

On the gluon content of the η and η ' mesons

Rafel Escribano
Grup de Física Teòrica & IFAE (UAB)

HADRON 07

October 8, 2007 Laboratori Nazionali di Frascati

in collab. with Jordi Nadal, JHEP 05 (2007) 6

Purpose: to perform a phenomenological analysis of radiative $V \rightarrow P\gamma$ and $P \rightarrow V\gamma$ decays, with $V = \rho$, K^* , ω , φ and $P = \pi$, K, η , η' , aimed at determining the gluonic content of the η and η' wave functions

Outline:

- Notation
- Motivation
- A model for VPY M1 transitions
- Data fitting
- Comparison with other approaches
- Summary and conclusions

Notation

We work in a basis consisting of the states

$$|\eta_q\rangle \equiv \frac{1}{\sqrt{2}}|u\bar{u} + d\bar{d}\rangle \qquad |\eta_s\rangle = |s\bar{s}\rangle \qquad |G\rangle \equiv |\text{gluonium}\rangle$$

The physical states η and η are assumed to be the linear combinations

$$|\eta\rangle = X_{\eta}|\eta_{q}\rangle + Y_{\eta}|\eta_{s}\rangle + Z_{\eta}|G\rangle ,$$

$$|\eta'\rangle = X_{\eta'}|\eta_{q}\rangle + Y_{\eta'}|\eta_{s}\rangle + Z_{\eta'}|G\rangle ,$$

with
$$X_{\eta(\eta')}^2 + Y_{\eta(\eta')}^2 + Z_{\eta(\eta')}^2 = 1$$
 and thus $X_{\eta(\eta')}^2 + Y_{\eta(\eta')}^2 \leq 1$

A significant gluonic admixture in a state is possible only if

$$Z_{\eta(\eta')}^2 = 1 - X_{\eta(\eta')}^2 - Y_{\eta(\eta')}^2 > 0$$

Assumptions:

- no mixing with Π^0 (isospin symmetry)
- no mixing with η_c states
- no mixing with radial excitations

Notation

In absence of gluonium (standard picture)

$$Z_{\eta(\eta')} \equiv 0$$

$$|\eta\rangle = \cos\phi_P |\eta_q\rangle - \sin\phi_P |\eta_s\rangle$$

$$|\eta'\rangle = \sin\phi_P |\eta_q\rangle + \cos\phi_P |\eta_s\rangle$$

with
$$X_\eta=Y_{\eta'}\equiv\cos\phi_P$$
 and $X_{\eta(\eta')}^2+Y_{\eta(\eta')}^2=1$
$$X_{\eta'}=-Y_\eta\equiv\sin\phi_P$$

where ϕ_P is the η - η ' mixing angle in the quark-flavour basis related to its octet-singlet analog through

$$\theta_P = \phi_P - \arctan \sqrt{2} \simeq \phi_P - 54.7^{\circ}$$

Similarly, for the vector states ω and φ the mixing is given by

$$|\omega\rangle = \cos\phi_V |\omega_q\rangle - \sin\phi_V |\phi_s\rangle$$
$$|\phi\rangle = \sin\phi_V |\omega_q\rangle + \cos\phi_V |\phi_s\rangle$$

where ω_q and φ_s are the analog non-strange and strange states of η_q and η_s , respectively.

• Euler angles

In presence of gluonium,

$$\begin{array}{rcl} |\eta\rangle &=& X_{\eta}|\eta_{q}\rangle + Y_{\eta}|\eta_{s}\rangle + Z_{\eta}|G\rangle \\ \text{glueball-like state} &|\eta'\rangle &=& X_{\eta'}|\eta_{q}\rangle + Y_{\eta'}|\eta_{s}\rangle + Z_{\eta'}|G\rangle \\ |\iota\rangle &=& X_{\iota}|\eta_{q}\rangle + Y_{\iota}|\eta_{s}\rangle + Z_{\iota}|G\rangle \end{array}$$

Normalization:

$$X_{\eta}^{2} + Y_{\eta}^{2} + Z_{\eta}^{2} = 1$$

$$X_{\eta'}^{2} + Y_{\eta'}^{2} + Z_{\eta'}^{2} = 1$$

$$X_{\iota}^{2} + Y_{\iota}^{2} + Z_{\iota}^{2} = 1$$

Orthogonality:

$$X_{\eta} X_{\eta'} + Y_{\eta} Y_{\eta'} + Z_{\eta} Z_{\eta'} = 0$$
$$X_{\eta} X_{\iota} + Y_{\eta} Y_{\iota} + Z_{\eta} Z_{\iota} = 0$$
$$X_{\eta'} X_{\iota} + Y_{\eta'} Y_{\iota} + Z_{\eta'} Z_{\iota} = 0$$

3 independent parameters: ϕ_P , $\phi_{\eta G}$ and $\phi_{\eta' G}$

$$\begin{pmatrix} \eta \\ \eta' \\ \iota \end{pmatrix} = \begin{pmatrix} c\phi_{\eta\eta'}c\phi_{\eta G} & -s\phi_{\eta\eta'}c\phi_{\eta G} & -s\phi_{\eta G} \\ s\phi_{\eta\eta'}c\phi_{\eta'G} - c\phi_{\eta\eta'}s\phi_{\eta'G}s\phi_{\eta G} & c\phi_{\eta\eta'}c\phi_{\eta'G} + s\phi_{\eta\eta'}s\phi_{\eta'G}s\phi_{\eta G} & -s\phi_{\eta'G}c\phi_{\eta G} \\ s\phi_{\eta\eta'}s\phi_{\eta'G} + c\phi_{\eta\eta'}c\phi_{\eta'G}s\phi_{\eta G} & c\phi_{\eta\eta'}s\phi_{\eta'G} - s\phi_{\eta\eta'}c\phi_{\eta'G}s\phi_{\eta G} & c\phi_{\eta'G}c\phi_{\eta G} \end{pmatrix} \begin{pmatrix} \eta_q \\ \eta_s \\ G \end{pmatrix}$$

• Euler angles

$$X_{\eta} = \cos \phi_P \cos \phi_{\eta G} , \quad X_{\eta'} = \sin \phi_P \cos \phi_{\eta' G} - \cos \phi_P \sin \phi_{\eta G} \sin \phi_{\eta' G} ,$$

$$Y_{\eta} = -\sin \phi_P \cos \phi_{\eta G} , \quad Y_{\eta'} = \cos \phi_P \cos \phi_{\eta' G} + \sin \phi_P \sin \phi_{\eta G} \sin \phi_{\eta' G} ,$$

$$Z_{\eta} = -\sin \phi_{\eta G} , \quad Z_{\eta'} = -\sin \phi_{\eta' G} \cos \phi_{\eta G} .$$

In the limit $\phi_{\eta G}=0$:

$$X_{\eta} = \cos \phi_P , \qquad Y_{\eta} = -\sin \phi_P , \qquad Z_{\eta} = 0 ,$$
 $X_{\eta'} = \sin \phi_P \cos \phi_{\eta'G} , \quad Y_{\eta'} = \cos \phi_P \cos \phi_{\eta'G} , \quad Z_{\eta'} = -\sin \phi_{\eta'G} .$

Motivation

KLOE Collaboration, Phys. Lett. B648 (2007) 267

Motivation

KLOE Collaboration, PLB 541 (2002) 45

What are the differences between the two analyses?

- improvement in the precision of the new measurements
- the use of the overlapping parameters relating the pseudoscalar and vector wave functions

• A model for VPγ M I transitions

We will work in a conventional quark model context: P and V are simple quark-antiquark S-wave bound states

Ingredients of the model:

- i) a VP γ magnetic dipole transition proceeding via quark or antiquark spin flip amplitude $\propto \mu_q = e_q/2m_q$
- ii) spin-flip $V \rightarrow P$ conversion amplitude corrected by the relative overlap between the P and V wave functions
- iii) OZI-rule reduces considerably the possible transitions and overlaps

$$C_{\pi} \equiv \langle \pi | \omega_{q} \rangle = \langle \pi | \rho \rangle \qquad C_{K} \equiv \langle K | K^{*} \rangle$$
 U(1)_A anomaly
$$C_{q} \equiv \langle \eta_{q} | \omega_{q} \rangle = \langle \eta_{q} | \rho \rangle \qquad C_{s} \equiv \langle \eta_{s} | \phi_{s} \rangle$$

A model for VPγ M I transitions

Amplitudes:

$$\begin{split} g_{\rho^0\pi^0\gamma} &= g_{\rho^+\pi^+\gamma} = \frac{1}{3}g \ , \quad g_{\omega\pi\gamma} = g\cos\phi_V \ , \quad g_{\phi\pi\gamma} = g\sin\phi_V \ , \\ g_{K^{*0}K^0\gamma} &= -\frac{1}{3}g\,z_K \left(1 + \frac{\bar{m}}{m_s}\right) \ , \quad g_{K^{*+}K^+\gamma} = \frac{1}{3}g\,z_K \left(2 - \frac{\bar{m}}{m_s}\right) \ , \\ g_{\rho\eta\gamma} &= g\,z_q\,X_\eta \ , \quad g_{\rho\eta'\gamma} = g\,z_q\,X_{\eta'} \ , \\ g_{\omega\eta\gamma} &= \frac{1}{3}g\left(z_q\,X_\eta\cos\phi_V + 2\frac{\bar{m}}{m_s}z_s\,Y_\eta\sin\phi_V\right) \ , \\ g_{\omega\eta'\gamma} &= \frac{1}{3}g\left(z_q\,X_{\eta'}\cos\phi_V + 2\frac{\bar{m}}{m_s}z_s\,Y_{\eta'}\sin\phi_V\right) \ , \\ g_{\phi\eta\gamma} &= \frac{1}{3}g\left(z_q\,X_\eta\sin\phi_V - 2\frac{\bar{m}}{m_s}z_s\,Y_\eta\cos\phi_V\right) \ , \\ g_{\phi\eta'\gamma} &= \frac{1}{3}g\left(z_q\,X_{\eta'}\sin\phi_V - 2\frac{\bar{m}}{m_s}z_s\,Y_{\eta'}\cos\phi_V\right) \ , \\ \end{split}$$
 with $g_{\omega\pi\gamma} = g\,\cos\phi_V = e\,C_\pi\cos\phi_V/\bar{m}$ and $z_q \equiv C_q/C_\pi \ , \quad z_s \equiv C_s/C_\pi \ , \quad z_K \equiv C_K/C_\pi$

The overlapping parameters $z_{q,s}$ and the mixing parameters $X_{\eta(\eta')}$ and $Y_{\eta(\eta')}$ cannot be determined independently

Thus we start assuming
$$C_q=C_s=C_K=C_\pi=1$$
 $z_q=z_s=z_K=1$

$$\chi^2$$
/d.o.f.=31.2/6 gluonium allowed for η and η' or χ^2 /d.o.f.=45.9/8 gluonium not allowed with ϕ_P =(41.1±1.1)°

Then we leave the overlapping parameters free

Three possibilities:

i)
$$Z_{\eta}=Z_{\eta'}=0$$
 gluonium not allowed for η or η' ii) $Z_{\eta}=0$ gluonium allowed only for η' iii) $Z_{\eta'}=0$ gluonium allowed only for η

i) assuming $Z_{\eta} = Z_{\eta'} = 0$ from the beginning, we get from $\chi^2/d.o.f. = 14.0/7$ to

$$g = 0.72 \pm 0.01 \text{ GeV}^{-1}$$
, $\phi_P = (41.5 \pm 1.2)^{\circ}$, $\phi_V = (3.2 \pm 0.1)^{\circ}$, $\chi^2/\text{d.o.f.}=4.4/5$ $\frac{m_s}{\bar{m}} = 1.24 \pm 0.07$, $z_K = 0.89 \pm 0.03$, $z_q = 0.86 \pm 0.03$, $z_s = 0.78 \pm 0.05$.

ii) assuming $Z_{\eta}=0$ from the beginning, we get

$$g=0.72\pm0.01~{
m GeV^{-1}}~,~~\frac{m_s}{\bar{m}}=1.24\pm0.07~,~~\phi_V=(3.2\pm0.1)^\circ~,~~$$

$$\phi_P=(41.4\pm1.3)^\circ),~~[\phi_{\eta'G}]=(12\pm13)^\circ),~~\chi^2/{
m d.o.f.}=4.2/4$$

$$z_K=0.89\pm0.03~,~~z_q=0.86\pm0.03~,~~z_s=0.79\pm0.05~,~~$$

Transition	$g_{VP\gamma}^{\mathrm{exp}}(\mathrm{PDG})$	$g_{VP\gamma}^{ ext{th}}(ext{Fit 1})$	$g_{VP\gamma}^{ m th}({ m Fit}\ 2)$ no gluonium
$ ho^0 o \eta \gamma$	0.475 ± 0.024	0.461 ± 0.019	0.464 ± 0.030 gluonium
$\eta' ightarrow ho^0 \gamma$	0.41 ± 0.03	0.41 ± 0.02	0.40 ± 0.04
$\omega o \eta \gamma$	0.140 ± 0.007	0.142 ± 0.007	0.143 ± 0.010
$\eta' o \omega \gamma$	0.139 ± 0.015	0.149 ± 0.006	0.146 ± 0.014
$\phi \to \eta \gamma$	0.209 ± 0.002	0.209 ± 0.018	0.209 ± 0.013
$\phi o \eta' \gamma$	0.22 ± 0.01	0.22 ± 0.02	0.22 ± 0.02

iii) assuming $Z_{\eta'} = 0$ from the beginning, we get

$$g = 0.72 \pm 0.01 \text{ GeV}^{-1}$$
, $\frac{m_s}{\bar{m}} = 1.24 \pm 0.07$, $\phi_V = (3.2 \pm 0.1)^\circ$, $\phi_P = (41.5 \pm 1.3)^\circ$) $|\phi_{\eta G}| \simeq 0^\circ$ $\chi^2/\text{d.o.f.}=4.4/4$ $z_q = 0.86 \pm 0.04$, $z_s = 0.78 \pm 0.06$, $z_K = 0.89 \pm 0.03$,

Accepting the absence of gluonium for the η ' meson, the gluonic content of the η wave function amounts to $|\phi_{\eta G}| \simeq 0^{\circ}$ or $(Z_{\eta})^2 = 0.00 \pm 0.12$ and the η - η ' mixing angle is found to be $|\phi_{P}| = (41.5 \pm 1.3)^{\circ}$

The current experimental data on VP γ transitions indicate within our model a negligible gluonic content for the η and η ' mesons

Using the latest experimental data on $(\rho, \omega, \phi) \rightarrow \eta \gamma$ (SND) and $\phi \rightarrow \eta' \gamma$ (KLOE), we get

$$\phi_P = (42.7 \pm 0.7)^{\circ}$$
, $z_q = 0.83 \pm 0.03$, $z_s = 0.79 \pm 0.05$, $\chi^2/\text{d.o.f.}=4.0/5$
 $\phi_P = (42.6 \pm 1.1)^{\circ}$, $|\phi_{\eta'G}| = (5 \pm 21)^{\circ}$, $z_q = 0.83 \pm 0.03$, $z_s = 0.79 \pm 0.05$, $\chi^2/\text{d.o.f.}=4.0/4$

confirmation of the null gluonic content of the η and η ' wave functions

Transition	$g_{VP\gamma}^{ ext{exp}}(ext{latest})$	$g_{VP\gamma}^{ ext{th}}(ext{Fit} m{3})$	$g_{VP\gamma}^{ m th}({ m Fit}4)$ no gluonium
$ ho^0 o \eta \gamma$	0.429 ± 0.023	0.436 ± 0.017	0.437 ± 0.028 gluonium
$\eta' ightarrow ho^0 \gamma$	$0.41 \pm 0.03~(\mathrm{PDG})$	0.40 ± 0.02	0.40 ± 0.04
$\omega o \eta \gamma$	0.136 ± 0.007	0.134 ± 0.006	0.134 ± 0.009
$\eta' o \omega \gamma$	$0.139 \pm 0.015~\mathrm{(PDG)}$	0.146 ± 0.006	0.146 ± 0.013
$\phi o \eta \gamma$	0.214 ± 0.003	0.214 ± 0.017	0.214 ± 0.012
$\phi \to \eta' \gamma$	0.216 ± 0.005	0.216 ± 0.019	0.216 ± 0.018

- \checkmark importance of φ→ηγ
- \checkmark importance of the slopes (ϕ_V)

✓ importance of constraining even more $\phi \rightarrow \eta' \gamma$

More refined data for this channel will contribute decisively to clarify this issue

J. L. Rosner, Phys. Rev. D27 (1983) 1101

 $|Z_{\eta}| < 0.4$

0.2

IV $\Gamma(\eta' \rightarrow \gamma \gamma) = (0.20 \pm 0.016) \text{MeV}$

$$R = \frac{Z_{\eta'}}{X_{\eta'} + Y_{\eta'} + Z_{\eta'}} = 26\%$$

$$R = \frac{Z_{\eta'}}{X_{\eta'} + Y_{\eta'} + Z_{\eta'}} = (13 \pm 13)\%$$

KLOE Collaboration, Phys. Lett. B648 (2007) 267

$$R_{\phi} \equiv \frac{\Gamma(\phi \to \eta' \gamma)}{\Gamma(\phi \to \eta \gamma)} = \cot^2 \phi_P \cos^2 \phi_{\eta' G} \left(1 - \frac{m_s}{\bar{m}} \frac{z_q}{z_s} \frac{\tan \phi_V}{\sin 2\phi_P} \right)^2 \left(\frac{p_{\eta'}}{p_{\eta}} \right)^3 = (4.7 \pm 0.6) \times 10^{-3}$$

in agreement with (4.8±0.5)×10⁻³ (PDG'06) and (4.77±0.09±0.19)×10⁻³ (KLOE) ✓

Summary

We have performed a phenomenological analysis of radiative $V \rightarrow P\gamma$ and $P \rightarrow V\gamma$ decays with the purpose of determining the gluon content of the η and η ' mesons

The present approach is based on a conventional SU(3) quark model supplemented with two sources of SU(3) breaking, the use of constituent quark masses with m_s>m and the different overlaps between the P and V wave functions

The use of these different overlapping parameters (a specific feature of our analysis) is shown to be of primary importance in order to reach a good agreement

Conclusions

I) The current experimental data on VP γ transitions indicate within our model a negligible gluonic content for the η and η ' mesons,

$$Z_{\eta}^2 = 0.00 \pm 0.12$$
 and $Z_{\eta'}^2 = 0.04 \pm 0.09$

2) Accepting the absence of gluonium for the η meson, the gluonic content of the η ' wave function amounts to $|\phi_{\eta'G}| = (12\pm13)^{\circ}$ or $(Z_{\eta'})^2 = 0.04\pm0.09$ and the $\eta-\eta$ ' mixing angle is found to be $\phi_P = (41.4\pm1.3)^{\circ}$

Conclusions

- Imposing the absence of gluonium for both mesons one finds $\phi_P = (41.5 \pm 1.2)^\circ$, in agreement with the former result
- 4) The latest experimental data on $(\rho, \omega, \varphi) \rightarrow \eta \gamma$ and $\varphi \rightarrow \eta' \gamma$ decays confirm the null gluonic content of the η and η' wave functions
- 5) More refined experimental data, particularly for the $\phi \rightarrow \eta' \gamma$ channel, will contribute decisively to clarify this issue