On the gluon content of the η and η ' mesons

Rafel Escribano
Grup de Física Teòrica \& IFAE (UAB)

HADRON 07

October 8, 2007
Laboratori Nazionali di Frascati
in collab. with Jordi Nadal, JHEP 05 (2007) 6

Purpose: to perform a phenomenological analysis of radiative $\mathrm{V} \rightarrow \mathrm{P} \mathrm{\gamma}$ and $P \rightarrow V \gamma$ decays, with $V=\rho, K^{*}, \omega, \phi$ and $P=\pi, K, \eta, \eta^{\prime}$, aimed at determining the gluonic content of the η and η ' wave functions

Outline:

- Notation
- Motivation
- A model for VPY MI transitions
- Data fitting
- Comparison with other approaches
- Summary and conclusions
- Notation

We work in a basis consisting of the states

$$
\left.\left.\left|\eta_{q}\right\rangle \equiv \frac{1}{\sqrt{2}}|u \bar{u}+d \bar{d}\rangle \quad\left|\eta_{s}\right\rangle=|s \bar{s}\rangle \quad|G\rangle \equiv \right\rvert\, \text { gluonium }\right\rangle
$$

The physical states η and η ' are assumed to be the linear combinations

$$
\begin{aligned}
|\eta\rangle & =X_{\eta}\left|\eta_{q}\right\rangle+Y_{\eta}\left|\eta_{s}\right\rangle+Z_{\eta}|G\rangle \\
\left|\eta^{\prime}\right\rangle & =X_{\eta^{\prime}}\left|\eta_{q}\right\rangle+Y_{\eta^{\prime}}\left|\eta_{s}\right\rangle+Z_{\eta^{\prime}}|G\rangle
\end{aligned}
$$

with $\quad X_{\eta\left(\eta^{\prime}\right)}^{2}+Y_{\eta\left(\eta^{\prime}\right)}^{2}+Z_{\eta\left(\eta^{\prime}\right)}^{2}=1 \quad$ and thus $\quad X_{\eta\left(\eta^{\prime}\right)}^{2}+Y_{\eta\left(\eta^{\prime}\right)}^{2} \leq 1$
A significant gluonic admixture in a state is possible only if

$$
Z_{\eta\left(\eta^{\prime}\right)}^{2}=1-X_{\eta\left(\eta^{\prime}\right)}^{2}-Y_{\eta\left(\eta^{\prime}\right)}^{2}>0
$$

Assumptions:

- no mixing with π^{0} (isospin symmetry)
- no mixing with η_{c} states
- no mixing with radial excitations
- Notation

In absence of gluonium (standard picture)

$$
Z_{\eta\left(\eta^{\prime}\right)} \equiv 0
$$

$$
\begin{aligned}
|\eta\rangle & =\cos \phi_{P}\left|\eta_{q}\right\rangle-\sin \phi_{P}\left|\eta_{s}\right\rangle \\
\left|\eta^{\prime}\right\rangle & =\sin \phi_{P}\left|\eta_{q}\right\rangle+\cos \phi_{P}\left|\eta_{s}\right\rangle
\end{aligned}
$$

with

$$
\begin{aligned}
X_{\eta} & =Y_{\eta^{\prime}} \equiv \cos \phi_{P} \quad \text { and } \quad X_{\eta\left(\eta^{\prime}\right)}^{2}+Y_{\eta\left(\eta^{\prime}\right)}^{2}=1 \\
X_{\eta^{\prime}} & =-Y_{\eta} \equiv \sin \phi_{P}
\end{aligned}
$$

where ϕ_{p} is the $\eta-\eta$ ' mixing angle in the quark-flavour basis related to its octet-singlet analog through

$$
\theta_{P}=\phi_{P}-\arctan \sqrt{2} \simeq \phi_{P}-54.7^{\circ}
$$

Similarly, for the vector states ω and ϕ the mixing is given by

$$
\begin{aligned}
|\omega\rangle & =\cos \phi_{V}\left|\omega_{q}\right\rangle-\sin \phi_{V}\left|\phi_{s}\right\rangle \\
|\phi\rangle & =\sin \phi_{V}\left|\omega_{q}\right\rangle+\cos \phi_{V}\left|\phi_{s}\right\rangle
\end{aligned}
$$

where ω_{q} and ϕ_{s} are the analog non-strange and strange states of η_{q} and η_{s}, respectively.

- Euler angles

In presence of gluonium,

$$
\begin{aligned}
|\eta\rangle & =X_{\eta}\left|\eta_{q}\right\rangle+Y_{\eta}\left|\eta_{s}\right\rangle+Z_{\eta}|G\rangle \\
\begin{array}{c}
\text { glueball-like state } \\
\eta(1440) ? ~ \\
\left|\eta^{\prime}\right\rangle
\end{array} & =X_{\eta^{\prime}}\left|\eta_{q}\right\rangle+Y_{\eta^{\prime}}\left|\eta_{s}\right\rangle+Z_{\eta^{\prime}}|G\rangle \\
|\iota\rangle & =X_{\iota}\left|\eta_{q}\right\rangle+Y_{\iota}\left|\eta_{s}\right\rangle+Z_{\iota}|G\rangle
\end{aligned}
$$

Normalization:

$$
\begin{aligned}
X_{\eta}^{2}+Y_{\eta}^{2}+Z_{\eta}^{2} & =1 \\
X_{\eta^{\prime}}^{2}+Y_{\eta^{\prime}}^{2}+Z_{\eta^{\prime}}^{2} & =1 \\
X_{\iota}^{2}+Y_{\iota}^{2}+Z_{\iota}^{2} & =1
\end{aligned}
$$

Orthogonality:

$$
\begin{aligned}
X_{\eta} X_{\eta^{\prime}}+Y_{\eta} Y_{\eta^{\prime}}+Z_{\eta} Z_{\eta^{\prime}} & =0 \\
X_{\eta} X_{\iota}+Y_{\eta} Y_{\iota}+Z_{\eta} Z_{\iota} & =0 \\
X_{\eta^{\prime}} X_{\iota}+Y_{\eta^{\prime}} Y_{\iota}+Z_{\eta^{\prime}} Z_{\iota} & =0
\end{aligned}
$$

3 independent parameters: $\phi_{P}, \phi_{n G}$ and $\phi_{r^{\prime} G}$

$$
\left(\begin{array}{c}
\eta \\
\eta^{\prime} \\
\iota
\end{array}\right)=\left(\begin{array}{ccc}
c \phi_{\eta \eta^{\prime}} c \phi_{\eta G} & -s \phi_{\eta \eta^{\prime}} c \phi_{\eta G} & -s \phi_{\eta G} \\
s \phi_{\eta \eta^{\prime}} c \phi_{\eta^{\prime} G}-c \phi_{\eta \eta^{\prime}} s \phi_{\eta^{\prime} G} s \phi_{\eta G} & c \phi_{\eta \eta^{\prime}} c \phi_{\eta^{\prime} G}+s \phi_{\eta \eta^{\prime}} s \phi_{\eta^{\prime} G} s \phi_{\eta G} & -s \phi_{\eta^{\prime} G} c \phi_{\eta G} \\
s \phi_{\eta \eta^{\prime}} s \phi_{\eta^{\prime} G}+c \phi_{\eta \eta^{\prime}} c \phi_{\eta^{\prime} G} s \phi_{\eta G} & c \phi_{\eta \eta^{\prime}} s \phi_{\eta^{\prime} G}-s \phi_{\eta \eta^{\prime}} c \phi_{\eta^{\prime} G} s \phi_{\eta G} & c \phi_{\eta^{\prime} G} c \phi_{\eta G}
\end{array}\right)\left(\begin{array}{c}
\eta_{q} \\
\eta_{s} \\
G
\end{array}\right)
$$

- Euler angles
$X_{\eta}=\cos \phi_{P} \cos \phi_{\eta G}, \quad X_{\eta^{\prime}}=\sin \phi_{P} \cos \phi_{\eta^{\prime} G}-\cos \phi_{P} \sin \phi_{\eta G} \sin \phi_{\eta^{\prime} G}$, $Y_{\eta}=-\sin \phi_{P} \cos \phi_{\eta G}, \quad Y_{\eta^{\prime}}=\cos \phi_{P} \cos \phi_{\eta^{\prime} G}+\sin \phi_{P} \sin \phi_{\eta G} \sin \phi_{\eta^{\prime} G}$,

$$
Z_{\eta}=-\sin \phi_{\eta G}, \quad Z_{\eta^{\prime}}=-\sin \phi_{\eta^{\prime} G} \cos \phi_{\eta G}
$$

In the limit $\phi_{\mathrm{nc}}=0$:

$$
\begin{array}{lll}
X_{\eta}=\cos \phi_{P}, & Y_{\eta}=-\sin \phi_{P}, & Z_{\eta}=0 \\
X_{\eta^{\prime}}=\sin \phi_{P} \cos \phi_{\eta^{\prime} G}, & Y_{\eta^{\prime}}=\cos \phi_{P} \cos \phi_{\eta^{\prime} G}, & Z_{\eta^{\prime}}=-\sin \phi_{\eta^{\prime} G} .
\end{array}
$$

- Motivation

KLOE Collaboration, Phys. Lett. B648 (2007) 267

$$
\begin{gathered}
\phi_{P}=(39.7 \pm 0.7)^{\circ} \\
Z_{\eta^{\prime}}^{2}=0.14 \pm 0.04
\end{gathered}
$$

$$
\begin{aligned}
& Y \mathrm{I}=\eta^{\prime} \rightarrow \gamma \gamma / \Pi^{0} \rightarrow \gamma \gamma \\
& \mathrm{Y}=\eta^{\prime} \rightarrow \rho \gamma / \omega \rightarrow \pi^{0} \gamma \\
& \mathrm{Y} 3=\phi \rightarrow \eta^{\prime} \gamma / \phi \rightarrow \eta \gamma \\
& \mathrm{Y} 4=\eta^{\prime} \rightarrow \omega \gamma / \omega \rightarrow \Pi^{0} \gamma
\end{aligned}
$$

- Motivation

KLOE Collaboration, PLB 54I (2002) 45

What are the differences between the two analyses?

- improvement in the precision of the new measurements
- the use of the overlapping parameters relating the pseudoscalar and vector wave functions

- A model for VPY MI transitions

We will work in a conventional quark model context: P and V are simple quark-antiquark S-wave bound states
all these hadrons are thus extended objects with characteristics spatial extensions fixed by their respective P and V wave functions
$\mathrm{SU}(2)$ limit identical spatial extension within each isomultiplet
$\mathrm{SU}(3)$ broken constituent quark masses with $\mathrm{m}_{\mathrm{s}}>\mathrm{m}$ and different spatial extensions for each isomultiplet
Ingredients of the model:
i) a VPY magnetic dipole transition proceeding via quark or antiquark spin flip amplitude $\propto \mu_{q}=e_{q} / 2 m_{q}$
ii) spin-flip $V \rightarrow P$ conversion amplitude corrected by the relative overlap between the P and V wave functions
iii) OZI-rule reduces considerably the possible transitions and overlaps
$\mathrm{U}(\mathrm{I})_{\mathrm{A}}$ anomaly $\longleftrightarrow \begin{array}{ll}C_{\pi} \equiv\left\langle\pi \mid \omega_{q}\right\rangle=\langle\pi \mid \rho\rangle & C_{K} \equiv\left\langle K \mid K^{*}\right\rangle \\ C_{q} \equiv\left\langle\eta_{q} \mid \omega_{q}\right\rangle=\left\langle\eta_{q} \mid \rho\right\rangle & C_{s} \equiv\left\langle\eta_{s} \mid \phi_{s}\right\rangle\end{array}$

- A model for VPY MI transitions

Amplitudes:

$$
\begin{gathered}
g_{\rho^{0} \pi^{0} \gamma}=g_{\rho^{+} \pi^{+} \gamma}=\frac{1}{3} g, \quad g_{\omega \pi \gamma}=g \cos \phi_{V}, \quad g_{\phi \pi \gamma}=g \sin \phi_{V}, \\
g_{K^{* 0} K^{0} \gamma}=-\frac{1}{3} g z_{K}\left(1+\frac{\bar{m}}{m_{s}}\right), \quad g_{K^{*+} K^{+} \gamma}=\frac{1}{3} g z_{K}\left(2-\frac{\bar{m}}{m_{s}}\right), \\
g_{\rho \eta \gamma}=g z_{q} X_{\eta}, \quad g_{\rho \eta^{\prime} \gamma}=g z_{q} X_{\eta^{\prime}}, \\
g_{\omega \eta \gamma}=\frac{1}{3} g\left(z_{q} X_{\eta} \cos \phi_{V}+2 \frac{\bar{m}}{m_{s}} z_{s} Y_{\eta} \sin \phi_{V}\right), \\
g_{\omega \eta^{\prime} \gamma}=\frac{1}{3} g\left(z_{q} X_{\eta^{\prime}} \cos \phi_{V}+2 \frac{\bar{m}}{m_{s}} z_{s} Y_{\eta^{\prime}} \sin \phi_{V}\right), \\
g_{\phi \eta \gamma}=\frac{1}{3} g\left(z_{q} X_{\eta} \sin \phi_{V}-2 \frac{\bar{m}}{m_{s}} z_{s} Y_{\eta} \cos \phi_{V}\right), \\
g_{\phi \eta^{\prime} \gamma}=\frac{1}{3} g\left(z_{q} X_{\eta^{\prime}} \sin \phi_{V}-2 \frac{\bar{m}}{m_{s}} z_{s} Y_{\eta^{\prime}} \cos \phi_{V}\right),
\end{gathered}
$$

with $g_{\omega \pi \gamma}=g \cos \phi_{V}=e C_{\pi} \cos \phi_{V} / \bar{m}$
and $\quad z_{q} \equiv C_{q} / C_{\pi}, \quad z_{s} \equiv C_{s} / C_{\pi}, \quad z_{K} \equiv C_{K} / C_{\pi}$

$$
\Gamma(V \rightarrow P \gamma)=\frac{1}{3} \frac{g_{V P \gamma}^{2}}{4 \pi}\left|\mathbf{p}_{\gamma}\right|^{3}=\frac{1}{3} \Gamma(P \rightarrow V \gamma)
$$

- Data fitting

The overlapping parameters $z_{q, s}$ and the mixing parameters $X_{\eta\left(n^{\prime}\right)}$ and $Y_{\eta\left(n^{\prime}\right)}$ cannot be determined independently
Thus we start assuming $C_{q}=C_{s}=C_{K}=C_{\pi}=1 \quad z_{q}=z_{s}=z_{K}=1$

$$
\begin{aligned}
& \chi^{2 / d . o . f .}=31.2 / 6 \text { gluonium allowed for } \eta \text { and } \eta^{\prime} \\
\text { or } & \chi^{2 / d . o . f .}=45.9 / 8 \text { gluonium not allowed with } \phi_{p}=\left(4 \left|.| \pm|.|)^{\circ}\right.\right.
\end{aligned}
$$

Then we leave the overlapping parameters free
Three possibilities:

$$
\begin{array}{ll}
\text { i) } Z_{n}=Z_{n^{\prime}}=0 & \text { gluonium not allowed for } \eta \text { or } \eta^{\prime} \\
\text { ii) } Z_{n}=0 & \text { gluonium allowed only for } \eta \\
\text { iii) } Z_{n^{\prime}}=0 & \text { gluonium allowed only for } \eta
\end{array}
$$

i) assuming $Z_{n}=Z_{n^{\prime}}=0$ from the beginning, we get from $\chi^{2} /$ d.o.f. $=14.0 / 7$ to

$$
\begin{gathered}
g=0.72 \pm 0.01 \mathrm{GeV}^{-1}, \quad \phi_{P}=(41.5 \pm 1.2)^{\circ}, \quad \phi_{V}=(3.2 \pm 0.1)^{\circ}, \\
\frac{m_{s}}{\bar{m}}=1.24 \pm 0.07, \quad z_{K}=0.89 \pm 0.03, \quad z_{q}=0.86 \pm 0.03, \quad z_{s}=0.78 \pm 0.05 .
\end{gathered}
$$

- Data fitting

ii) assuming $Z_{\eta}=0$ from the beginning, we get

$$
\begin{aligned}
g= & 0.72 \pm 0.01 \mathrm{GeV}^{-1}, \quad \frac{m_{s}}{\bar{m}}=1.24 \pm 0.07, \quad \phi_{V}=(3.2 \pm 0.1)^{\circ}, \\
& \phi_{P}=(41.4 \pm 1.3)^{\circ}, \phi_{\eta^{\prime} G} \mid=(12 \pm 13)^{\circ} \\
& z_{K}=0.89 \pm 0.03, \quad z_{q}=0.86 \pm 0.03, \quad z_{s}=0.79 \pm 0.05
\end{aligned}
$$

Accepting the absence of gluonium for the η meson, the gluonic content of the η^{\prime} wave function amounts to $\left|\phi_{\eta^{\prime}}\right|=(|2 \pm| 3)^{\circ}$ or $\left(Z_{n^{\prime}}\right)^{2}=0.04 \pm 0.09$ and the $\eta-\eta$ ' mixing angle is found to be $\phi_{p}=(41.4 \pm 1.3)^{\circ}$

Transition	$g_{V P \gamma}^{\exp }(\mathrm{PDG})$		
$\rho^{0} \rightarrow \eta \gamma$	0.475 ± 0.024	0.461 ± 0.019	0.464 ± 0.030
$\eta^{\prime} \rightarrow \rho^{0} \gamma$	0.41 ± 0.03	0.41 ± 0.02	0.40 ± 0.04
$\omega \rightarrow \eta \gamma$	0.140 ± 0.007	0.142 ± 0.007	0.143 ± 0.010
$\eta^{\prime} \rightarrow \omega \gamma$	0.139 ± 0.015	0.149 ± 0.006	0.146 ± 0.014
$\phi \rightarrow \eta \gamma$	0.209 ± 0.002	0.209 ± 0.018	0.209 ± 0.013
$\phi \rightarrow \eta^{\prime} \gamma$	0.22 ± 0.01	0.22 ± 0.02	0.22 ± 0.02

- Data fitting
iii) assuming $Z_{n^{\prime}}=0$ from the beginning, we get

$$
\begin{gathered}
g=0.72 \pm 0.01 \mathrm{GeV}^{-1}, \quad \frac{m_{s}}{\bar{m}}=1.24 \pm 0.07, \quad \phi_{V}=(3.2 \pm 0.1)^{\circ}, \\
\phi_{P}=(41.5 \pm 1.3)^{\circ}| | \phi_{\eta G} \mid \simeq 0^{\circ} \\
z_{q}=0.86 \pm 0.04, \quad z_{s}=0.78 \pm 0.06, \quad z_{K}=0.89 \pm 0.03,
\end{gathered} \quad \chi^{2 / \text { d.o.f. }=4.4 / 4}
$$

Accepting the absence of gluonium for the η ' meson, the gluonic content of the η wave function amounts to $\left|\phi_{\eta G}\right| \simeq 0^{\circ}$ or $\left(Z_{\eta}\right)^{2}=0.00 \pm 0.12$ and the $\eta-\eta$ ' mixing angle is found to be $\phi_{\mathrm{P}}=(41.5 \pm 1.3)^{\circ}$

The current experimental data on VPү transitions indicate within our model a negligible gluonic content for the η and η ' mesons

- Data fitting

Using the latest experimental data on $(\rho, \omega, \phi) \rightarrow \eta \gamma(S N D)$ and $\phi \rightarrow \eta$ ' $\gamma(K L O E)$, we get

confirmation of the null gluonic content of the η and η ' wave functions

Transition	$g_{V P \gamma}^{\exp }$ (latest)	$g_{V P \gamma}^{\text {th }}$ (Fit 3$)$	
$\rho^{0} \rightarrow \eta \gamma$	0.429 ± 0.023	0.436 ± 0.017	0.437 ± 0.028
$\eta^{\prime} \rightarrow \rho^{0} \gamma$	0.41 ± 0.03 (PDG)	0.40 ± 0.02	0.40 ± 0.04
$\omega \rightarrow \eta \gamma$	0.136 ± 0.007	0.134 ± 0.006	0.134 ± 0.009
$\eta^{\prime} \rightarrow \omega \gamma$	0.139 ± 0.015 (PDG)	0.146 ± 0.006	0.146 ± 0.013
$\phi \rightarrow \eta \gamma$	0.214 ± 0.003	0.214 ± 0.017	0.214 ± 0.012
$\phi \rightarrow \eta^{\prime} \gamma$	0.216 ± 0.005	0.216 ± 0.019	0.216 ± 0.018

- Comparison with other approaches

$$
X_{\eta}=-\frac{1}{\sqrt{2}} Y_{\eta}=\frac{1}{\sqrt{3}} \quad \eta=\eta_{8}
$$

\checkmark importance of $\phi \rightarrow \eta \gamma$
\checkmark importance of the slopes $(\phi \vee)$

- Comparison with other approaches

\checkmark importance of constraining even more $\phi \rightarrow \eta$ ' γ
More refined data for this channel will contribute decisively to clarify this issue
- Comparison with other approaches

PDG'06 data

$$
\left(\phi_{P}, Z_{\eta^{\prime}}^{2}\right)=\left(41.4^{\circ}, 0.04\right)
$$

latest data

$\left(\phi_{P}, Z_{\eta^{\prime}}^{2}\right)=\left(42.6^{\circ}, 0.01\right)$

- Comparison with other approaches
J. L. Rosner, Phys. Rev. D27 (1983) IIOI

$\left|Z_{\eta}\right|<0.4$

- Comparison with other approaches

E. Kou, Phys. Rev. D63 (200I) 054027

$$
R=\frac{Z_{\eta^{\prime}}}{X_{\eta^{\prime}}+Y_{\eta^{\prime}}+Z_{\eta^{\prime}}}=26 \%
$$

The experimental data [29]
\qquad
II $\quad \operatorname{Br}\left(\eta^{\prime} \rightarrow \rho \gamma\right)=(3.0 \pm 0.13) \times 10^{-1}$
III $\operatorname{Br}\left(\phi \rightarrow \eta^{\prime} \gamma\right)=\left(1.22_{-0.0}^{+07}\right) \times 10^{-4}$
IV $\Gamma\left(\eta^{\prime} \rightarrow \gamma \gamma\right)=(0.20 \pm 0.016) \mathrm{MeV}$

$$
R=\frac{Z_{\eta^{\prime}}}{X_{\eta^{\prime}}+Y_{\eta^{\prime}}+Z_{\eta^{\prime}}}=(13 \pm 13) \%
$$

- Comparison with other approaches

KLOE Collaboration, Phys. Lett. B648 (2007) 267

$$
\begin{gathered}
\phi_{P}=(39.7 \pm 0.7)^{\circ} \\
Z_{\eta^{\prime}}^{2}=0.14 \pm 0.04
\end{gathered}
$$

$$
\begin{aligned}
& Y I=\eta^{\prime} \rightarrow \gamma \gamma / \pi^{0} \rightarrow \gamma \gamma \\
& Y 2=\eta^{\prime} \rightarrow \rho \gamma / \omega \rightarrow \pi^{0} \gamma \\
& Y 3=\phi \rightarrow \eta^{\prime} \gamma / \phi \rightarrow \eta \gamma \\
& Y 4=\eta^{\prime} \rightarrow \omega \gamma / \omega \rightarrow \pi^{0} \gamma
\end{aligned}
$$

- Comparison with other approaches

$$
R_{\phi} \equiv \frac{\Gamma\left(\phi \rightarrow \eta^{\prime} \gamma\right)}{\Gamma(\phi \rightarrow \eta \gamma)}=\cot ^{2} \phi_{P} \cos ^{2} \phi_{\eta^{\prime} G}\left(1-\frac{m_{s}}{\bar{m}} \frac{z_{q}}{z_{s}} \frac{\tan \phi_{V}}{\sin 2 \phi_{P}}\right)^{2}\left(\frac{p_{\eta^{\prime}}}{p_{\eta}}\right)^{3}=(4.7 \pm 0.6) \times 10^{-3}
$$

in agreement with $(4.8 \pm 0.5) \times 10^{-3}\left(\mathrm{PDG}{ }^{\prime} 06\right)$ and $(4.77 \pm 0.09 \pm 0.19) \times 10^{-3}(\mathrm{KLOE})$

- Summary

We have performed a phenomenological analysis of radiative $\mathrm{V} \rightarrow \mathrm{P} \mathrm{\gamma}$ and $\mathrm{P} \rightarrow \mathrm{V}_{\gamma}$ decays with the purpose of determining the gluon content of the η and η ' mesons

The present approach is based on a conventional $\operatorname{SU}(3)$ quark model supplemented with two sources of $\mathrm{SU}(3)$ breaking, the use of constituent quark masses with $\mathrm{m}_{\mathrm{s}}>\mathrm{m}$ and the different overlaps between the P and V wave functions

The use of these different overlapping parameters (a specific feature of our analysis) is shown to be of primary importance in order to reach a good agreement

- Conclusions

I) The current experimental data on VPy transitions indicate within our model a negligible gluonic content for the η and η ' mesons,

$$
Z_{\eta}^{2}=0.00 \pm 0.12 \quad \text { and } \quad Z_{\eta^{\prime}}^{2}=0.04 \pm 0.09
$$

2) Accepting the absence of gluonium for the η meson, the gluonic content of the η^{\prime} wave function amounts to $\left|\phi_{\eta^{\prime}}\right|=(|2 \pm| 3)^{\circ}$ or $\left(Z_{n^{\prime}}\right)^{2}=0.04 \pm 0.09$ and the $\eta-\eta$ ' mixing angle is found to be $\phi_{\mathrm{P}}=(4 \mathrm{I} .4 \pm \mathrm{I} .3)^{\circ}$

- Conclusions

3) Imposing the absence of gluonium for both mesons one finds $\phi_{\mathrm{P}}=(41.5 \pm 1.2)^{\circ}$, in agreement with the former result
4) The latest experimental data on $(\rho, \omega, \phi) \rightarrow \eta \gamma$ and $\phi \rightarrow \eta$ ' γ decays confirm the null gluonic content of the η and η ' wave functions
5) More refined experimental data, particularly for the $\phi \rightarrow \eta$ ' γ channel, will contribute decisively to clarify this issue
