

Feasibility study of the B_c meson at CMS/LHC

Aafke Kraan

On behalf of the CMS collaboration

Outline

- Introduction
- Event generation
- Event selection
- Systematic errors
- Results
- Conclusions

Motivations

Goal: measure the mass and lifetime of the B_c-meson at CMS

Why studying the B_c meson at LHC?

- It's a unique meson! B+c meson is ground state of bc.
 - Both quarks are heavy (similar to bottomonium and charmonium)
 - The two quarks have different flavours
- This implies unique properties in production, mass and decay!
 - Only weak decays possible
 - Both b and c can participate
 - Lifetime measurable (smaller than B lifetime)
- Theoretical uncertainty on B_c properties are large (see next slide)
 - **⇒** interesting for experiments!
- Analysis possible with relatively early LHC data (1 fb⁻¹)!

Production and decay at hadron colliders

B_c production: e.g. via hard process gg→B_c b c E.g:Chang&Wu,EPJC38,267

• Many theoretical uncertainties! σ (B_c) ~ 10⁻³ σ (other B-mesons)

B_c mass:

theory M=6.24±0.05 GeV

See e.g: [Kwong,Rosner, PRD44, 212] [Eichten, Quigg, PRD49, 5845]

B_c decay:

• b-decay with c as spectator (here: $B_c \rightarrow J/\psi \pi$)

c-decay with b as spectator

• annihilation decays $\overline{b}c \rightarrow \ell^+ \nu, c\overline{s}, u\overline{s}$

•	theory prediction BR
$\Sigma \overline{\mathbf{b}} \to \overline{\mathbf{c}}$	20-25%
$\Sigma \mathbf{c} \rightarrow \mathbf{s}$	64-72%
$\Sigma B_c^+ \to c\bar{s}$	6.6-7.2%

B_c lifetime:

theory preduction τ : 0.48-0.55 ps

See e.g: V.V.Kiselev, hep-ph/0211021

The B_c-meson at the Tevatron

1998 CDF run I: observation of B_c-meson in channel B_c→J/ψ I ν
 20 signal events (110 pb-1).

PRL81:2432-2437,1998.

- \bullet B_c mass:6.40±0.39(stat.)±0.13(syst.) GeV/c²
- \bullet B_c lifetime: $0.46^{+0.18}_{-0.16}$ (stat.) \pm 0.03 (syst.) ps
- 2007: CDF run II, 2.2 fb⁻¹: 87 signal events! In channel B_c→J/ψ π

CDF public note 07-07-12

B_c mass: 6.2741±0.0032 (stat.)±0.0026(sysτ.) GeV/c²

Measurement of B_c lifetime in channel $B_c \rightarrow J/\psi$ e ν

B_c lifetime:

PRL97,012002, 2006

 $0.463^{+0.073}_{-0.065}$ (stat.) \pm 0.036 (syst.) ps

20.4

 $J/\psi + e$ and $J/\psi + \infty$

 $M(J/\psi + lepton) (GeV/c^2)$

Data (B_c Candidates) Fitted Signal

Fitted Background

The B_c meson at CMS

At LHC: 20 times larger B_c production cross section than Tevatron!

• Higher luminosity and √s!

• Higher B_c P_T values!

Hadron spectroscopy at CMS plenary talk today Roberto Covarelli

Muon stations (endcaps): Muon stations (barrel): Cathode Strip Chambers **Drift Tubes Outer tracker:** Silicon strips Inner tracker: Silicon pixels

For Bc-meson:
CMS has excellent muon system, tracker, large acceptance!

Hadron07, October 12, Frascati

Outline

- Introduction
- Event generation
- Event selection
- Systematic errors
- Results
- Conclusions

B_c event generation

Events $B_c \rightarrow J/\psi \pi$, $J/\psi \rightarrow \mu\mu$ generated with MC generator BCVEGPY

Chang&Wu, EPJC38:267,2004

- NB In agreement with PYTHIA, but much faster.
- With full and fast simulation OSCAR_3_7_0, ORCA_8_7_3, FAMOS_1_3_2
- Kinematical Cuts (simulating L1 and HLT):

B_c pT≥10GeV lηl≤2.0 μ pT≥4GeV lηl≤2.2 π pT≥2GeV lηl≤2.4

Particle	Decay channel	σ(pb)	Generated~ 30 fb-1
B _c	Bc→J/ψπ, J/ψ <i>→μμ</i>	1.781	5.2082(·10 ⁴)

Background event generation

Event topology:

- Backgrounds:
- 1) Other b hadrons' decay include J/ψ
- 2) Prompt J/ψ
- 3) ccbar→µµx

Fast and full simulation

channel	$\sigma \cdot Br.(pb)$	Nevents
B^0	70.3	740,000
B^+	70.7	740,000
B_s	14.8	190,000
Λ_b	19.4	200,000
prompt J/ ψ	240.3	500,000
$c\overline{c} \rightarrow \mu^+ \mu^- X$	1690	210,000

- 4) bbbar →µµx
- 5) General QCD
- 6) W+jets, Z+jets

Full simulation In Pthat bins

bbbar →µµx	100000
QCD	950000
W+jets	880000
Z+jets	710000

Outline

- Introduction
- Event generation
- Event selection
 - **➢** Selection procedure
 - **➢** Signal and background estimations
 - ➤ Kinematic fit on mass and lifetime
- Systematic errors
- Results

Event selection

- Step 0: trigger, not included in this study.
 - ► Future: displaced vertex trigger, add particle in vicinity of J/psi
 ►L1: dimuon trigger, L2 inv mass cut, L3 secondary vertex
- Step 1: J/psi candidates
 - **○** 2 muons pT ≥ 4.0 GeV , lηl ≤ 2.2
 - muons share the same vertex
 - 2 muons have different charge
 - 2 muons' invariant mass around the J/Ψ(3.0,3.2)GeV
- Step 2: Pion candidates:
 - not identified as a lepton
 - pT ≥ 2 GeV ,lηl≤2.4
 - Share the same vertex with 2 muons (J/Ψ vertex)

Event selection

Step 3: cut on proper decay length (L^{PDL}_{xy}) and significance (L^{PDL}_{xy} /σ_{xy}) to suppress prompt J/psi background

 L_{xy}^{PDL} > 60 μ m L_{xy} / σ_{xy} > 2.5 $\cos\theta$ > 0.8

Event selection

- Step 4: invariant mass window cut: M _{J/ψπ} ∈ [6.25, 6.55] GeV
- Summary of selection for B_c-events (~30 fb⁻¹):

Cuts and Selections	Cumulative Eff. (%)	Passed total 52082
Dimu and J/ψ	32.88	17127
Pion	15.07	7851
$L^{PDL}_{xy}/\sigma_{xy} > 2.5$	7.07	3685
Cosθ>0.8	7.04	3666
L ^{PDL} _{xy} >60µm	6.98	3637
Bc candidate (6.25,6.55)GeV	6.93	3608

Background estimation

- For b-decays, prompt J/psi's and ccbar→μμx: statistics high→ ok!
- W+jets, Z+jets, QCD: L_{generated}<1 fb⁻¹
 - → Determine selection efficiency step-by-step
 - 1) Eff. to select two muons (step 1) → ε(2μ)
 - 2) Eff to reconstruct from 2 muons a J/ψ [from ccbar→μμΧ sample]

$$\Rightarrow$$
 ε(2μ \rightarrow J/ψ)=(1.3±0.1)× 10⁻³

3) Eff. for this J/ ψ to pass final cuts (step 3,4)

[from prompt J/psi's, in mass[5,8] GeV]

$$\Rightarrow$$
ε(J/ ψ_{pass})= (6.2±1.2)×10⁻⁶

Total efficiency= $\varepsilon(2\mu)\cdot\varepsilon(2\mu\rightarrow J/\psi)\cdot\varepsilon(J/\psi_{pass})$

Summary of expected signal and background (~1 fb⁻¹):

signal B _c	120±11
total bg	2.6±0.4
B+	0.7±0.2
B_s	0.1
B ⁰	0.8±0.3
Prompt J/ψ	0.1
QCD	0.7±0.1
Λ_{b}	0.1
ccbar	0.01
bbar	0.01

Mass and lifetime fit

- Kinematic fit Bc→J/ψπ, J/ψ→μμ: totally 3 tracks
 - 2 muon tracks: J/ψ mass constraint M_{μμ}=3.096 GeV
 - all 3 tracks: from same vertex

Prob 0.9899
Constant 6.219 ± 0.738
cτ 0.01488 ± 0.00131

15
Bc prompt J/Ψ
Λοβ Bs
Bc prompt J

M(B_c): 6402 ± 2 MeV Input MC:6400 MeV

Masswidth: 22 MeV

Hadron07, October 12, Frascati

 $c\tau(B_c)$:148.8 ± 13.1 µm Input MC 150 µm $\tau(B_c)$ =0.0496 ± 0.044 ps

Outline

- Introduction
- Event generation
- Event selection
- Systematic errors
- Results
- Conclusions

Systematic uncertainties

- Misalignment
 - 1. muon and pion momentum scale uncertainty
 - 2. muon and pion momentum resolution deterioration
 - 3. vertex resolution deterioration
- Sensitivity to selection cuts
- MC statistics
- Theoretical uncertainty (B_c P_T-spectrum)

Cuts sensitivity

Summary (~1 fb⁻¹):

Source	B _c mass (MeV)	В _с ст (µm)
mom scale	11	0.2
mom resolution	10	0.8
vertex uncertainty	-	2.4
Cuts sensitivity	0.1	0.2
MC statistics	-	0.1
Theoretical	-	1.5
Total	14.9	3.0

Hadron07, October 12, Frascati

Result

	$\mathcal{L}\ (\mathrm{pb}^{-1})$	Signal Events	Mass (GeV/c^2)	Lifetime (ps)
CDF Run I	110	$20.4^{+6.2}_{-5.5}$	$6.4 \pm 0.39 \pm 0.13$	$0.46^{+0.18}_{-0.16} \pm 0.03$
$(B_c^\pm \to J/\psi l^\pm \nu_l)$				
D0 Run II	210	$95\pm12\pm11$	$5.95^{+0.14}_{-0.13} \pm 0.34$	$0.448^{+0.123}_{-0.096}\pm0.121$
$(B_c^{\pm} \to J/\psi \mu^{\pm} \nu)$				
CDF Run II	360	14.6 ± 4.6	$6.2857 \pm 0.0053 \pm 0.0012$	
$(B_c^{\pm} \to J/\psi \pi^{\pm})$				
CDF Run II	360	238		$0.463^{+0.073}_{-0.065}\pm0.036$
$(B_c^+ \to J/\psi e^+ \nu_e)$				
CDF Run	2.2 fb ⁻¹	87	M=6.2741±0.0032±0.0026.)	
$B_c \!\! o \! J/ \psi$				-

CMS AN 2006/079 CMS NOTE 2006/118 X.W. MENG, J.Q. TAO, G.M. CHEN

	L (fb ⁻¹)	Signal events	Precision of mass value (MeV)	Precision of lifetime (ps)
CMS B _c →J/ψπ	1	120 ±11	2(fit)±15(syst)	0.044(fit)±0.010(syst)

Conclusions

- With 1 fb-1 of data CMS can reconstruct 120 B_c→J/ψπ events
 - The precision on the mass (central value) is
 - 2 (fit)±15(syst) MeV
 - The precision on the lifetime is
 - $0.044(fit)\pm0.010(syst)$ ps
- The dominating systematic uncertainties are
 - For lifetime measurement: theoretical uncertainties
 - For mass measurement: momentum scale and resolution
- Improvents are foreseen when data come by using B->jpsi K as control sample

EXTRA SLIDES

Mc-generator: lepton P_⊤ spectrum

Bc decay and interface with OSCAR:

G.M. Chen S.H. Zhang IHEP Beijing A.A. Belkov S. Shulga JINR Dubna (Russia)