Hadronic Physics at $BABAR$

Enrico Robutti
I.N.F.N. Genova

representing the $BABAR$ Collaboration

International Conference on Hadron Spectroscopy
Frascati, October 8-13, 2007
Traditionally, main focus of Babar measurements is the electroweak sector:

- “Standard Model” CP violation in B mesons;
- angles and sides of the Unitarity Triangle

But the huge amount of data recorded ($\int \mathcal{L} \, dt = 477 \text{ fb}^{-1}$) allows a wealth of measurements related to hadronic physics:

- quark masses, form factors in hadronic, semileptonic and radiative B and $D_{(s)}$ decays;
- spectroscopy of charm mesons, quarkonium, light mesons, charmed baryons;
- search for exotics;
- cross sections, form factors, vacuum polarization from $e^+e^- \rightarrow \text{hadrons}$
Outline

- Selection of a few recent results with broad range of involved hadronic models/parameters and very different experimental techniques:
 - hadronic B decays (to charmless or charmonium states);
 - hadron production in e^+e^- annihilation;
 - D meson mixing;
 - charmed baryon properties

- Many more details (and more results) in the 13 parallel talks and in the “new states” plenary talk
Amplitude analysis of $B^\pm \rightarrow \phi K^{*\pm}$

- In Standard Model occurs through $b \rightarrow s$ penguin
- Three amplitudes contribute, corresponding to helicity $\lambda = -1, 0, +1$ of the vector mesons:

$$d^3\Gamma / d \cos \theta_1 d \cos \theta_2 d\Phi \propto \left| \sum_{\lambda=-1,0,+1} A_\lambda Y_1^\lambda (\theta_1, \Phi) Y_1^{-\lambda} (\pi - \theta_2, 0) \right|^2$$

- Weak interaction $V-A$ structure, helicity conservation in strong interactions, s-quark spin flip suppression in penguin decays
 \[|A_0| \gg |A_+| \gg |A_-| \quad (A_\pm \equiv (A_\parallel \pm A_\perp) / \sqrt{2}) \]

- Models have been proposed which violate this:
 - within the SM: annihilation mechanism (Phys. Lett. B 601, 151), QCD rescattering (Phys. Rev. D 70, 054015);
 - New Physics: scalar interaction, SuSy particles in loop
Amplitude analysis of $B^\pm \to \phi K^{*\pm}$

- Both $K^*(892)^\pm \to K_S \pi^\pm$ and $K^*(892)^\pm \to K^\pm \pi^0$ are reconstructed
- 12 polarization-related quantities measured, including 6 CP-violating parameters:
 - $\mathcal{B}(B^\pm \to \phi K^{*\pm}) = (11.2 \pm 1.0 \pm 0.9) \times 10^{-6}$
 - $f_L \equiv |A_0|^2 / \Sigma |A_\lambda|^2 = 0.49 \pm 0.05 \pm 0.03 \Rightarrow |A_0|^2 \approx |A_+|^2 + |A_-|^2$
 - $f_\perp \equiv |A_\perp|^2 / \Sigma |A_\lambda|^2 = 0.21 \pm 0.05 \pm 0.03$
 - $\phi_\parallel - \pi \equiv \arg(A_||/A_0) - \pi = (-0.67 \pm 0.20 \pm 0.07) \text{ rad}$
 - $\phi_\perp - \pi \equiv \arg(A_\perp/A_0) - \pi = (-0.45 \pm 0.20 \pm 0.03) \text{ rad}$
 - no evidence of CP violation
- Discrete ambiguity in the determination of ϕ_\parallel, ϕ_\perp:
 - $\phi_\perp \approx \phi_\parallel - \pi \Rightarrow A_\perp \approx -A_\parallel \Rightarrow |A_+|^2 << |A_-|^2$
 - $\phi_\perp \approx \phi_\parallel \Rightarrow A_\perp \approx A_\parallel \Rightarrow |A_+|^2 \gg |A_-|^2$
- The ambiguity is solved by studying interference of S and P waves in the $K\pi$ system: only $\phi_\perp \approx \phi_\parallel$ acceptable $\Rightarrow |A_0| \approx |A_+| >> |A_-|$

E. Robutti

Hadron 07 - Frascati, October 10, 2007
$B \rightarrow \eta_c \ K^*, \ \eta_c \ \gamma \ K^{(*)}$

- B decays to singlet states of charmonium much less known than decays to triplet (J/ψ, $\psi(2S)$, χ_{c1})
- NRQCD predicts B decays to P states of charmonium to occur at similar rates (Phys. Rev. D 51, 125):
 - indeed $\mathcal{B}(B \rightarrow \chi_{c1} \ K) \sim \mathcal{B}(B \rightarrow \chi_{c0} \ K) \sim 10^{-4}$;
 - but $B \rightarrow \chi_{c2} \ K$, $B \rightarrow h_c \ K$ as yet unobserved: current limit $< 10^{-5}$
- Search for $B^0 \rightarrow \eta_c \ K^{*0}$, $B^0 \rightarrow h_c \ K^{*0}$, $B^\pm \rightarrow h_c \ K^\pm$,
 with $\eta_c \rightarrow K_S K^+ \pi^-$, $K^+ K^- \pi^0$ and $h_c \rightarrow \eta_c \ \gamma$:
 - $\mathcal{B}(B^0 \rightarrow \eta_c \ K^{*0}) = (6.1 \pm 0.8 \pm 1.1) \times 10^{-4}$
 (factor 2 improvement over WA);
 - no signal for h_c:
 $\mathcal{B}(B^\pm \rightarrow h_c \ K^{\pm}) \cdot \mathcal{B}(h_c \rightarrow \eta_c \ \gamma) < 5.2 \times 10^{-5}$ (90% C.L.)
 $\mathcal{B}(B^0 \rightarrow h_c \ K^{*0}) \cdot \mathcal{B}(h_c \rightarrow \eta_c \ \gamma) < 2.4 \times 10^{-4}$ (90% C.L.)

0707.2843 [hep-ex]
More on charmless hadronic B decays in Heavy Meson Spectroscopy session:

– G. Mohanty (12/10)
Hadron production in e^+e^- annihilations

- $\sigma(e^+e^- \rightarrow \text{hadrons}) \sim 3 \text{ nb}$ ($\sigma(e^+e^- \rightarrow b \bar{b}) \sim 1 \text{ nb}$) \Rightarrow huge amount of data with $\mathcal{L} \sim 500 \text{ fb}^{-1}$

- Only some quantum numbers and helicity values are allowed in final state

- Non-perturbative quantities:
 - $e^+e^- \rightarrow h\bar{h}$ \Rightarrow form factor;
 - $e^+e^- \rightarrow \gamma P$ \Rightarrow transition form factor

- Broad e^+e^- energy range available via radiative return (Initial State Radiation, or ISR):
 - invariant mass spectrum up to 4-5 GeV in the same experiment \Rightarrow same conditions, same analysis tools, same systematic errors;
 - high acceptance and high transverse momentum of hadrons
Correlated baryon-antibaryon production

- Baryon production in e^+e^- interactions:
 - **primary correlation**: a diquark-antidiquark pair is produced in the interaction \Rightarrow the baryons resulting from hadronization share two flavors and have large rapidity gap $|\Delta y|$
 - **local correlation**: a baryon-antibaryon pair is produced “locally” in the hadronization cascade from the initial quark or antiquark \Rightarrow small $|\Delta y|$

- Experimentally, $|\Delta y|$ peaks at low values \Rightarrow no evidence for primary production
 - Several generators, with very different production models, are tuned to data for observed baryons and accompanying mesons distributions

- However, CLEO reported a 3.5-fold excess of events with both Λ_c^+ and $\bar{\Lambda}_c^-$ at $\sqrt{s} = 10.6$ GeV/c^2 with respect to expectations from local correlation
 - Given the energy and masses, the two charmed baryons must be leading hadrons from $e^+e^- \rightarrow c\bar{c}$ process
Correlated baryon-antibaryon production

- \(\Lambda_c \) reconstructed in \(\Lambda_c^+ \rightarrow p K^- \pi^+, p K_S \)
 - \(Y(4S) \) decays rejected by \(p^* > 2.3 \text{ GeV/c} \)
- \(N(\Lambda_c^+ \Lambda_c^-) = 649 \pm 31 \)
 - if production uncorrelated \(\Rightarrow \) 155 events expected
 - \(\Rightarrow \) 4.2-fold excess, consistent with CLEO

- Additional tracks:
 - low multiplicity: \(\langle N_{\text{tracks}} \rangle = 2.6 \pm 0.2 \);
 - mostly pions;
 - no evidence for \(e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^- \)

- Missing mass distribution:
 - low-peaking \(\Rightarrow \) suppressed \(n\bar{n} \) production

- Four-baryon events: \(N_{4\text{-bar}} = 13 \pm 8 \)

E. Robutti

Hadron 07 - Frascati, October 10, 2007
Measurements with Initial State Radiation

- Why extending measurements of hadronic cross sections at low \sqrt{s}?
 - hadronic contributions to $\alpha_\mu = g_\mu - 2$ and α_{QED} are calculated from hadronic cross section (in particular, α_μ^had sensitive to $\sqrt{s} < 2$ GeV contribution);
 - form factors (e.g. proton form factors from $e^+e^- \rightarrow p\bar{p}$);
 - light meson spectroscopy;
 - charmonium and bottomonium spectroscopy.

- **Technique:**
 - detection of ISR photon can either be required or not;
 - specific identified final set of particles;
 - kinematic fits
$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

- Precision measurement important for α_μ, α_{QED}
 - currently 8% at peak;
 - improved accuracy over existing measurements
- Events selected requiring γ_{ISR}
- Several structures seen:
 - $\omega\pi^0$, $a_1(1260)\pi$, $\rho^+\rho^-$, $f_0(980)\rho^0$

Charmonium region:
- first measurement of
 $$B(J/\psi \rightarrow \pi^+\pi^-\pi^0\pi^0) = (5.74 \pm 0.74) \times 10^{-3}$$
Λ form factor

- $e^+e^- \rightarrow \Lambda \overline{\Lambda} \gamma_{\text{ISR}}$ events selected requiring γ_{ISR}
- Production cross session as function of $m(\Lambda \overline{\Lambda})$:
 \[
 \sigma_{\Lambda \overline{\Lambda}}(m) = \frac{4\pi\alpha^2}{3m^2} \left[|G_M(m)|^2 + \frac{1}{2\tau} |G_E(m)|^2 \right] \\
 \left\{ \begin{array}{l}
 \tau = m^2 / 4m^2_{\Lambda} \\
 \beta = \sqrt{1-1/\tau}
 \end{array} \right. \\
 \frac{2\tau + 1}{2\tau} |F(m)|^2 \text{ effective form factor}

- Both Λ reconstructed in $\Lambda \rightarrow p \pi^-$, with at least one proton identified
- Different angular distributions for E and M contributions
 - statistics too low to conclude on $|G_E|/|G_M|
- Also analyzed $e^+e^- \rightarrow \Sigma^0 \overline{\Sigma^0} \gamma_{\text{ISR}}$, $e^+e^- \rightarrow \Lambda \overline{\Sigma^0} \gamma_{\text{ISR}}$ ($\Sigma^0 \rightarrow \Lambda \gamma$)
 - limited statistic

More on e^+e^- hadron production in **Light Meson Spectroscopy** session:

- **D. Muller**: quasi-two-body $e^+e^- \rightarrow X \ Y \text{ at } 10.6 \text{ GeV (12/10);}$
- **W. Wang**: inclusive and exclusive $e^+e^- \rightarrow \text{hadrons in ISR (12/10);}$
- **S. Serednyakov**: exclusive $e^+e^- \rightarrow \text{baryons or charmed mesons in ISR (12/10);}$
Contributions to D-mixing

- Like in the case of the B meson system, initially produced D^0, \bar{D}^0 flavour eigenstates evolve in time as two D_1, D_2 mass eigenstates:
 - $|D_{1,2}\rangle = p |D^0\rangle \pm q |\bar{D}^0\rangle$;
 - $\Delta M = m_1 - m_2$; $\Delta \Gamma = \Gamma_1 - \Gamma_2$; $\Gamma = (\Gamma_1 + \Gamma_2) / 2$; $x \equiv \Delta M / \Gamma$; $y \equiv \Delta \Gamma / 2\Gamma$

- But unlike for B, the heaviest quark in the box loop is b (instead of t) and vertices are strongly CKM-suppressed.

 - short distance contribution (electroweak sector): GIM cancellation, destructive interference between LO and NLO $\Rightarrow x_{SD} \sim 10^{-6}$, $y_{SD} \sim 10^{-8}$;
 - long distance contribution (QCD): real states contribute to x and y, virtual states to x only; x more model-dependent, y more sensitive to quark-hadron duality $\Rightarrow x_{LD} \sim y_{LD} \sim 10^{-3} - 10^{-2}$
D-mixing results

- At *BABAR*, the *D* sample is produced in $e^+e^- \rightarrow c \bar{c}$ events ($\sigma \sim 1.3$ nb)
 - $D^{*+} \rightarrow D^0 \pi^+$, $D^{*-} \rightarrow \bar{D}^0 \pi^-$ decays are used to tag the D^0 flavour

- $D \rightarrow K \pi$: fit “wrong sign” ($D^0 \rightarrow K^+ \pi^-$) decay time distribution:
 - $x' \equiv x \cos \delta_{K\pi} + y \sin \delta_{K\pi}$
 - $y' \equiv y \cos \delta_{K\pi} - x \sin \delta_{K\pi}$
 - $x'^2 = (-0.22 \pm 0.30 \pm 0.21) \times 10^{-3}$
 - $y' = (9.7 \pm 4.4 \pm 3.1) \times 10^{-3}$
 - $\Rightarrow 3.9 \sigma$ away from no mixing

PRL 98:211802, 2007
D-mixing results

- Lifetime ratio in $D^0 \rightarrow h^+ h^-$ ($h = K, \pi$):
 - D-mixing affects the decay time to CP eigenstates: the distributions can be fitted with effective lifetimes;
 - difference from $D^0 \rightarrow K^- \pi^+$ lifetime is evidence for D mixing
 - fit distributions for all modes simultaneously
 \Rightarrow 3.0 σ away from no mixing

- Analysis of $D^0 \rightarrow K^- \pi^+ \pi^0$ Dalitz plot:
 - amplitudes extracted from time-independent Dalitz plot analysis of “right sign” sample;
 - “wrong sign” decay time distribution varies across Dalitz plot: fit with proper amplitudes and phases
 \Rightarrow no mixing excluded at 99% C.L.
More on D mixing in Heavy Meson Spectroscopy session:
 – R. Andreassen (9/10)
Measurement of the $\Xi(1530)^0$ spin

- From $K^-p \rightarrow \Xi(1530)^0,\pi^0,\pi^+$ data $\Rightarrow J^P(\Xi(1530)^0) = 3/2^+$ or $J^P = 5/2^-$
- $\Xi(1530)^0$ seen as resonant $\Xi^-\pi^+$ structure in $\Lambda_c^+ \rightarrow \Xi^-\pi^+K^+$ decays

Angular distribution:

$$\frac{dN}{d\cos \theta_{\Xi^-}} = N \sum_{l=0}^{l_{\text{max}}} \langle P_l \rangle P_l(\cos \theta_{\Xi^-}) , \quad l_{\text{max}} = 2J - 1$$

- In any mass interval, the number of event has contributions from relevant l: by weighting each event with $P_l(\cos \theta_{\Xi})$, only P_2 contribution survives $\Rightarrow J^P(\Xi(1530)^0) = 3/2^+$
And more…

- Heavy meson spectroscopy: quarkonium, charmed mesons and baryons:
 - A. G. Mokhtar: charmonium spectroscopy (*Quarkonia States*, 8/10);
 - V. Poireau: charm spectroscopy (*Heavy Meson Spectroscopy*, 9/10);
 - K. Mishra: charm Dalitz plot analyses (*Heavy Meson Spectroscopy*, 9/10)

- Semileptonic, leptonic and radiative penguins B decays:
 - M. Mazur: semileptonic decays (*Heavy Meson Spectroscopy*, 9/10);
 - E. Salvati: leptonic decays (*Heavy Meson Spectroscopy*, 12/10);
 - M. Lu: radiative penguins decays (*Heavy Meson Spectroscopy*, 12/10);
 - K. Tackman: determination of non-perturbative parameters (*Heavy Meson Spectroscopy*, 12/10)

- Angles of the Unitarity Triangle from hadronic B decays:
 - S. Emery: UT angles (*Heavy Meson Spectroscopy*, 12/10)
Back-up slides
The BABAR data sample

Maximum instantaneous luminosity:
\[\mathcal{L}_{\text{max}} = 1.2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} \]

Total integrated luminosity:
\[\int \mathcal{L} \, dt = 477 \text{ fb}^{-1} \quad (45 \text{ fb}^{-1} \text{ off-peak}) \]
Reconstruction of B decays

- A B-\B meson pair is produced in the decay of the $\Upsilon(4S)$ formed in e^+e^- annihilation.
- Final products of the B decays are reconstructed and identified in the detector.
- A B candidate is reconstructed through a given decay chain.

- After continuum background reduction, B-decay events are selected by means of a pair of nearly uncorrelated variables, such as:
 \[
 m_{ES} = \sqrt{\left(\frac{s}{2} + \mathbf{p}_Y \cdot \mathbf{p}_B\right)^2 / E_Y - \mathbf{p}_B^2}
 \]
 \[
 \Delta E = \frac{(E_YE_B - \mathbf{p}_Y \cdot \mathbf{p}_B - s/2)}{\sqrt{s}}
 \]
e^{+}e^{-} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}, K^{+}K^{-}\pi^{0}\pi^{0}, K^{+}K^{-}K^{+}K^{-}

- Several intermediate states observed:
 - $K^{+}K^{-}\pi^{+}\pi^{-}$: $K^{*0}K\pi$, $\phi\pi\pi$, $\phi f_{0}(980)$;
 - $K^{+}K^{-}\pi^{0}\pi^{0}$: $K^{*\pm}K\pi^{0}$, $\phi\pi^{0}\pi^{0}$, $\phi f_{0}(980)$;
 - $K^{+}K^{-}K^{+}K^{-}$: $\phi K^{+}K^{-}$

- Search for $Y(4260) \rightarrow \phi \pi \pi$ (large rate if glueball): no evidence

- Structure in $K K \pi \pi$ consistent with new state at 2.175 GeV/c^{2}