ~ 500 MeV/c, observed in coincidence with a fast π⁻ - Results compatible with the predictions by Akaishi-Yamazaki - 4He(K⁻_{stop}, p): withdrawn (arXiv:0708.2968v1) - ⁴He(K⁻_{stop}, n): currently under revision ⁴He(K⁻_{stop}, n) See talk of Sato, M. - A further observation: E930@AGS - ¹⁶O(K⁻_{in-flight}, n)¹⁵_K-O ¹⁵_{K-}O: bound state at ~90 MeV - ⇒ Careful about relying on (missing mass) inclusive measurements only ! # FINUDA: Study of the ⁶Li(K⁻,p)X reaction - Study of the proton missing mass: - Peak found at about 500 MeV/c - Interpretation: the proton peak is simply due to two nucleon absorption reaction: Nothing exotic: simple reaction mechanism FINUDA Coll., NPA 775 (2006), 35 Yamazaki, Akaishi, NPA 792 (2007), 229 # Semi-inclusive p spectra (in coincidence with a fast π^{-}) The Σ^- hyperon does not come from the decay of a [K-NNN] cluster Back-to-back angular correlation proper of a two-body reaction (isotropy expected from DBKS p π^-) capture rate $K^{-}(np) \rightarrow \Sigma^{-}p$: - 1.6%/stopped K⁻ - OK! The p and the high momentum π^- produced in two different vertices The π⁻ comes from the decay of a Σ⁻ hyperon No need to DBKS to explain the signal: agreement with the Oset-Toki expectations Missing mass combined with π^- vs p momenta, $\cos(p\pi^-)$, topological constraint ... Hadron 07 - LNF - 11/10/2007 - S.Piano - The search for bound kaonic states... ### Experimental approaches - Missing mass spectroscopy - Measurement of the momentum of monochromatic recoiling particles in the A(K-,N)X reaction - KEK-PS E471 (K⁻_{stop}) - AGS E930 (K-in-flight) - FINUDA (K-stop) - KEK-PS E549 (K-stop) - Invariant mass spectroscopy - Based on the kaonic nuclear state decaying into YN pairs - $(K^-pp) \rightarrow \Lambda + p$ - $(K^{-}ppn) \rightarrow \Lambda + d$ - Typically: - $p_{\Lambda,p} \sim 500 \text{ MeV/c}$ $p_{\Lambda,\pi} < 200 \text{ MeV/c}$ $p_{\text{decay p}} \sim 500 \text{ MeV/c}$ - Full event reconstruction desirable (necessary) - Angular correlation between the emitted pairs necessary (desirable) - FOPI (heavy ion collisions) - FINUDA (K-stop) - OBELIX (p He) - KEK-PS E549 (K⁻_{ston}) ### K-pp invariant mass studies with FINUDA FINUDA is equipped with a variety of nuclear targets: A = ⁶Li, ⁷Li, ⁹Be, ¹²C, ¹³C, ¹⁶O, ²⁷Al, ⁵¹V ### [K-pp] system identification in FINUDA ### 1. reconstruction of Λ 's - p_{Λ} > 300 MeV/c - 6 MeV FWHM 2. Λ and p angular correlation - Events with a Λ-p coincidence: ~ 5% - Light targets only (3x ¹²C, 2x ⁶Li, 1x ⁷Li) - Λ p should be oppositely emitted, apart from FSI # (Λp) invariant mass in FINUDA: observation of a possible bound state I - High resolution tracks only - A bump is observed - Two nucleon absorption - K⁻ + (pp) → Λp peak expected at 2.34 GeV - K⁻ + (pp) → Σ⁰p → Λγ p 74 MeV lower distribution, and broadened - Kaon nuclear bound state formation - K-(pp) \rightarrow X \rightarrow Λ p \rightarrow Σ 0p \rightarrow $\Lambda\gamma$ p B = $$115^{+6}_{-5}$$ (stat) $^{+3}_{-4}$ (sys) MeV Γ = 67^{+14}_{-11} (stat) $^{+2}_{-3}$ (sys) MeV Yield $\approx 0.1\%$ /stopped K ### **SEMI-EXCLUSIVE ANALYSIS** FINUDA Coll., PRL 94(2005)212303 # A different interpretation of the $M_{p\Lambda}$ bump - Magas, Oset et al, PRC74 (2006), 0252006 - The peak is due to a rescattering effect of p and/or Λ, no need for DBKS - The bump is a result of the angular cuts applied in the analysis (i.e., a deformation of a flat distribution) - 115 MeV as a binding energy is quite too much! #### ...but: - The newest analysis shows that the deformation of the spectrum is not due to angular cuts - Rescattering alone cannot explain the full spectrum - Back-to-back correlation belongs to the data themselves #### ...moreover: A similar bump was observed in a different reaction, p̄ ⁴He, where the rescattering effects should be less sizeable # (pp π -) invariant mass in FINUDA: observation of a possible bound state II Shorter tracks with less resolution included - Larger acceptance - Larger background - Bump confirmed below the mass threshold of the unbound K⁻pp system: m=2274 MeV, Γ= 56 MeV (slightly narrower) - Good agreement with the first result - 750 events in the bump (statistics 8x) - No angular cuts - Angular correlations: - Back-to-back trend - Bump events: strong back-to-back correlation (1 or 2 bins populated) - unlikely to be obtained by FSI's ### **INCLUSIVE ANALYSIS** # Angular distributions: a closer look - All the experimental spectra are corrected for acceptance - Inclusive analysis: FSI simulation normalized to the data - They account for 30% on the whole reaction strength - Exclusive analysis: at the variance of the theoretical predictions, the experimental distribution is sharply peaked at $\cos(\Theta_{\Lambda p}) = -1$ Hadron 07 - LNF - 11/10/2007 - S.Piano - The search for bound kaonic states. # (Λp) Invariant mass from p̄ annihilation at rest in ⁴He (OBELIX data) - Antiproton annihilation at rest: a good environment for the production of strangeness - OBELIX data: p⁴He → 5 prongs: - \overline{p}^4 He \rightarrow (pπ⁻)p K⁰X - Study of the (p∧) system - Experiment not suitable for detection of particles out of a secondary vertex - Limited statistics - Background due to phase-space and N and Δ resonances (large) - Signal found in the $(pp\pi^{-})$ channel while is absent in the $(pp\pi^{+})$ channel: - Statistical significance 3.7σ - $Y < 1.5 \times 10^{-4} / stopped p$ - FSI effect? - Lower number of residual nucleons - No angular cuts G. Bendiscioli et al., NPA789(2007)222 (ppπ -) τ^{-}) (pp π^{+}) invariant mass spectrum $M = 2212.1 \pm 4.9 \text{ MeV}$ $B = 169 \pm 4.9 \text{ MeV}$ Γ = < 24.4 ± 8.0 MeV # NPA789(2007), 222 # Search for a 3-baryon [K-NNN] kaon-nuclear state: invariant mass of the \(\Lambda \) d system - FOPI GSI - Ni+Ni @ 1.93 AGeV - Use of invariant mass spectroscopy to search for short-lived \(\Lambda\X\) resonances - [K⁻ppn] → Λd $$M = 3159 \pm 20 \text{ MeV}$$ $B = 151 \pm 20 \text{ MeV}$ $\Gamma = 100 \pm 50 \text{ MeV}$ - OBELIX p⁴He - Hints of a Λ d signal at 2.6 σ - Fewer statistics - Lower background ``` M = 3190 \pm 15 \text{ MeV} B = 120 \pm 15 \text{ MeV} \Gamma = < 60 \text{ MeV} ``` # PRELIMINARY (AND ONLY) RESULTS EXA05 ∧d invariant mass Ad invariant mass Use of ⁶Li target: low background - ⁶Li is a well known [α+d] cluster - Bump observed at $M_{\Lambda d}$ = 3251 MeV, $\Gamma_{\Lambda d}$ =37 MeV - 25 events in the peak, statistical significance 3.9σ - The shape of the missing kinetic energy distribution is reproduced only by the ⁶Li(K-_{stop}, Λd)nd reaction channel, with: - 1. a spectator deuteron and - 2. the neutron carrying away the whole momentum - The shape of the missing kinetic energy distribution is reproduced only by the ⁶Li(K⁻_{stop}, Λd)nd reaction channel, with: - 1. a spectator deuteron and - 2. the neutron carrying away the whole momentum $^6\text{Li}(\text{K-}_{\text{stop}},\,\Lambda\text{d})\text{nd}$ for events under the bump, 3220
<M $_{\Lambda\text{d}}$ <
3280 MeV/c² - The shape of the missing kinetic energy distribution is reproduced only by the ⁶Li(K⁻_{stop}, Λd)nd reaction channel, with: - 1. a spectator deuteron and - 2. the neutron carrying away the whole momentum Simulation: ⁶Li(K⁻_{stop}, Λd) t $^6\text{Li}(\text{K-}_{\text{stop}},~\Lambda\text{d})\text{nd}$ for events under the bump, 3220
<M $_{\Lambda\text{d}}$ <3280 MeV/c² - The shape of the missing kinetic energy distribution is reproduced only by the ⁶Li(K-_{stop}, Λd)nd reaction channel, with: - 1. a spectator deuteron and - 2. the neutron carrying away the whole momentum K_{stop}^{-} $^{6}Li \rightarrow \Lambda d n d_{spect}$ 6 Li(K $^-$ _{stop}, Λ d)nd for events under the bump, 3220<M $_{\Lambda}$ d<3280 MeV/c 2 Simulation: $^6\text{Li}(K^-_{\text{stop}}, \Lambda d)$ nd for events with 3220<M $_{\Lambda d}$ <3280 MeV/c 2 and a spectator deuteron with T $_d$ < 3 MeV - The shape of the missing kinetic energy distribution is reproduced only by the ⁶Li(K⁻_{stop}, Λd)nd reaction channel, with: - 1. a spectator deuteron and - 2. the neutron carrying away the whole momentum ### K_{stop}^{-} $^{6}\text{Li} \rightarrow \Lambda \text{ d n d}_{\text{spect}}$ The events in the bump are strongly back-to-back correlated 6 Li(K $^-$ _{stop}, Λ d)nd for events under the bump, 3220<M $_{\Lambda}$ d<3280 MeV/c 2 Simulation: 6 Li(K^{-}_{stop} , Λd)nd for events with 3220< $M_{\Lambda d}$ <3280 MeV/ c^{2} and a spectator deuteron with T_{d} < 3 MeV # E549: Λd correlation from ⁴He(K-_{stop}, d) arXiv:0709.0996v1 [nucl-ex] - K⁻ ⁴He → Λ d (n) - detected back-to-back d p pairs with π^- in coincidence - Λ discriminated from Σ^0 ($\Lambda\gamma$) event by missing mass - A d peak at 3282 MeV/c² just below mass threshold - interpreted as 3N absorption K⁻ppn (n) → Λ d (n) - accepted d p back-to-back only, spectra are shaped by the limited phase-space # Mass, Binding Energy and Width ppK- | M (MeV) | E _K (MeV) | Γ(MeV) | Reference | |---------|----------------------|--------|---------------| | 2255 | 115 | 67 | FINUDA EXP | | 2212 | 161 | <24 | OBELIX EXP | | | 55-70 | 95-100 | Shevchenko | | | 48 | 61 | A-Y model | | | 118 | 58 | Ivanov et al. | New calculation with Skyrme model: see talk of Nishikawa, T. ppnK- | M (MeV) | E _K (MeV) | Γ(MeV) | Reference | |---------|----------------------|--------|------------| | 3251 | 58 | 37 | FINUDA EXP | | 3190 | 120 | <60 | OBELIX EXP | | 3159 | 151 | 100 | FOPI EXP | | | 108 | 20 | A-Y model | # Summary - The search for bound kaonic states in nuclei is a recent field in hadron physics raising considerable theoretical and experimental interest - Several theoretical approaches, rather strong disagreement - Hot debate! - Only few and very recent experimental results claiming the observation of the bound kaonic states - AGS E930 - K⁻ on ¹⁶O - FINUDA @ LNF - K⁻-nuclei interaction at rest - FOPI @ GSI - · ion collisions: high temperature regime - OBELIX @ CERN - Antiproton annihilation at rest on ⁴He - ... but how do we know we are dealing with a "genuine" nuclear bound kaonic states? - Y-A recipe for K⁻pp (NPA792(2007)229): the $M_{\Lambda p}$ spectrum is not enough $\Theta_{\Lambda p}$, p_p , p_{Λ} distribution also needed # **Outlook and Conclusions** - FINUDA [@] DAΦNE in the last year has collected ~1 fb⁻¹ of K⁻_{stop} on ⁶Li, ⁷Li, ⁹Be, ¹³C, ¹⁶O, new results coming soon: - $-\Lambda p vs A$ - $-\Lambda dvsA$ - Λ n, Λ pn, Λ t (?) - Other experiments presently on floor: - KEK: E549 an extension of E471 (see talk of Sato,M.) - GSI, FOPI: study also in p+p collisions at 3.5 AGeV - New analysis of old data: - OBELIX: S=-2 strangeness production in p⁴He (see talk of Panzarasa,A.) - Future Projects dedicated to the search for bound kaonic states: - E15 @ J-PARC: study of ³He(K⁻, n) in flight - AMADEUS @ LNF: K⁻ on cryogenic ⁴He (see talk of Sirghi, F.C.) - Measurement of the strong interaction level shift of kaonic-³He atoms: - SIDDHARTA@DAΦNE - KEK-PS E570 and J-PARC E17 - Increasing theoretical interest in obtaining a reliable physical framework for analysis of recent data is evidenced by the number of recent publications on this topic!