Nucleon Structure Studies in Hall A

Neutron Charge Form Factor

Deeply Virtual Compton Scattering

Low-Energy Tests of the Standard Model

Kees de Jager

Jefferson Lab

Hadron07

Frascati

October 9 - 12, 2007

Elastic EM Form Factors: the Neutron

- G_{E}^{n} more sensitive than other FF to details of the pion cloud at low Q^{2}
- G_{E}^{n} is not precisely measured above 1.5 GeV^{2}
- Permits disentanglement of F₂ⁿ
- Provides access to Generalized Parton Distributions (GPDs)

$$F_1^n(t) = \frac{2}{3}F_1^u(t) - \frac{2}{3}F_1^d(t)$$
$$F_2^n(t) = \frac{2}{3}F_2^u(t) - \frac{2}{3}F_2^d(t)$$

$$F_1^q(t) = \int_{-1}^{+1} dx \ e_q H^q(x, \xi, t)$$

$$F_2^q(t) = \int_{-1}^{+1} dx \ e_q E^q(x, \xi, t)$$

High $Q^2 G_{E^n}$

- Since 1984, when Blankleider & Woloshin first suggested ${}^3He(\vec{e},e'n)$, several experiments of this type have been performed at NIKHEF and Mainz for Q² up to 0.7 GeV², with large success in part due to new accurate 3-body calculations at low Q² (Gloeckle et al.)
- ✓ At Q² above 1-2 GeV² the Glauber method becomes sufficiently accurate (Sarksian)
- ✓ An electron-polarized neutron luminosity and the high polarization of the ³He target made the measurement about 10 times more effective than with ND₃. In combination with a large acceptance electron spectrometer the total FOM enhancement is more than 100, which allows to reach a momentum transfer of 3.5 GeV²
 - Polarized target
 - Electron spectrometer
 - Neutron detector

Exclusive QE scattering: ³He(e,e'n)

Polarized target

3
He = p + p + n
S + S' + P waves
 $P_{n} = 0.86 P_{He}$

Polarization v. time for the Target Cell "Edna"

Rb + K mixture has shortened spin-up time to 5-8 hours. Hybrid method used for the first time in actual target.

Neutron Detector

- Match BigBite 100 msr solid angle to QE kinematics
- Flight distance ~ 10 m
- Operation at 3·10³⁷ cm²/s
- 1.6 x 5 m² active area
- 0.38 ns time resolution
- Active layers:
- 2 thin "veto" planes (200 bars)
- 7 planes of scintillator (~250 bars)
- Shielding/Conversion material:
- 2" Pb + 1" Fe before veto planes
- 1" before each detector plane
 Shielding necessary to reduce background
 rate on the veto planes, but causes the
 complication of p↔n conversion....

Data analysis

Neutron events with |Ppar - q| < 250 MeV

Selection of QE (e,e'n) events

Observed Asymmetry for Quasi-elastic Neutrons

Beam HWP/Target Polarization Setting

Asymmetry then corrected for

- 1. p-n identification
- 2. A_{II} contribution
- 3. FSI for e,e'n process
- 4. Target and beam polarizations

First physics result from Hall $A G_{E}^{n}$

- Result is well above Galster
- Nuclear corrections include neutron polarization and estimate (5%) of Glauber correction
- 3.4 GeV² result to be released soon

Perspective: G_E^n up to 7 GeV^2

Electron

120 inch

The plan for GEN-7 is:

$$^{3}\vec{H}e(\vec{e},e'n)$$

- Beam at 8.8 GeV
- Resolution σ_p/p for electron BNL magnet, GEM
- He-3 cell in vacuum, lower background in neutron arm
- Hybrid He-3 cell with narrow pumping laser line

3He

Neutron
Proton

GEM

 G_E^n at 7 GeV^2 with uncertainty 15% of Miller's value in 30-day run

Definition of Generalized Parton Distributions

The four Generalized Parton Distributions can be defined through a generalization of the so-called Wigner distributions:

$$F_{\gamma^{+}}(x,\xi,t) = \frac{1}{2p^{+}} \bar{U}(\vec{q}/2) \left[H(x,\xi,t)\gamma^{+} + E(x,\xi,t) \frac{i\sigma^{+i}q_{i}}{2M} \right] U(-\vec{q}/2)$$

$$F_{\gamma^{+}\gamma_{5}}(x,\xi,t) = \frac{1}{2p^{+}} \bar{U}(\vec{q}/2) \left[\tilde{H}(x,\xi,t)\gamma^{+} + \tilde{E}(x,\xi,t) \frac{i\sigma^{+i}q_{i}}{2M} \right] U(-\vec{q}/2)$$

helicity flip

separate GPDs for each quark flavor and for gluons

x - quark momentum fraction

 2ξ - longitudinal momentum transfer

√-t -Fourier conjugate to transverse impact parameter

Integrals of GPDs give access to

$$J^{q} = \frac{1}{2} - J^{G} = \frac{1}{2} \int_{-1}^{1} x dx \left[H^{q}(x, \xi, 0) + E^{q}(x, \xi, 0) \right]$$

Relating GPDs to nucleon FFs and PDFS

forward limit: ordinary parton distributions

$$H^q(x,\xi=0,t=0)=q(x)$$
 unpolarized quark distribution $ilde H^q(x,\xi=0,t=0)=\Delta q(x)$ polarized quark distribution

 E^q , \tilde{E}^q : do NOT appear in DIS \Longrightarrow new information

irst moments: nucleon electroweak form factors

$$\int_{-1}^{1} dx \mathbf{H}^{q}(x, \xi = 0, t) = \mathbf{F}_{1}^{q}(t)$$

$$\int_{-1}^{1} dx \mathbf{E}^{q}(x, \xi = 0, t) = \mathbf{F}_{2}^{q}(t)$$

$$\int_{-1}^{1} dx \tilde{\mathbf{H}}^{q}(x, \xi = 0, t) = \mathbf{G}_{A}^{q}(t)$$

$$\int_{-1}^{1} dx \tilde{\mathbf{E}}^{q}(x, \xi = 0, t) = \mathbf{G}_{P}^{q}(t)$$

Dirac

Pauli

axial

pseudo-scalar

Visualization of GPDS

Deeply Virtual Compton Scattering (DVCS)

Simplest reaction to study GPDs

- x quark momentum fraction
- 2ξ longitudinal momentum transfer
- √-t Fourier conjugate to transverse impact parameter

Flavor separation through Deeply Virtual Meson Production

Experimental observables linked to GPDs

Experimentally, DVCS is indistinguishable from Bethe-Heitler

$$\sigma(ep \longrightarrow ep\gamma) = \begin{vmatrix} DVCS & Bethe-Heitler (BH) \\ + & + \end{vmatrix}$$

However, since we know the EMFF at low t, the BH process is exactly calculable

Using a polarized beam on an unpolarized target, 2 observables can be measured:

$$\frac{d^4\sigma}{dx_B dQ^2 dt d\varphi} \approx \left| T^{BH} \right|^2 + 2T^{BH} \cdot \text{Re} \left(T^{DVCS} \right) + \left| T^{DVCS} \right|^2$$

At JLab energies, $|T^{DVCS}|^2$ is supposed to be small, but....

$$\frac{d^{4} \overset{\rightarrow}{\sigma} - d^{4} \overset{\leftarrow}{\sigma}}{dx_{B} dQ^{2} dt d\varphi} \approx 2T^{BH} \cdot \operatorname{Im} \left(T^{DVCS}\right) + \left[\left|T^{DVCS}\right|^{2} - \left|T^{DVCS}\right|^{2}\right]$$

Kroll, Guichon, Diehl, Pire, ...

The harmonic structure of DVCS

$$\frac{d^{4}\sigma}{dx_{B}dQ^{2}dtd\varphi} = \frac{1}{\Pr_{1}(\varphi)\Pr_{2}(\varphi)}\Gamma_{1}(x_{B},Q^{2},t)\left\{c_{0}^{BH} + c_{1}^{BH}\cos\varphi + c_{2}^{BH}\cos2\varphi\right\} \boxed{|\mathbf{T}^{BH}|^{2}}$$

$$\pm \frac{1}{\Pr_{1}(\varphi)\Pr_{2}(\varphi)}\Gamma_{2}(x_{B},Q^{2},t)\left\{c_{0}^{I} + c_{1}^{I}\cos\varphi + c_{2}^{I}\cos2\varphi + c_{3}^{I}\cos3\varphi\right\}$$
twist-2

$$\frac{d^4 \overset{\rightarrow}{\sigma} - d^4 \overset{\leftarrow}{\sigma}}{dx_B dQ^2 dt d\varphi} = \frac{\Gamma(x_B, Q^2, t)}{\Pr_1(\varphi) \Pr_2(\varphi)} \left\{ \underbrace{s_1^I \sin \varphi}_{1} + s_2^I \sin 2\varphi \right\}$$

Interference term

Belitsky, Mueller, Kirchner

BH propagators ϕ dependence

Observables and their relationship to GPDs

$$T^{DVCS} = \int_{-1}^{+1} \frac{GPD(x,\xi,t)}{x - \xi + i\varepsilon} dx + \cdots$$

The cross-section difference accesses the imaginary part of DVCS and therefore GPDs at $x = \pm \xi$

 $=P\int_{-1}^{+1} \frac{GPD(x,\xi,t)}{x-\xi} dx - i\pi GPD(x=\xi,\xi,t) + \cdots$

The total cross section accesses the real part of DVCS and therefore an integral of GPDs over x

DVCS in Hall A (E00-110 and E03-106)

Beam

- 75% polarized 2.5 μ A electron beam
- 15 cm LH2 target -> $L = 10^{37}$ cm⁻²s⁻¹
- Left Hall A HRS with electron package
- 11x12 blocks PbF₂ electromagnetic calorimeter
- 5x20 blocks plastic scintillator array
- Digital sampling of PMT signals at 1 GHz
- Clear DVCS identification from HRS+calo

LH2 target

Plastic scintillator array

Electromagnetic

calorimeter

Clermont-Ferrand, Saclay, Grenoble, ODU, Rutgers

Difference of cross sections

PRL97, 262002 (2006)

$$\langle Q^2 \rangle = 2.3 \text{ GeV}^2$$

$$\frac{1}{2} \left(\frac{d^4 \sigma^+}{dQ^2 dx_B dt d\phi_{yy}} - \frac{d^4 \sigma^-}{dQ^2 dx_B dt d\phi_{yy}} \right) (nb/GeV^4) \left\langle X_B \right\rangle =$$

Corrected for real+virtual RadCor
Corrected for efficiency
Corrected for acceptance
Corrected for resolution effects
Checked elastic cross section @ ~1%

contribution small!

Extracted twist-3

New work by P. Guichon

Total cross section

Q² dependence and test of scaling

No Q^2 dependence: strong indication for scaling behavior and handbag dominance

Cross-section coefficients much larger than VGG

DVCS on the neutron in JLab/Hall A: E03-106

LD₂ target 24000 fb⁻¹ x_B =0.36, Q²=1.9 GeV²

Follow-up experiment in Hall A (to be proposed to PAC-33) will reduce experimental error significantly (larger x_B -range)

MODEL-DEPENDENT

 J_u - J_d extraction

VGG Code

GPD model: LO/Regge/D-term=0
Goeke et al., Prog. Part. Nucl. Phys 47 (2001), 401.

Next Hall A DVCS experiment: E07-007

- Measure the total DVCS cross section at fixed x_B = 0.36 for three Q²-values 2.3, 1.9 and 1.5 GeV²- at two beam energies with improved π^o subtraction in order to
 - → separate the DVCS² term
 - → Provide further tests of scaling of the unpolarized cross section
 - \rightarrow separate the five response functions of deep π° production

Future Possibilities (Purely Leptonic)

Møller at 11 GeV at JLab Higher luminosity and acceptance

 $\sin^2\theta_{\rm W}$ to ± 0.00025 e.g. Z' reach $\Lambda_{\rm ee}$ ~ 25 TeV reach ~ 2.5 TeV

 \cdot Comparable to single Z-pole measurement: shed light on 4σ disagreement

Best low-energy measurement until ILC or v-Factory

· Could be launched ~ 2015

Does Supersymmetry (SUSY) provide a candidate for dark matter?

- → Neutralino is stable if baryon (B) and lepton (L) numbers are conserved
- → In RPV B and L need not be conserved: neutralino decay

PV DIS at 11 GeV with an LD₂ target

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} [a(x) + f(y)b(x)]$$

 $y \equiv 1 - E'/E$

For an isoscalar target like ²H, the structure functions largely cancel in the ratio:

$$a(x) = \frac{3}{10} [(2C_{1u} - C_{1d})] + \cdots$$

$$b(x) = \frac{3}{10} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \cdots$$

$$(Q^2 >> 1 \ GeV^2, W^2 >> 4 \ GeV^2, x \sim 0.3-0.5)$$

- Must measure A_{PV} to 0.5% fractional accuracy
- Luminosity and beam quality available at JLab

- 6 GeV experiment will launch PV DIS measurements at JLab (2009)
- · Only 11 GeV experiment will allow tight control of systematic errors
- Important constraint should LHC observe an anomaly

Precision High-x Physics with PV DIS

Charge Symmetry Violation (CSV) at High x: clean observation possible

$$\delta u(x) = u^p(x) - d^n(x)$$

$$\delta d(x) = d^p(x) - u^n(x)$$

$$\frac{\delta A_{PV}(x)}{A_{PV}(x)} = 0.3 \frac{\delta u(x) - \delta d(x)}{u(x) + d(x)}$$

Direct observation of CSV at parton level
Implications for high-energy collider pdfs
Could explain large portion of the NuTeV anomaly

Requires 1% measurement of A_{PV} at $x \sim 0.75$

For hydrogen ¹H:
$$a(x) = \frac{u(x) + 0.91d(x)}{u(x) + 0.25d(x)}$$

Longstanding issue: d/u as $x\rightarrow 1$

Allows d/u measurement on a single proton

A Vision for Precision PV DIS Physics

- Hydrogen and Deuterium targets
- Better than 2% errors
 (unlikely that any effect is larger than 10%)
- x-range 0.25-0.75
- W² well over 4 GeV²
- Q² range a factor of 2 for each x
 (except x~0.75)
- Moderate running times

- solid angle > 200 msr
- · count at 100 kHz
- on-line pion rejection of 10² to 10³

- CW 90 μA at 11 GeV
- 40 cm liquid H_2 and D_2 targets
- Luminosity > 10³⁸/cm²/s

Goal: Form a collaboration, start real design and simulations, after the successful pitch to US community at the 2007 Nuclear Physics Long Range Plan

Summary

- Presented results of two recent experiments from JLab Hall A
 - G_{E}^{n} to higher \mathbb{Q}^{2}
 - DVCS at high luminosity
- First preliminary datum for G_E^n indicates that G_E^n indeed drops off slower than ancient Galster parametrization, possibly in agreement with similar scaling as G_E^p
- Results of the first dedicated DVCS experiment in Hall A have indicated that
 - \rightarrow factorization (handbag dominance) is applicable at $Q^2 \approx 2 \text{ GeV}^2$
 - \rightarrow the DVCS² term is much larger than previously assumed
- and provided a model-dependent estimate of the quark angular momenta
- Initial studies have shown that the 12 GeV upgrade will allow highly sensitive tests of the Standard Model