DCH geometry options

DCH geometry options

G. Finocchiaro
INFN – LNF
DCH TDR Meeting 21 June 2012

DCH TDR Meeting 21 June 2012

DCH Performance Studies

- In the TDR we need to discuss the expected performances of the detector
- Latest DCH performance studies in 2010, with R_{min} =236mm (BaBar), or less
- Now (4.5 thick W shields) R_{min}=265mm
- Need to work out new realistic wire arrangements to use (next talk)
- Finalize (?!) studies on the minimum thickness of the inner cylinder

Revise endolate options

- We have also been asked to compare different geometry options
 - spherical convex
 - better match to FW EMC shape \rightarrow minimize traversed thickness, minimize spatial separation of e^+e^- from converted photons (however, we never got specific requirements from EMC people)
 - allows longer chamber
 - spherical concave
 - Works in "traction" mode (more stable than "compression": Stefano is quantifying this)
 - flat endplates (thicker for fixed deformation)

"Present" (i.e., shown at Elba) Nominal Geometry Reference

Options for DCH Endplaces and Length

- 1. convex endplates, zmax=+1750mm
- 2. concave endplates, zmax=+1750mm
- 3. convex endplates, zmax=+1793mm (+43mm)
- 4. concave endplates, zmax=+1793mm (+43mm)
- 5. convex endplates, zmax=+1914mm (+164mm)
- A minimum of 60mm is considered for the FW gas enclosure (the blue region in the previous slide)
- The FTOF is vertical in 1-4, parallel to the EMC crystals in 5
 - About 15mm for EMC calibration system + FTOF support
- In all cases, the length on the backward side is the same: zmin=-980/-840mm (-1310mm including the case for electronics)
 - At some point we should optimize that too

Option Summary

#	Spherical R=2100mm	z _{MIN} (DCH) [mm]	z _{Max} (DCH) [mm]	z _{Max} (20°) [mm]	R _{Max} (20°) [mm]
1	Convex	-980	+1750	+1751	599
2	Concave	-980	+1750	+1713	585
3	Convex	-980	+1793	+1793 (+42)	613 (+14)
4	Concave	-980	+1793	+1764 (+51)	603 (+18)
5	Convex	-980	+1914	+1871 (+120)	639 (+40)

Pro of spherical shape:

- (much) smaller thickness than for flat endplates for fixed deformation under load exact calculation underway (S. Lauciani)
- more shapes (e.g. cubic splines) attempted, but would imply larger angle, thus more material lost for the feed-through flat seats
- Pro of convex: longer by up to 16cm (option 5)
- Pro of concave:
 - shorter wires for smaller radii (background) Swersky: non relevant because already shielded
 - works in traction mode (quantify vs. compression mode)
 - more track length for more "useful tracks"? → FastSim
- Concave FW and convex BW
 - more space for cables where there are more (@larger radii)

Past FastSim Studies in the DGWG

- Tracking performance as a function of the DCH inner radius: <u>Perugia09</u>
- Tracking as a function of the DCH length: <u>CalTech10</u>
- dE/dx as a function of the DCH length: Frascati09
- Tracking as a function of stereo angle and cell layout:
 Annecy10

Can we extrapolate from the previous results?

Tracking vs. DCH length

Short DCH

Tracking vs. DCH length

baseline DCH

Tracking vs. DCH length $(\Delta L=20cm)$

negligible effect in Long DCH vs. Masked DCH

Effect on $B^0 \rightarrow D^{*-}K^+$ reconstruction

 $B^0 \rightarrow D^* - K^+, D^* - \rightarrow D^0 \pi^-, D^0 \rightarrow K \pi$

no selection cuts applied, just MC truth matching

DeltaE

the effect on the overall ΔE distribution is hardly visible

Reconstruction efficiency of $B^0 \rightarrow D^{*-}K^+$

DCH configuration	reco. efficiency [%] (∆E <100 MeV)
baseline	70.9 ± 0.1
20cm shorter in fwd region (FARICH)	70.2 ± 0.1
20cm longer in bwd region (no bwd EMC)	70.9 ± 0.1
6cm longer in fwd region (no fwd PID)	71.2 ± 0.1

DCH configuration	reco. efficiency [%] (∆E <50 MeV ~2.5σ)
baseline	65.5 ± 0.2
20cm shorter in fwd region (FARICH)	64.8 ± 0.2
20cm longer in bwd region (no bwd EMC)	65.9 ± 0.2
6cm longer in fwd region (no fwd PID)	65.9 ± 0.2

Effect on dE/dx

single particles:

 K/π separation vs p at $\theta=23^{\circ}$

see drawings in sl. 10-11

between **Short** and **Masked**:

 0.16σ difference @2.5GeV

 0.21σ difference @0.6 GeV

between Long and Masked:

~0.04 σ difference @2.5GeV

 \sim 0.07 σ difference @0.6GeV

21 Julie 2012

Matteo Rama

2 Dec 2009

- Past FastSim results indicate that 1cm increase of track length implies 1% better $\sigma(p)/p$
 - Weighting with tracks from the whole chamber, the effect e.g. on ΔE is hardly visible
- Effects on dE/dx on forward-going tracks are evident, but probably the overall effect is not enormous
- In the TDR it's worth to repeat the sensitivity studies with the most updated parameters
- For the review we have been asked to present at next week's
 Tech Board (time is very short anyway for obtaining results for it),
 past studies indicate that a longer DCH certainly grants better
 performances, but the size of the effects is not huge