Stato dell'Esperimento MEG

Marco Panareo

Obiettivo dell'esperimento

L'esperimento MEG ha lo scopo di misurare il rapporto di decadimento

 $B = (\mu^+ \rightarrow e^+ \gamma) / (\mu^+ \rightarrow tot)$

al livello di circa 10⁻¹³.

- □ II modello standard prevede la conservazione del numero leptonico a tutti gli ordini. Anche includendo nel modello una massa dei neutrini diversa da zero, il nuovo modello prevede un rapporto *B* non accessibile sperimentalmente ($B < 10^{-40}$).
- Tuttavia alcune teorie di grande unificazione supersimmetrica prevedono un valore di *B* molto più grande (10⁻¹⁴ ÷10⁻¹¹). In questo senso MEG potrebbe fornire un utile contributo all'esplorazione della fisica oltre il modello standard.

Rivelazione

La segnatura del decadimento

 $\mu^+ \rightarrow e^+ \gamma$

è l'emissione della coppia $e^+ \gamma$, in direzioni opposte e con energia di circa 52.8 MeV, siccome il decadimento del μ^+ avviene a riposo.

- Pertanto l'identificazione di questo processo necessita di una buona capacità di riconoscere le due particelle e una misura con elevata risoluzione delle loro energie, dell'angolo relativo e della contemporaneità della loro emissione.
- I fondi principali sono dovuti ai decadimenti radiativi del μ⁺ e decadimenti di Michel col γ proveniente da altri processi

02/07/2012

- II fascio di muoni (circa 3×10⁷/sec) viene arrestato su un bersaglio di polietilene spesso 150µm
- La quantità di moto e la direzione di volo dei positroni sono determinati mediante un magnete superconduttore ed un tracciatore realizzato con un sistema di 16 camere a drift
- Il tempo di volo dei positroni è misurato da un sistema di scintillatori.
- Energia, posizione e tempo di volo dei fotoni sono determinati attraverso le scintillazioni prodotte in un calorimetro a Xe liquido.

Thin Superconducting Coil

Muon Bean

Drift Chambe

Lig. Xe Scintillation

Detector

Eline

Drift Chamber

Liq. Xe Scintillation

Timing Counter

1m

topping Target

Runs

3 anni di run (2009-2011) hanno permesso di migliorare di un fattore 5 il limite superiore sul decadimento cercato $[(\mu^+ \rightarrow e^+ \gamma)/(\mu^+ \rightarrow e^+ \vee \nu)]$ al 99% C.L.

2009 2010 9.6×10⁻¹² 1.7×10⁻¹²

 \rightarrow

Tracciatore di positroni

02/07/2012

- L'instabilità intrinseca del sistema di tracciamento ha inficiato in maniera consistente efficienze e risoluzioni spaziali
- A questo si è aggiunto il problema di disturbi rilevati dall'elettronica di FE ricondotti a possibili ground loop nei circuiti e mai completamente risolti
- Questo ha indotto la collaborazione a considerare la completa sostituzione del tracciatore con uno basato su un disegno differente

Variabile	Previsto	Ottenuto
Photon Energy (%)	1.2	1.9
Photon timing (psec)	43	67
Photon position (mm)	$_{4(u,v),6(w)}$	5(u,v),6(w)
Photon efficiency $(\%)$	> 40	60
Positron momentum (KeV)	200	380
Positron angle $(mrad)$	$5(\phi_e)/5(\theta_e)$	$7(\phi_e)/9(heta_e)$
Positron timing (psec)	50	107
Positron efficiency $(\%)$	90	40
Relative angle $(mrad)$	7.2	10.3
Relative timing (psec)	65	120

Upgrade

- La proposta di upgrade prevede
 - Sostituzione del tracciatore con una DC a volume continuo
 - Sostituzione dei PMT della faccia più interna del calorimetro LXe con SiPM (array di PMT da 1" quadrato), per migliorare la risoluzione nella posizione di arrivo del γ
 - Realizzazione di un bersaglio attivo con fibre scintillanti singolarmente accoppiate a una matrice di SiPM, per migliorare la risoluzione nella posizione di arresto/decadimento del µ
 - Uso di SiPM per la lettura degli scintillatori del TC (aumenta la risoluzione temporale, elimina la NB, aumenta l'efficienza)
- L'ultimo punto è ancora oggetto di discussione relativamente alla miglioria introdotta in relazione al costo

Proposta di DC

- Camera a volume continuo
- Fili stereo con viste u e v
- Celle a proiezione quadrata di 7mm
- Piani stereo u e v ruotati di ~8° rispetto a z
- □ Sezione dei fili di sense/field 25µm/50µm
- □ Miscela di He/iC₄H₁₀ 90/10
- Lunghezza totale di 180cm
- □ Raggio esterno di 29cm
- □ Circa 2400 sense wires
- □ Circa 12000 field wires

Fondo da y

- La sostituzione del tracciatore con la DC proposta introduce un ulteriore vantaggio in termini di minore fondo da γ atteso nel calorimetro
- Attraverso MC è stato valutato il fondo prodotto dal nuovo tracciatore
- Si stima che con la nuova camera si possa ottenere un riduzione complessiva del fondo da γ dell'ordine del 20%

Prototipi

- Molti aspetti dello sviluppo saranno definiti attraverso la costruzione di prototipi, principalmente:
 - Aging
 - Risoluzione spaziale
 - Capacità del FE di risolvere i segnali

3000F -50

- Tre prototipi sono attualmente in fase di sviluppo
 - 1 Roma

- 3 Lecce
- Uno specifico telescopio è in fase di completamento a Pisa per il loro test

Telescopio

	φ-view (μm)	z-view (μm)
Strip pitch	50	100
Hit resolution (@vertical crossing)	20	40
Position Resolution (telescope)	10	20
Position Resolution (test detector)	50	150
σ _{tel} << σ _{DUT} OK to		us!
02/07/2012	14	14

Risoluzione – Prototipo di Roma

- Struttura in alluminio, lunghezza di 50cm e endplate 20×20cm² con finestre in mylar per minimizzare il MS
- Celle quadrate da 14mm
 - Fili diritti
 - 1 filo di sense, 8 fili di campo
 - Fili di sense: 25µm W Au plated (da KLOE)
 - Fili di campo: 50µm di CuBe (PSI)
- ☐ Miscela di He/iC₄H₁₀ 90/10
- Completamento entro la fine di Luglio

Prototipi di Lecce

- Singolo tubo a drift (ø~8mm) ~30cm di lunghezza, filo da 25µm di tungsteno placcato in oro
- Tre tubi a drift (ø~8mm) allineati ~ 30cm di lunghezza, filo da 25µm di tungsteno placcato in oro, spessore dei tubi nella regione centrale ~200µm per minimizzare il MS
- Camera multifili stereo ...

Prototipi di Lecce – pMu2e

- Struttura in policarbonato, lunghezza 60cm e enplates semicircolari con raggi di 40cm e 65cm con finestre in mylar
- Celle quadrate da ~14mm
 - Fili stereo (angolo di 200mrad rispetto z)
 - 20 layer di celle, 10 celle per ogni layer
 - 1 filo di sense, 5 fili di campo
 - Fili di sense: Mo 20µm Ag plated
 - Fili di campo: Al 40µm Ag plated
 - 1000 fili di campo, 200 fili di sense, 46 fili per la definizione del campo ai bordi
- $\square \text{ Miscela di He/iC}_4\text{H}_{10} 90/10$
- Filatura completata per circa la metà

DC Frontend

- A 3-channels frontend based on AD8099-THS4509 ICs was assembled and tested using both signals from pulse generator and from a setup of 3 aligned 8 cm diameter drift tubes, 30 cm long
- Differential signaling is used to improve the noise immunity. Outputs will be connected to the digitization stage through a HD twisted pairs cable

□ Measured performances:

- Input voltage dynamical range 0÷150mV
- Integral non-linearity < 1.5%
- Output voltage noise (120ohms load) < 2mV
- -3dB bandwidth ~ 800MHz

Vin (mV)

MEG DC From

DC Frontend

- A very compact version of PCB for that frontend, 6.6mm-wide (- 30% wide with respect to the previous version), was designed and will be tested soon (AD8099 LFCSP package was used instead of SOIC package). A heatsink mounting was included
- This new FE version will be used for Pisa aging test
- A 6-channels FE, suitable for the Rome prototype, will be developed soon

DC HV

A HV power supply based on HVM DC-DC ultra-miniature HV converter (Nhv0520) was designed

Electrical Characteristics (at +23°C)

Input Power Voltage (V+): 5V ± 0.5Vdc

Programming Voltage: 0 to 5 Volts programming input results in full rated output

Programming Input Impedance: 100kΩ

Output Tolerance at No Load: ± 1%

Input-Output Isolation: This device is not Isolated, HV return internally connected to ground

Load Regulation: < 0.1% from no load to full load

Output Ripple: < .01% typical at full load,

Oscillator Frequency: 45 kHz - 80 kHz

Efficiency: 50% typical at full load

It will be tested on the 3-drift tubes system

SIDE VIEW

BOTTOM VIEW

0.400

-0.450

0.150

SLOAD

IN+ (5VDC)

IN+

IN-

+HVOU

HVRTN

CONNECTED TO IN-

NOTE: HVRTN INTERNALLY

0.370

0.350

0.300

02/07/2012

П

Attività per il 2012-2013

2012

- Run (Jul. 24th ÷ Dec. 21st)
- Aging test
- Test della risoluzione
 - Uso del sistema di 3 tubi (FE completato)
 - Realizzazione di una scheda di FE a 6 canali
 - Completamento del Prototipo di Roma
 - Completamento del Prototipo di Lecce

- (Run (Feb. ÷ ?))
- Realizzazione di un "Large prototype"
- Definizione completa della DC
- Finalizzazione della scheda di FE
- Integrazione nel DAQ

Pubblicazioni

- □ J. Adam et al. (MEG collaboration), <u>A limit for the µ → e</u> <u>y decay from the MEG experiment</u>; Nucl. Phys. B834 (2010) 1;
- J. Adam et al. (MEG collaboration), <u>Calibration and</u> <u>monitoring of the MEG experiment by a proton beam</u> <u>from a Cockcroft-Walton accelerator</u>; Nucl. Instr. Meth. A641 (2011) 19.
- □ J. Adam et al. (MEG collaboration), <u>New Limit on the</u> <u>Lepton-Flavor-Violating Decay µ⁺→e⁺y</u>; Phys. Rev. Lett. 107 (2011) 171801.
- J. Adam et al. (MEG collaboration), The MEG Detector, to be submitted to Nuclear Instruments and Methods in Physics Research A (2012)