Hadronic Physics at BABAR

representing the BABAR Collaboration

International Conference on Hadron Spectroscopy
Frascati, October 8-13, 2007

Hadronic physics at BABAR

- ☐ Traditionally, main focus of BABAR measurements is the electroweak sector:
 - "Standard Model" CP violation in B mesons;
 - angles and sides of the Unitarity Triangle

- But the huge amount of data recorded ($\int \mathcal{L} dt = 477 \text{ fb}^{-1}$) allows a wealth of measurements related to hadronic physics:
 - quark masses, form factors in hadronic, semileptonic and radiative B and $D_{(s)}$ decays;
 - spectroscopy of charm mesons, quarkonium, light mesons, charmed baryons;
 - search for exotics;
 - cross sections, form factors, vacuum polarization from $e^+e^- \rightarrow$ hadrons

Outline

- □ Selection of a few recent results with broad range of involved hadronic models/parameters and very different experimental techniques:
 - hadronic B decays (to charmless or charmonium states);
 - hadron production in e⁺e⁻ annihilation;
 - − D meson mixing;
 - charmed baryon properties
- Many more details (and more results) in the 13 parallel talks and in the "new states" plenary talk

Amplitude analysis of $B^{\pm} \rightarrow \phi K^{*\pm}$

- ☐ In Standard Model occurs throughb → s penguin
- ☐ Three amplitudes contribute, corresponding to helicity $\lambda = -1$, 0, +1 of the vector mesons:

$$\frac{\mathsf{d}^3\Gamma}{\mathsf{d}\cos\theta_1\,\mathsf{d}\cos\theta_2\,\mathsf{d}\Phi} \propto \left|\sum_{\lambda=-1,0,+1} A_{\lambda} Y_1^{\lambda}(\theta_1,\Phi) Y_1^{-\lambda}(\pi-\theta_2,0)\right|^2$$

□ Weak interaction V-A structure, helicity conservation in strong interactions, s-quark spin flip suppression in penguin decays

$$\Rightarrow |A_0| >> |A_+| >> |A_-| (A_{\pm} \equiv (A_{||} \pm A_{\perp}) / \sqrt{2})$$

- Models have been proposed which violate this:
 - within the SM: annihilation mechanism (Phys. Lett. B 601, 151), QCD rescattering (Phys. Rev. D 70, 054015);
 - New Physics: scalar interaction, SuSy particles in loop

Amplitude analysis of $B^{\pm} \rightarrow \phi K^{*\pm}$

- Both $K^*(892)^{\pm} \rightarrow K_S \pi^{\pm}$ and $K^*(892)^{\pm} \rightarrow K^{\pm} \pi^0$ are reconstructed
- 12 polarization-related quantities measured, including 6 CP-violating parameters:
 S-P interference

$$-\mathcal{B}(B^{\pm} \to \phi K^{*\pm}) = (11.2 \pm 1.0 \pm 0.9) \times 10^{-6}$$

$$- f_{L} = |A_0|^2 / \Sigma |A_{\lambda}|^2 = 0.49 \pm 0.05 \pm 0.03 \Rightarrow |A_0|^2 \approx |A_+|^2 + |A_-|^2$$

$$-f_{\perp} \equiv |A_{\perp}|^2 / \Sigma |A_{\lambda}|^2 = 0.21 \pm 0.05 \pm 0.03$$

$$-\phi_{||} - \pi = \arg(A_{||}/A_0) - \pi = (-0.67 \pm 0.20 \pm 0.07) \text{ rad}$$

$$-\phi_{\perp} - \pi = \arg(A_{\perp}/A_0) - \pi = (-0.45 \pm 0.20 \pm 0.03) \text{ rad}$$

- no evidence of CP violation
- \Box Discrete ambiguity in the determination of $\phi_{||}$, ϕ_{\perp} :

$$-\phi_{\perp} \approx \phi_{||} - \pi \Rightarrow A_{\perp} \approx -A_{||} \Rightarrow |A_{+}|^{2} << |A_{-}|^{2}$$

$$-\phi_{\perp} \approx \phi_{||} \Rightarrow A_{\perp} \approx A_{||} \Rightarrow |A_{+}|^{2} >> |A_{-}|^{2}$$

$B \rightarrow \eta_c K^*, \eta_c \gamma K^{(*)}$

- \Box B decays to singlet states of charmonium much less known than decays to triplet $(J/\psi, \psi(2S), \chi_{c1})$
- NRQCD predicts B decays to P states of charmonium to occur at similar rates (Phys. Rev. D 51, 125):
 - indeed $\mathcal{B}(B \to \chi_{c1} K) \sim \mathcal{B}(B \to \chi_{c0} K) \sim 10^{-4}$;
 - but $B \rightarrow \chi_{c2} K$, $B \rightarrow h_c K$ as yet unobserved: current limit < 10^{-5}
- Search for $B^0 \rightarrow \eta_c K^{*0}$, $B^0 \rightarrow h_c K^{*0}$, $B^{\pm} \rightarrow h_c K^{\pm}$, with $\eta_c \rightarrow K_S K^+ \pi^-$, $K^+ K^- \pi^0$ and $h_c \rightarrow \eta_c \gamma$: $-\mathcal{B}(B^0 \rightarrow \eta_c K^{*0}) = (6.1 \pm 0.8 \pm 1.1) \times 10^{-4}$ (factor 2 improvement over WA);
 - no signal for h_c :

$$\mathcal{B}(B^{\pm} \to h_c \ K^{\pm}) \cdot \mathcal{B}(h_c \to \eta_c \ \gamma) < 5.2 \times 10^{-5} \ (90\% \ \text{C.L.})$$

 $\mathcal{B}(B^0 \to h_c \ K^{*0}) \cdot \mathcal{B}(h_c \to \eta_c \ \gamma) < 2.4 \times 10^{-4} \ (90\% \ \text{C.L.})$

0707.2843 [hep-ex]

- ☐ More on charmless hadronic *B* decays in Heavy Meson Spectroscopy session:
 - G. Mohanty (12/10)

Hadron production in e⁺e⁻ annihilations

- $\sigma(e^+e^- \to hadrons) \sim 3 \text{ nb} (\sigma(e^+e^- \to b \ \overline{b}) \sim 1 \text{ nb}) \Rightarrow huge amount of data}$ with $\mathcal{L} \sim 500 \text{ fb}^{-1}$
- ☐ Only some quantum numbers and helicity values are allowed in final state

$$-e^+e^- \rightarrow h\bar{h}$$
 ⇒ form factor;

$$-e^+e^-$$
 → γ P ⇒ transition form factor

- ☐ Broad e⁺e⁻ energy range available via radiative return (Initial State Radiation, or ISR):
 - invariant mass spectrum up to 4-5 GeV in the same experiment ⇒ same conditions, same analysis tools, same systematic errors;
 - high acceptance and high transverse momentum of hadrons

Correlated baryon-antibaryon production

- Baryon production in e⁺e⁻ interactions:
 - primary correlation: a diquark-antidiquark pair is produced in the interaction \Rightarrow the baryons resulting from hadronization share two flavors and have large rapidity gap $|\Delta y|$
 - local correlation: a baryon-antibaryon pair is produced "locally" in the hadronization cascade from the initial quark or antiquark \Rightarrow small $|\Delta y|$

- Experimentally, |∆y| peaks at low values
- ⇒ no evidence for primary production
 - Several generators, with very different production models, are tuned to data for observed baryons and accompanying mesons distributions
- □ However, CLEO reported a 3.5-fold excess of events with both Λ_c^+ and $\overline{\Lambda}_c^-$ at \sqrt{s} = 10.6 GeV/ c^2 with respect to expectations from local correlation
 - Given the energy and masses, the two charmed baryons must be leading hadrons from $e^+e^- \rightarrow c \ \bar{c}$ process

Correlated baryon-antibaryon production

- - Y(4S) decays rejected by $p^* > 2.3 \text{ GeV/}c$
- \square $N(\Lambda_c^+ \overline{\Lambda}_c^-) = 649 \pm 31$
 - if production uncorrelated ⇒ 155 events expected
 - → 4.2-fold excess, consistent with CLEO

- Additional tracks:
 - low multiplicity: $\langle N_{\text{tracks}} \rangle = 2.6 \pm 0.2$;
 - mostly pions;
 - no evidence for $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$
- Missing mass distribution:
 - low-peaking ⇒ suppressed $n\overline{n}$ production
- ☐ Four-baryon events: $N_{4-bar} = 13 \pm 8$

Measurements with Initial State Radiation

- \Box Why extending measurements of hadronic cross sections at low \sqrt{s} ?
 - hadronic contributions to α_{μ} = g_{μ} 2 and $\alpha_{\rm QED}$ are calculated from hadronic cross section (in particular, $\alpha_{\mu}^{\rm had}$ sensitive to \sqrt{s} < 2 GeV contribution);
 - form factors (e.g. proton form factors from $e^+e^- \rightarrow p\overline{p}$);
 - light meson spectroscopy;
 - charmonium and bottomonium spectroscopy.

■ Technique:

- detection of ISR photon can either be required or not;
- specific identified final set of particles;
- kinematic fits

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

- Charmonium region:
 - first measurement of $\mathcal{B}(J/\psi \rightarrow \pi^+\pi^-\pi^0\pi^0) = (5.74 \pm 0.74) \times 10^{-3}$

- $lue{}$ Precision measurement important for α_{μ} , $\alpha_{\rm QED}$
 - currently 8% at peak;
 - improved accuracy over existing measurements
- $lue{}$ Events selected requiring γ_{ISR}
- Several structures seen:
 - $-\omega \pi^0$, $a_1(1260) \pi$, $\rho^+\rho^-$, $f_0(980) \rho^0$

Λ form factor

- \Box $e^+e^- \rightarrow \Lambda \overline{\Lambda} \gamma_{ISR}$ events selected requiring γ_{ISR}
- □ Production cross session as function of $m(\Lambda \overline{\Lambda})$:

$$\sigma_{\Lambda\bar{\Lambda}}(m) = \frac{4\pi\alpha^{2}\beta}{3m^{2}} \left[\left| G_{M}(m) \right|^{2} + \frac{1}{2\tau} \left| G_{E}(m) \right|^{2} \right]$$

$$\left(\begin{array}{c} \tau = m^{2} / 4m_{\Lambda}^{2} \\ \beta = \sqrt{1 - 1/\tau} \end{array} \right) \qquad \frac{2\tau + 1}{2\tau} \left| F(m) \right|^{2} \quad \text{effective form factor}$$

- **□** Both Λ reconstructed in $Λ \rightarrow p$ π, with at least one proton identified
- ☐ Different angular distributions for *E* and *M* contributions
 - statistics too low to conclude on $|G_E|/|G_M|$
- □ Also analyzed $e^+e^- \rightarrow \Sigma^0 \overline{\Sigma}{}^0 \gamma_{\rm ISR}$, $e^+e^- \rightarrow \Lambda \overline{\Sigma}{}^0 \gamma_{\rm ISR}$ ($\Sigma^0 \rightarrow \Lambda \gamma$)
 - limited statistic

0709.1988 [hep-ex] (to appear on PRD)

- More on e⁺e⁻ hadron production in Light Meson Spectroscopy session:
 - D. Muller: quasi-two-body e^+e^- → X Y at 10.6 GeV (12/10);
 - W. Wang: inclusive and exclusive e^+e^- → hadrons in ISR (12/10);
 - S. Serednyakov: exclusive e^+e^- → baryons or charmed mesons in ISR (12/10);

Contributions to D-mixing

- □ Like in the case of the B meson system, initially produced D^0 , \bar{D}^0 flavour eigenstates evolve in time as two D_1 , D_2 mass eigenstates:
 - $-|D_{1.2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle;$
 - $-\Delta M=m_1-m_2; \quad \Delta\Gamma=\Gamma_1-\Gamma_2; \quad \Gamma=\left(\Gamma_1+\Gamma_2\right)/2; \quad x\equiv\Delta M/\Gamma; \quad y\equiv\Delta\Gamma/2\Gamma$
- □ But unlike for *B*, the heaviest quark in the box loop is *b* (instead of *t*) and vertices are strongly CKM-suppressed.
 - short distance contribution (electroweak sector): GIM cancellation, destructive interference between LO and NLO $\Rightarrow x_{SD} \sim 10^{-6}$, $y_{SD} \sim 10^{-8}$;
 - long distance contribution (QCD): real states contribute to x and y, virtual states to x only; x more model-dependent, y more sensitive to quark-hadron duality $\Rightarrow x_{LD} \sim y_{LD} \sim 10^{-3} 10^{-2}$

short distance contribution

D-mixing results

- \Box At BABAR, the D sample is produced in $e^+e^- \rightarrow c \ \overline{c}$ events ($\sigma \sim 1.3 \text{ nb}$) $-D^{*+} \rightarrow D^0 \pi^+, D^{*-} \rightarrow \overline{D}^0 \pi^-$ decays are used to tag the D^0 flavour
- \square $D \rightarrow K \pi$: fit "wrong sign" ($D^0 \rightarrow K^+ \pi^-$) decay time distribution:

D-mixing results

- \Box Lifetime ratio in $D^0 \rightarrow h^+h^-$ ($h = K, \pi$):
 - D-mixing affects the decay time to CP eigenstates:
 the distributions can be fitted with effective lifetimes;
 - difference from $D^0 \to K^-\pi^+$ lifetime is evidence for D mixing
 - fit distributions for all modes simultaneously
 - \Rightarrow 3.0 σ away from no mixing

subm. to PRD-RC

- **□** Analysis of $D^0 \rightarrow K^-\pi^+\pi^0$ Dalitz plot:
 - amplitudes extracted from time-independent
 Dalitz plot analysis of "right sign" sample;
 - "wrong sign" decay time distribution varies across Dalitz plot: fit with proper amplitudes and phases
 - ⇒ no mixing excluded at 99% C.L.

- ☐ More on *D* mixing in Heavy Meson Spectroscopy session:
 - R. Andreassen (9/10)

Measurement of the ±(1530)⁰ spin

- From $K^-p \to \Xi(1530)^{0,-}\pi^{0,+}$ data $\Rightarrow J^p(\Xi(1530)^0) = 3/2^+$ or $J^p = 5/2^-$
- $\Xi(1530)^0$ seen as resonant $\Xi^-\pi^+$ structure in $\Lambda_c^+ \to \Xi^-\pi^+K^+$ decays

■ Angular distribution:

$$\frac{dN}{d\cos\theta_{\Xi^{-}}} = N \sum_{l=0}^{l_{\text{max}}} \langle P_l \rangle P_l(\cos\theta_{\Xi^{-}}) , l_{\text{max}} = 2J - 1$$

In any mass interval, the number of event has contributions from relevant I: by weighting each event with $P_{l}(\cos \theta_{\pi})$, only P_{2} contribution survives $\Rightarrow J^{P}(\Xi(1530)^{0}) = 3/2^{+}$

And more...

- ☐ Heavy meson spectroscopy: quarkonium, charmed mesons and baryons:
 - A. G. Mokhtar: charmonium spectroscopy (Quarkonia States, 8/10);
 - V. Poireau: charm spectroscopy (Heavy Meson Spectroscopy, 9/10);
 - K. Mishra: charm Dalitz plot analyses (Heavy Meson Spectroscopy, 9/10)
- Semileptonic, leptonic and radiative penguins B decays:
 - M. Mazur: semileptonic decays (Heavy Meson Spectroscopy, 9/10);
 - E. Salvati: leptonic decays (Heavy Meson Spectroscopy, 12/10);
 - M. Lu: radiative penguins decays (Heavy Meson Spectroscopy, 12/10);
 - K. Tackman: determination of non-perturbative parameters (Heavy Meson Spectroscopy, 12/10)
- Angles of the Unitarity Triangle from hadronic B decays:
 - S. Emery: UT angles (Heavy Meson Spectroscopy, 12/10)

Back-up slides

The BABAR data sample

Maximum instantaneous luminosity:

$$\mathcal{L}_{\text{max}} = 1.2 \times 10^{34} \, \text{cm}^{-2} \text{s}^{-1}$$

$(10^{33} \text{cm}^2 \text{s}^{-1})$ 10 5 PEP-II Design 2002 2003 2004 2005 2006 2007 PEP-II Peak Luminosity each week

Total integrated luminosity:

$$\int \mathcal{L} dt = 477 \text{ fb}^{-1} \text{ (45 fb}^{-1} \text{ off-peak)}$$

Reconstruction of B decays

- \Box A B- \overline{B} meson pair is produced in the decay of the Y(4S) formed in e^+e^- annihilation
- ☐ Final products of the *B* decays are reconstructed and identified in the detector

□ A B candidate is reconstructed through a

given decay chain

☐ After continuum background reduction, *B*-decay events are selected by means of a pair of nearly uncorrelated variables, such as:

$$m_{ES} = \sqrt{(s/2 + \mathbf{p}_{Y} \cdot \mathbf{p}_{B})^{2} / E_{Y} - \mathbf{p}_{B}^{2}}$$
$$\Delta E = (E_{Y}E_{B} - \mathbf{p}_{Y} \cdot \mathbf{p}_{B} - s/2) / \sqrt{s}$$

$e^+e^- \rightarrow K^+K^-\pi^+\pi^-, K^+K^-\pi^0\pi^0, K^+K^-K^+K^-$

- Several intermediate states observed:
 - $K^+K^-\pi^+\pi^-$: $K^{*0}K \pi$, $\phi \pi^+\pi^-$, $\phi f_0(980)$;
 - $K^+K^-\pi^0\pi^0$: $K^{*\pm}K \pi^0$, $\phi \pi^0\pi^0$, $\phi f_0(980)$;
 - **-** K+K-K+K-: φ K+K-
- **□** Search for $Y(4260) \rightarrow \phi \pi \pi$ (large rate if glueball): no evidence
- ☐ Structure in $K K \pi \pi$ consistent with new state at 2.175 GeV/ c^2

