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INTRODUCTION I

Objectivity of physical properties.

Intuitive definition. A physical property (e.g., the value of an observable) is objective if
it is possessed or not possessed by a physical system independently of any
measurement.

Formal operational definition. A physical property E is objective for a given state S of aFormal operational definition. A physical property E is objective for a given state S of a
physical system Ω if for every individual example of Ω (physical object) in the state S
the result of an ideal measurement of E does not depend on the measurement context.

Bell-Kochen-Specker’s theorem ⇒ contextuality of quantum mechanics (QM).

Bell’s theorem ⇒ nonlocality of QM.

Contextuality⇒ nonobjectivity of physical properties.

Nonlocality⇒ contextuality⇒ nonobjectivity of physical properties.
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INTRODUCTION II

Consequences of nonobjectivity.

(i) Logical. The classical notion of truth as correspondence cannot be maintained in QM.
Quantum Logic.

(ii) Probabilistic. The usual epistemic interpretation of probabilities cannot be
maintained in the case of quantum probabilities, which are necessarily nonepistemic
(sometimes called ontic).

(iii) Quantum measurement theory. Objectification problem (how a macroscopic
measurement apparatus may exhibit objective properties), paradoxes (Schrödinger’s cat,measurement apparatus may exhibit objective properties), paradoxes (Schrödinger’s cat,
Wigner’s friend, EPR paradox).

(iv) Comprehensibility. Intuitive geometrical models cannot be constructed for QM
(wave-particle duality). Feynman writes (1965, The character of physical laws):

“There was a time when the newspapers said that only twelve men understood the
theory of relativity. I do not believe there ever was such a time. There might have
been a time when only one man did, because he was the only guy who caught on
before he wrote his paper. But after people read the paper a lot of people understood
the theory of relativity in some way or other, certainly more than twelve. On the
other hand I think I can safely say that nobody understands quantum mechanics”.
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INTRODUCTION III

Trying to avoid these problems the Lecce group has proven that the Bell and Bell-
Kochen-Specker theorems rest on an implicit epistemological assumption
(metatheoretical classical principle, or MCP), which is problematical from a quantum
point of view. If one weakens this assumption (metatheoretical generalized principle, or
MGP), the proofs of the foregoing theorems cannot be completed. This is an important
result, for it implies that the possibility of providing an interpretation of the
mathematical formalism of QM which is noncontextual (hence local) cannot be
excluded, at variance with standard beliefs. By adopting MGP in place of MCP we haveexcluded, at variance with standard beliefs. By adopting MGP in place of MCP we have
thus provided an interpretation of this kind (semantic realism, or SR, interpretation).
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To show the consistency of the SR interpretation various models have been provided.
The last of these, named extended semantic realism (ESR) model is a new kind of
noncontextual hidden variables theory, which introduces, besides hidden variables, a
reinterpretation of standard quantum probabilities. The ESR model modifies and
extends the original SR interpretation, but it preserves its basic features, that is,
semantic realism and the substitution of MCP with the weaker principle MGP.



INTRODUCTION IV

As every hidden variables (h.v.) theory, the ESR model presupposes that
“something is happening” at a microscopic level which underlies the standard
quantum picture of physical systems and does not reduce to it. Hence it
proposes a set-theoretical description of the microscopic world in which physical

objects (intuitively interpreted as individual examples of the physical system that
is considered), microscopic properties (the h.v. of the model) and microscopic

states are introduced. But, then, this microscopic part is related to the
macroscopic (observational) part in an innovatory way, which justifies themacroscopic (observational) part in an innovatory way, which justifies the
introduction at a macroscopic level of a series of assumptions that produce a
new theory, different from QM.
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As a final result, the macroscopic part of the ESR model, though justified by the features of
the microscopic part, can be presented as a self-consistent theoretical proposal without
mentioning hv and the metatheoretical principles MCP and MGP (indeed the former does
not hold and the latter holds because of the basic assumptions of the model). Its main
features can be resumed as follows.



INTRODUCTION V

(i) It brings into every measurement a no-registration outcome which is interpreted as providing
physical information, as well as any other possible outcome, hence it substitutes the observables of
QM with generalized observables with enlarged sets of possible values.

(ii) It embodies the basic mathematical formalism of standard Hilbert space QM into a general
noncontextual framework (which avoids the objectification problem and some quantum paradoxes).

(iii) It reinterprets quantum probabilities as conditional on detection instead of absolute.
(iv) It provides some predictions that are formally identical to those of QM but have a different

physical interpretation and further predictions that differ also formally from those of QM (hence the
ESR model can be empirically checked).

By formulating the foregoing theoretical proposal in mathematical terms, we have
obtained the following results.

ESR model can be empirically checked).

• Each generalized observable is represented by a pair, consisting of the standard quantum
representation and a (commutative) family of positive operator valued (POV) measures
parametrized by the set of all pure states of the physical system that is considered.

• A generalized projection postulate (GPP) rules the transformations of pure states induced
by nondestructive idealized measurements.
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INTRODUCTION VI

• The Bell-Clauser-Horne-Shimony-Holt (BCHSH) inequality, a modified BCHSH inequality and
quantum predictions hold together in the ESR model because they refer to different parts
of the picture of the physical world supplied by the model.

• Each proper mixture is represented by a family of pairs, each pair consisting of a density
operator and a convex combination of detection probabilities, parametrized by the set
of all macroscopic properties characterizing the physical system that is considered.

• Each improper mixture is represented by a single density operator, as in QM.
• The different representations of proper and improper mixtures avoid some deep

interpretative problems that arise in QM.
• The different representations of proper and improper mixtures avoid some deep

interpretative problems that arise in QM.
• A generalized Lüders postulate (GLP) that generalizes GPP rules the general

transformations of proper mixtures induced by nondestructive idealized measurements.

• GPP can be justified by describing a measurement as a dynamical process in which a
nonlinear evolution occurs of the composite system made up of the (microscopic)
measured object plus the (macroscopic) measuring apparatus.
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• An experiment with proper mixtures can be envisaged in which the predictions of the ESR model
are different from the predictions of QM, thus discriminating empirically between the two theories.



THE ESR MODEL

According to the ESR model, a physical system Ω is operationally defined by a pair (Π, R), with Π
a set of preparing devices and R a set of measuring apparatuses. Every preparing device, when

activated, prepares an individual example of Ω (which can be identified with the preparation act
itself if one wants to avoid any ontological commitment). Every measuring device, if activated
after a preparing device, yields an outcome, that we assume to be a real number.

Physical objects are operationally interpreted as individual examples of Ω, while
microscopic properties are purely theoretical entities (the h.v. of the model). Every physical
object x ∈U is associated with a set of microscopic properties (the microscopic properties
possessed by x) which is called the microscopic state of x and also is a theoretical entity.

In the theoretical description a physical system Ω is characterized by a set
U of physical objects, a set E of microscopic properties, a set S of
macroscopic states and a set O0 of macroscopic generalized observables.
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Each macroscopic state S∈S is operationally defined as a class of
probabilistically equivalent preparing devices. Every device π∈S, when
constructed and activated, prepares an individual example of Ω, hence
a physical object x, and one briefly says that “x is (prepared) in the
state S”.

MACROSCOPIC OBSERVATIONAL ENTITIES

Every generalized observable A0∈O0 is operationally defined as a class ofEvery generalized observable A0∈O0 is operationally defined as a class of
probabilistically equivalent measuring apparatuses, and it is obtained by
considering an observable A of QM with set of possible values Ξ on the real line
ℜ and adding a further outcome a0∈ ℜ\ Ξ (no-registration outcome of A0), so
that the set of all possible values of A0 is Ξ0= {a0} ∪ Ξ.

Remark. One assumes here, for the sake of simplicity, that ℜ\ Ξ is non-void.
This assumption is not restrictive. Indeed, if Ξ=ℜ, one can choose a bijective
Borel function f: ℜ→ Ξ′⊂ ℜ (e.g., Ξ′= ℜ+) and replace A by f(A).
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A MEASUREMENT SCHEME I

Let B(ℜ) be the σ-algebra of all Borel sets on the real line ℜ.

The set F0 of all (macroscopic) properties of Ω is defined by

F0 = { (A0, X), A0∈O0, X∈B(ℜ)},

and the subset F ⊂F0 of all properties associated with observables of QM
is defined byis defined by

F = { (A0, X), A0∈O0, X∈B(ℜ), a0 ∉ X}.

A measurement of a property F=(A0,X) on a physical object x in the state S is
described as a registration performed by means of a dichotomic registering

device whose outcomes are denoted by yes and no. The measurement yields
the outcome yes/no (equivalently, x displays/does not display F) if and only if
the value of A0 belongs/does not belong to X.
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A MEASUREMENT SCHEME II

The connection between the microscopic and the macroscopic part of the
ESR model is established by introducing the following assumptions.

(i) A bijective mapping ϕ: E→ F ⊂ F0 exists.

(ii) If a physical object x is in the microscopic state Si and an idealized

measurement of a macroscopic property F=ϕ(f) is performed on x, then S
i

determines a probability pSi
d(F) that x be detected, and x displays F if it is

∈ ∉
determines a probability pS (F) that x be detected, and x displays F if it is
detected and f∈Si, does not display F if it is not detected or f∉Si.

The ESR model is deterministic if pSi
d(F)∈{0,1}, probabilistic otherwise. In the

former case it is necessarily noncontextual because the outcome of the
measurement of a macroscopic property on a physical objects x depends only
on the microscopic properties possessed by x and not on the measurement
context. In the latter case one can recover noncontextuality by adding suitable
assumptions on microscopic states and probabilities of macroscopic properties.
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THE FUNDAMENTAL EQUATION I

The symbol p d(F) denotes the

)()()( FpFpFp S
d
S

t
S =

By using the connection between the microscopic and the macroscopic part of the ESR model
one can show that, whenever the property F =(A0,X)∈F (hence a0∉X) is measured on a physical
object x in the macroscopic state S, the overall probability pS

t(F) that x display F is given by

(1)

The symbol pS
d(F) denotes the

probability that x be detected if it is in
the state S (detection probability), and
it is not fixed for a given observable A0

but it may depend on the property F,
hence on the Borel set X.

The symbol pS(F) is interpreted as the
conditional probability that a physical
object x in the state S display the
property F when it is detected.

Since the ESR model is noncontextual, the above connection also implies that an idealized

measurement of F is such that pS
d(F) depends only on the features of the physical objects in the

state S, hence it does not occur because of flaws or lack of efficiency of the apparatus measuring F.
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Let us consider now a property F=(A0, X)∈F0\F, hence a0∈X. Putting , we
introduce the reasonable physical assumption that, for every state S, the overall probability
pS

t(F) that x display F is given by

which provides the overall probability pS
t(F) that a physical object x in the state S display F

in terms of the overall probability that x display Fc when Fc is measured in place of F.

)()(1)(1)( c
S

cd
S

ct
S

t
S FpFpFpFp −=−= (2)

)\,( 0 XAF c ℜ=

THE FUNDAMENTAL EQUATION II

Eqs. (1) and (2) imply that three basic probabilities occur in the ESR model. We have as yet no
theory which allows us to predict the value of pS

d(F). But we can consider pS
d(F) as an unknown

parameter to be determined empirically, and introduce theoretical assumptions that connect the
ESR model with standard QM, enabling us to provide mathematical representations of the
physical entities introduced in the ESR model together with explicit expressions of pS

t(F) and pS(F).
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Because of this assumption we will mainly deal with properties in F in the following.



THE MAIN ASSUMPTION

AX. If S is a pure state and F∈F the probability pS(F) can be evaluated by using

the same rules that yield the probability of F in the state S according to QM.

Let us begin with pS(F). The following statement then expresses
the main assumption of the ESR model.

Assumption AX allows one to recover the formalism of QM in the framework of the ESR
model, but modifies the standard interpretation of quantum probabilities. Indeed, according
to QM, whenever an ideal measurement of a property F is performed, all physical objects
that are prepared in a state S are detected, hence the quantum rules for calculating
probabilities are intuitively interpreted as yielding the probability that a physical object x
display the property F whenever it is selected in the set of all objects in the state S (absolute
probabilities). According to assumption AX, instead, if S is pure, the same rules yield the
probability that a physical object x display the property F whenever it is selected in the
subset of all objects in the state S that are detected (conditional probabilities).
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THE CONDITIONAL PROBABILITY IN THE PURE CASE

Assumption AX implies that, as far as pS(F) is concerned:

(i) the pure state S of the physical system Ω can be represented by a vector |ψ〉 in the set V of all

Because of the above reinterpretation of quantum probabilities the predictions of the
ESR model are different from those of QM. But the detection probabilities can hardly be
distinguished from the efficiencies of actual measuring devices, which explains why QM
ignores them. Nevertheless, we will show in the following that in some cases there are
substantial differences between the two theories that can be experimentally checked.

(i) the pure state S of the physical system Ω can be represented by a vector |ψ〉 in the set V of all
unit vectors of the (separable) complex Hilbert space H associated with Ω, or by the one-

dimensional projection operator ρψ=|ψ〉〈ψ|, as in standard QM;

(ii) if pure states only are considered, a generalized observable A0 can be represented by the self-
adjoint operator Â which represents the observable A of QM from which A0 is obtained;

(iii) every property F=(A0,X)∈F can be represented by the projection operator PÂ(X) where PÂ is
the spectral projection valued (PV) measure associated with Â;

(iv) the probability pS(F) can be evaluated by using the standard quantum rule
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Let us consider now the overall probability pS
t((A0,X))=pS

t(F), with F∈F and S a pure state
represented in QM by the unit vector |ψ〉, or by the density operator ρψ= |ψ〉〈ψ|. Then we get

THE OVERALL PROBABILITY IN THE PURE CASE

)](T[)(T(F)pX)),((Ap ÂÂt
0

t XTrXSS ψψψ ρψψ ===

The operator Tψ
Â (X) is defined by

(3)

)(),ˆ()(T 0

ˆˆ
XadPApX AdA ∉= ∫ λψψ λ (4)
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where PÂ is the spectral PV measure associated with Â and pψ
d(Â,λ) is such that, for every |ψ〉∈V,

<ψ|pψ
d(Â,λ)dPλ

Â/dλ|ψ> is a measurable function on ℜ. Therefore, as far as pS
t(F) is concerned, the

pure state S can still be represented by|ψ〉 or ρψ .

)(),ˆ()(T 0 XadPApX
X

∉= ∫ λψψ λ (4)

Eqs. (3) and (4) show that, as far as pS
t(F) is concerned, the macroscopic property F=(A0,X)∈F is

represented by the family {Tψ
Â (X)} |ψ〉∈V of bounded positive operators (effects). This representation,

together with Eqs. (3) and (4), can be easily extended to a macroscopic property F=(A0, X)∈F0\F by
using Eq. (2) and setting

)(),ˆ()(T 0\

ˆˆ
XadPApIX

X

AdA ∈−= ∫ℜ λψψ λ (5)



By using the above representation one can show that, as far as pS
t(F) is concerned, the

generalized observable A0∈O0 is represented by the family of commutative positive operator

valued (POV) measures

where B(H) is the set of all bounded operators on H.

REPRESENTATION OF GENERALIZED 
OBSERVABLES AND PROPERTIES 

T Â={Tψ
Â: X ∈ B(ℜ)  → Tψ

Â (X) ∈ B(H) }|ψ〉∈V (6)

Summing up, we conclude that complete mathematical representations of F=(A0, X)∈F and
A0 are provided in the ESR model by the pairs (PÂ (X) , {Tψ

Â (X)} |ψ〉∈V ) and (Â, T Â), respectively.
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Finally, one gets from assumption AX, Eq. (1) and
Eq. (3) that, for every|ψ〉∈V, and F =(A0,X)∈F , )](P[

)](T[
(F)p

Â

Â
d

XTr
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S

ψ

ψψ

ρ
ρ

= (7)

which yields a condition that must be fulfilled by pS
d(F).
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Let A0 be a discrete generalized observable with set of possible values Ξ0={a0}∪{a1, a2, …}
and let us put and . Then, Eqs. (4) and (5) yield),ˆ(:)ˆ( n

dd
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Let us consider the special case X={a }, n ∈ℵ , and put F =(A ,{a }). We get from Eqs. (6) and (8)

(9)

Let us consider the special case X={an}, n ∈ℵ0, and put Fn=(A0,{an}). We get from Eqs. (6) and (8)
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THE GENERALIZED PROJECTION POSTULATE

GPP. Let S be a pure state represented by the unit vector |ψ〉, or by the density operator
ρψ=|ψ〉〈ψ|, and let a nondestructive idealized measurement of a property F=(A0,X)∈F0 be
performed on a physical object x in the state S.

If one considers a nondestructive idealized measurement of a discrete generalized observable
A0 on a physical object x in a pure state S, consistency with assumption AX suggests that, if a
value an, with n≠0, of A0 is obtained, then S is modified according to standard QM rules. This
requirement, together with our representation of generalized observables, supports the
introduction of the following generalized projection postulate (GPP).

Let the measurement yield the yes outcome. Then, the state SF of x after the measurement is
a pure state represented by the unit vector

or by the density operator

Let the measurement yield the no outcome. Then, the state S'F of x after the measurement is a
pure state represented by the unit vector

or by the density operator

](X)T)(T[

(X)T)(T
†ÂÂ

†ÂÂ
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†ÂÂ

Â
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SOME REMARKS ON GPP

GPP replaces the projection postulate for pure states introducing two basic changes.

(i) The positive operator Tψ
Â(X) that depends on |ψ〉 replaces the projection operator

that appears in the projection postulate.

(ii) The terms in the denominators in Eqs. (11) and (12) do not coincide with the
probabilities of the yes and no outcomes, respectively.

Moreover, if a measurement of the property F =(A ,{a }) is performed on a physical objectMoreover, if a measurement of the property Fn=(A0,{an}) is performed on a physical object
x in the state S represented by the unit vector |ψ〉 and the yes outcome is obtained, then
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Projection postulate in the
standard form, as required.
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Whenever the discrete generalized observable A0 instead of the property
F=(A0,X) is measured on the physical object x in the pure state S, one obtains
one of the outcomes a0, a1, a2, ... If the measurement is idealized, the overall
probability of the outcome an is given by Eq. (10). Moreover, as a natural
extension of our picture of the measurement process, we assume that, if the
measurement is nondestructive and the outcome a is obtained, the final state

EXPECTATION VALUES

measurement is nondestructive and the outcome an is obtained, the final state
of the object is given by Eq. (12). It follows in particular that the expectation

value of A0 in the pure state S represented by the unit vector |ψ〉 is given by
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SEQUENTIAL MEASUREMENTS

Let B be a discrete observable of QM represented by the self-adjoint operator with
set of possible outcomes {b1, b2, …}, let B0 be the generalized observable obtained
from B, with set of possible outcomes {b0} ∪ {b1, b2, …}, and let us assume that
idealized nondestructive measurements of A0 and B0 are performed. By using GPP
we can calculate the probability pS

t(an, bp) (with n, p ∈ℵ0) of obtaining the pair of
outcomes (an, bp) when firstly measuring A0 e then B0 on a physical object x in the
state S. We get

B̂

state S. We get

nnFn Fp
B

Fn
A

pn
t
S bTaTbap ψψψψ ψψ })({})({),(

ˆˆ= (14)

(15)

Whenever n ≠0≠p, Eq. (14) yields
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Let Ω be a composite system made up of the subsystems Ω1 and Ω2, associated in QM with the
Hilbert spaces H1 and H2, respectively, so that Ω is associated with the Hilbert space H=H1⊗H2.

MEASUREMENTS ON PARTS OF A COMPOSITE SYSTEM I

Let A(1) (B(2)) be a discrete observable of Ω1 (Ω2), with set of possible outcomes Ξ1={a1, a2, …}
(Ξ2={b1, b2, …}), represented by the self-adjoint operator Â(1) ( ) on H1 (H2) in QM. When

considered as an observable of Ω, A(1) (B(2)) is represented in QM by the self-adjoint operator
Â(1)⊗I(2) ( ), where I(2) (I(1)) is the identity operator onH2 (H1).

)2(B̂

)2(ˆ)1( BI ⊗

Let A0(1) (B0(2)) be a generalized observable obtained from A(1) (B(2)) by adding the no-
registration outcome a0 (b0) to Ξ1 (Ξ2). Let S be a pure state of Ω such that Ω1 and Ω2 are spatially
separated. Whenever simultaneous measurements of A0(1) and B0(2) are performed on a physical
object x (individual example of Ω) in the state S, noncontextuality implies that the transformation
of S induced by a measurement of A0(1) must not affect the detection probability associated with
the measurement of B0(2). If S is represented by the unit vector |Ψ〉, one gets

))2(ˆ())2(ˆ( BpBp d
p

d
p

nF ΨΨ = (16)
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We can now define the expectation value of the product of the
generalized observables A0(1) and B0(2) in the state S, as follows,

(17)Ψ⊗Ψ= ΨΨ
)2(ˆ)1(ˆ

))2(ˆ())1(ˆ(),( B
p

A
n

d
p

d
npn

t
S PPBpApbap

It follows from Eq. (15) and (16) that 

MEASUREMENTS ON PARTS OF A COMPOSITE SYSTEM II

By using Eq. (17) and considering only generalized observables such that
a0=b0 =0 (hence, for every n,p ∈ℵ, an≠0≠bp), which is not restrictive, we get

Ψ⊗Ψ= Ψ
ℵ∈

Ψ∑ )2(ˆ)1(ˆ

,
00 ))2(ˆ())1(ˆ())2(),1(( B

p
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d
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d
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(19)
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THE LOCAL REALISM ISSUE

The term local realism has been traditionally used to denote the join of the
assumptions of “realism”,

R: the values of all observables of a physical system in a given state are predetermined
for any measurement context,

and “locality”,

LOC: if measurements are made at places remote from one another on parts of aLOC: if measurements are made at places remote from one another on parts of a
physical system which no longer interact, the specific features of one of the
measurements do not influence the results obtained with the others.

The standard procedures leading to the Bell-Clauser-Horne-Shimony-Holt
(BCHSH) inequality can be resumed as follows.

Ω: composite system made up of two far away subsystems Ω1 and Ω2.

:  dichotomic observable of Ω1 (Ω2) depending on the parameter
and taking either value -1 or 1.

))(()( bBaA
rr

)(ba
rr
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∫Λ= ),(),()(),( bBaAdbaE
rrrr λλλλρ (20)

THE BCHSH INEQUALITY

The expectation value of the product of the observables and in the state S is)(aA
r

)(bB
r

λ: deterministic hidden variable whose value ranges over the domain Λ.

ρ(λ): probability density on Λ.

2)','(),'()',(),( ≤++− baEbaEbaEbaE
rrrrrrrr

BCHSH inequality

One gets, by assuming R and LOC,

(21)

ρ(λ): probability density on Λ.

: values of the dichotomic observables . )(),( bBaA
rr

1),(),,( ±=bBaA
rr λλ
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THE MODIFIED BCHSH INEQUALITY I

The proof of Eq. (21) requires the assumption, usually left implicit, that ideal
measurements are performed in which all physical objects that are prepared
are detected. This condition does not hold in the ESR model, where the
dichotomic observables must be substituted by the
trichotomic observables , respectively, in each of
which a no-registration outcome is adjoined to the outcomes -1 and 1. Hence,
the reasonings leading to the BCHSH inequality must be suitably modified if
the perspective introduced by the ESR model is adopted.

)'(),'(),(),( 0000 bBaAbBaA
rrrr

)'(),'(),(),( bBaAbBaA
rrrr

2))'(),'(())(),'(())'(),(())(),(( 00000000 ≤++− bBaAEbBaAEbBaAEbBaAE
rrrrrrrr

the perspective introduced by the ESR model is adopted.

By using the microscopic part of the ESR model and restricting to generalized
observables whose no-registration outcomes are 0, one can show that the
following modified BCHSH inequality holds.

(22)
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To grasp the physical meaning of the modified BCHSH inequality, let us restrict to a set OR of
generalized observables such that, for every A0∈OR, the detection probability in a given state
depends on A0 but not on its specific value. Hence we can drop the dependence on n and p of
the detection probabilities in Eq. (19). Since the generalized observables that we are
considering can take only values -1, 0, 1, we get from Eq. (19)

The modified BCHSH inequality replaces the BCHSH inequality within the ESR model.

THE MODIFIED BCHSH INEQUALITY II

ΨΨΨ−−−

−ΨΨ

=Ψ⊗Ψ+Ψ⊗Ψ+

+Ψ⊗Ψ−Ψ⊗Ψ=

)(ˆ)(ˆ))(ˆ())(ˆ(]
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)(ˆ
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1
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100
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rrrr

rrrr

rrrr

considering can take only values -1, 0, 1, we get from Eq. (19)

(23)
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Quantum expectation value of the product of and , or
conditional expectation value of the product of and , in
the state S represented by the unit vector |Ψ〉.

)(aA
r )(bB

r

)(0 aA
r

)(0 bB
r
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Similar equations hold if one considers the other expectation
values that appear in Eq. (22). We thus obtain from Eq. (22)

(24)

THE MODIFIED BCHSH INEQUALITY III

Eq. (24) contains four detection probabilities and four conditional expectation values. The
latter can be calculated by using the rules of QM (assumption AX), and formally coincide with
expectation values of QM. If one puts them into Eq. (24) the inequality must be interpreted as
a consistency condition that must be fulfilled by the detection probabilities in the ESR model.

We have as yet no theory allowing us to calculate the detection probabilities.
Nevertheless, should one be able to perform measurements that are close to
ideality, the detection probabilities could be determined experimentally and
then inserted into the modified BCHSH inequality.
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Two possibilities occur.

• There exist states and observables such that the conditional expectation values
violate the modified BCHSH inequality. In this case, the ESR model and/or the
additional assumptions introduced to obtain Eq. (24) are refuted.

• For every choice of states and observables the conditional expectation values fit
in with the modified BCHSH inequality. In this case, the ESR model is confirmed,
hence no conflict emerges between R and LOC, which hold in the model, and

IMPLICATIONS OF THE MODIFIED BCHSH INEQUALITY

hence no conflict emerges between R and LOC, which hold in the model, and
the reinterpreted quantum probabilities, which are embodied in it.

Determining a detection probability: experimental difficulties.

• Counting the number of physical objects that are actually prepared.

• Distinguishing the detection probability from the efficiency of the experimental apparatus.

The above results show that the ESR model is, at least in principle, falsifiable.
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The ESR model can be further elaborated by introducing, in particular, microscopic
observables and their expectation values. One can then show that the BCHSH inequality holds
at a microscopic level (which is purely theoretical and cannot be experimentally checked).

A “CONCILIATORY” RESULT

On the other side, we have just proven that the modified BCHSH inequality
holds at a macroscopic level whenever all physical objects that are actually
produced are considered (which can be experimentally checked).produced are considered (which can be experimentally checked).

Finally, it follows from assumption AX that the quantum predictions deduced by using
standard QM rules hold at a macroscopic level whenever only detected physical
objects are considered (which can be experimentally checked).

It follows that the BCHSH inequality, the modified BCHSH
inequality and the quantum inequalities do not conflict, but rather
pertain to different parts of the picture provided by the ESR model.
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1η
Let Ω be a composite physical system made up of two far apart spin-1/2 quantum
particles 1 and 2, in the singlet spin state S represented by the unit vector

BOUNDS ON DETECTION PROBABILITIES: A SPECIAL CASE I

: observable “spin of particle 1 along ”, represented by

: observable “spin of particle 2 along ”, represented by

)(aA
r

))'(( aA
r

))1(')1(()1()1( 'aa aa σσσσ =⋅=⋅ rrrr

)(bB
r

))'(( bB
r

in QM.

)'(bb
rr

rrrr
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Similar equations hold for the remaining pairs.
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a
d

rrrr ⋅−= σσ ηη

By applying standard quantum rules for probabilities one gets
from Eq. (23), by considering the pair ,))(),(( 00 bBaA

rr

(25)

: observable “spin of particle 2 along ”, represented by)(bB ))'(( bB )'(bb
))2(')2(()2()2( 'bb bb σσσσ =⋅=⋅

rrrr
in QM.
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Since eη does not depend on Eq. (26) provides the upper bound,',,', bbaa
rrrr

The rotational invariance of the vector |η> and the choice of the observables suggest that all
detection probabilities have the same value in the singlet spin state, say eη. Hence, Eq. (24) yields

(26)

BOUNDS ON DETECTION PROBABILITIES: A SPECIAL CASE II

841.0
2

1
4

≈≤ηe

Eq. (27) implies that no spin measurement on particle 1 or 2 can have a detection
efficiency greater than 0.841, hence it shows that, notwithstanding the difficulties pointed
out above, there are special cases in which the predictions of the ESR model differ in a
substantial way from those of QM. Should Eq. (27) be contradicted by experimental data,
the ESR model, or the “reasonable” assumptions that we have introduced, or both, would
be falsified. If not, one can consider this result as a clue that the ESR model is correct.

,',,', bbaa

(27)
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THE MODIFIED BELL INEQUALITY AND 
ITS PHYSICAL PREDICTIONS I

We have recently proved that the original Bell inequality can be dealt with in a similar way.
Indeed, let us consider the deterministic ESR model, replace the directions with
the directions and assume that a perfect correlation law holds for detected objects in
the ESR model, that is, whenever an idealized measurement of on particle 1 yields
outcome +1 (-1), then a simultaneous idealized measurement of the same generalized
observable on particle 2 yields outcome -1 (+1), and viceversa, if both particles are detected.

',,', bbaa
rrrr

cba
rrr

,,
)(0 aA

r

Then, by using the same symbols introduced in the case of the BCHSH inequality,
one gets the following modified Bell inequality:

(28)
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observable on particle 2 yields outcome -1 (+1), and viceversa, if both particles are detected.



8165.0
3
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We have thus obtained another prediction which can be in principle

Let us now consider again the singlet spin state represented by the unit vector |η> and assume
again that all detection probabilities have the same value in this state, say eη. Then, we get

(29)

THE MODIFIED BELL INEQUALITY AND ITS 
PHYSICAL PREDICTIONS II

Eq. (29) provides a limit which is similar to the limits obtained in other h.v. theories for QM,
but its interpretation is quite different. In fact, most standard h.v. theories maintain that local
realism contradicts QM, and establish a lower limit for the efficiency of any real measurement
intended to decide whether local realism or QM is correct. Should the efficiency be smaller
than this limit, the measurement could not be suitable for distinguishing the two alternatives.
On the contrary local realism and reinterpreted QM coexist in the ESR model, and eη

constitutes an upper limit for the efficiency of any (even idealized) measurement.

We have thus obtained another prediction which can be in principle
be confirmed or falsified by experimental data.
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A typical preparation procedure of a physical object x in a state M that is a mixture of the pure
states S1, S2, …, represented by the density operators …, with probabilities p1, p2, …,
respectively, can be described as follows.

,,
21 ψψ ρρ

OPERATIONAL DEFINITIONS OF PROPER MIXTURES

Choose a preparing device πj for every pure state Sj , use
each πj to prepare an ensemble ESj

of nj physical objects

in the pure state S and choose n such that n =np , with
ES1

ES2

π1
π2

j Sj j

in the pure state Sj and choose nj such that nj=npj, with
n=Σjnj. Then mingle the ensembles ES1

,ES2
, … to prepare

an ensemble EM of n physical objects, remove any

memory of the way in which the ensembles ES1
,ES2

, …
have been mingled and select a physical object x in EM .

…

…

ES1
ES2

ESj

πj

…

The class of preparation procedures obtained proceeding as above and selecting the
preparing devices in the states S1, S2, …, in all possible ways will be denoted by σM and
called operational definition of M in the following.
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The operational definition of the mixture M implies that the probabilities p1, p2, … are
interpreted as epistemic, that is, formalizing the loss of memory about the pure state
in which each physical object has been actually prepared (ignorance interpretation).

THE STANDARD INTERPRETATION 
OF PROPER MIXTURES IN QM I

In QM states are defined as classes of probabilistically equivalent preparing devices, and
every equivalence class is represented by a density operator. But the density operator
representing a given mixture can be decomposed in different ways as a convex
combination of density operators representing pure states (nonunique decomposition of

quantum mixtures), which is a source of interpretative problems. Indeed, the operational
definition of M implies that M can be represented in QM by the density operator
ρM=Σjpjρψj

. But one-dimensional projection operators ρχ1
, ρχ2

, … generally exist, none of
which coincides with one of the projection operators ρψ1

, ρψ2
, …, which are such that ρM=Σl

ql ρχl
, with 0≤ql≤1 and Σl ql=1. If this expression of ρM is adopted, the coefficients ql cannot

be interpreted as probabilities bearing an ignorance interpretation.
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THE STANDARD INTERPRETATION 
OF PROPER MIXTURES IN QM II

Let now M′ be a mixture of the pure states T1, T2, … represented by the density
operators ρχ1

, ρχ2
, …, with probabilities q1, q2, …, respectively. M′ has an

operational definition σM′ which is different from σM. According to QM, M and
M′ must be identified because they are represented by the same density
operator. But the probabilities q1, q2, … now admit an ignorance interpretation,
which contradicts the conclusion obtained when M is considered.

Many scholars therefore maintain that an ignorance interpretation of the probabilities
that appear in the various possible expressions of ρM must be avoided, rejecting the
interpretation of the probabilities pj and ql following from the operational definitions
σM and σM′ . Other authors instead maintain that the standard representation of proper
mixtures does not account for some physically relevant differences, which generates
the ambiguities in the interpretation of the formalism of QM.

which contradicts the conclusion obtained when M is considered.
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We have considered so far physical objects that are prepared by activating preparing
devices that produce examples of a given physical system Ω. But examples of Ω can
also be obtained by preparing examples of a composite physical system Γ such that Ω
is a subsystem of Γ. A preparation procedure of this kind can be described as follows.

OPERATIONAL DEFINITIONS OF 
IMPROPER MIXTURES I

Consider a composite physical system Γ made up of two subsystems Ω and ∆. Choose a
preparing device π∈S, with S a pure state of Γ, prepare a set ES of individual examples of Γ,
select an element of ES and consider the part x of it that constitutes an individual example of Ω.

40ESR model: a noncontextual 
formalism for QM

One can attribute a state N to x which is represented in QM by a density operator
ρN obtained by tracing over the one-dimensional projection operator representing
S. If ρN also is a one-dimensional projection operator, N is considered as a pure state
in a standard sense. Otherwise N is said to be an improper mixture.



In the latter case the preparation procedure does not privilege any convex
decomposition of ρN into one-dimensional projection operators representing pure states
of Ω, hence N can be considered as a mixture of pure states in (infinitely) many different
ways, with coefficients that can be interpreted as probabilities but never admit an
ignorance interpretation (hence probabilities are not epistemic in this case).

OPERATIONAL DEFINITIONS OF 
IMPROPER MIXTURES II

The distinction between proper and improper mixtures is often overlooked by physicists
because the two kinds of mixtures have the same mathematical representations in QM.
But the preparation procedures imply that proper and improper mixtures are empirically
distinguishable, as stressed by some authors. Indeed, if one prepares an ensemble EN of
physical objects in the improper mixture N, every subensemble of EN has the same
statistical properties possessed by EN (that is, it is a fair sample of EN), which does not
occur if one prepares an ensemble EM of physical objects in the proper mixture M.
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Let M be a proper mixture of the pure states S1, S2, …, represented by the
density operators with probabilities p1, p2, …, respectively. The
probability pM

t((A0, X)) that a measurement of the generalized observable A0

on a physical object x in the state M yield an outcome in the Borel set
X∈B(ℜ), with a0∉X, or, equivalently, the probability pM

t(F) that x in the state
M display the macroscopic property F=(A0,X)∈F, is given by

,...,,
21 ψψ ρρ

GENERALIZED OBSERVABLES AND PROPER MIXTURES

)()()()(p)),((p t
M0

t
M FpFppFppFXA

jjj S
d

S
j j

j
t

Sj∑ ∑===

Overall probability that x display F
whenever it is in the pure state Sj

Conditional probability that x
display F whenever it is in the
pure state Sj and it is detected

Probability that x be detected whenever
it is in the pure state Sj and F is measured

(30)
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CONDITIONAL PROBABILITY AND PROPER MIXTURES I

Hence we get, using Eq. (1)

This term can be interpreted, because of the Bayes
theorem, as the conditional probability that x be in
the state Sj whenever F is measured and x is detected.

∑=
j

Sd
M

d
S

j Fp
Fp

Fp
pF

j

j )(
)(

)(
)(pM (31)

Eq. (31) can be rewritten by using the mathematical representations of pure
states and generalized observables. Indeed, assumption AX yields

Spectral PV measure associated with the self-adjoint operator Â
representing the observable A of QM from which A0 is obtained.

)]([)(
ˆ

XPTrFp A
S jj ψρ= (32)
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Let us now introduce the obvious assumption
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with

Hence we obtain from Eq. (31) )]()([)(p
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CONDITIONAL PROBABILITY AND PROPER MIXTURES II

Let us now introduce the obvious assumption
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Then we get from Eqs. (7), (32) and (34)

(35) 
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Eqs. (33) and (36) show that the conditional probability pS(F) does not coincide, in
general, with the probability obtained by applying standard QM rules, i.e., calculating
Tr[ρMPÂ(X)], with . This can be explained by observing that, if a macroscopic
property F is measured on an ensemble of physical objects prepared in the state M, then
the ensemble of detected objects depends on F and generally is not a fair sample of the
set of all prepared objects. Hence, as far as pM(F) is concerned, M must be represented
by a density operator that depends on F and coincides with ρM only in special cases.

∑=
j

jM j
p ψρρ

CONDITIONAL PROBABILITY AND PROPER MIXTURES III

Ensemble of all physical objects
that are prepared in the state M

Sj …

…

Ensemble of all physical objects
that actually are in the state Sj

Ensemble of all physical
objects that are detected
whenever F is measured
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OVERALL PROBABILITY AND PROPER MIXTURES

Let us come to the overall probability pM
t(F). By using Eq. (3) we get, for every F=(A0,X) ∈F ,


∑

)]([)(
ˆ

XTTrFp At
S jjj ψψρ= (37) 

Hence we obtain from Eq. (30)

or, equivalently, because of Eqs. (1) and (33),
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Eqs. (33) and (39) show that, for every F∈F, one needs ρM(F) to calculate pM(F) and both
pM

d(F) and ρM(F) to calculate pM
t(F). Hence a complete mathematical representation of

the proper mixture M is provided in the ESR model by the family of pairs
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F∈F

(40)

THE REPRESENTATION OF PROPER MIXTURES

{ } =))(),(( FpF d
MMρ

F∈F

  j F∈F
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The representation in Eq. (40) depends on the operational definition σM of M,
hence a state M′ such that σM′ ≠σM is generally different from M (in the sense
that M and M′ lead to different probabilistic predictions). One can then
assume that physics is such that M′ is necessarily different from M, so that
operational definitions and mathematical representations of proper mixtures
are in one-to-one correspondence. Thus, no physical information is lost, and
the ambiguities that occur in QM disappear.



THE REPRESENTATION OF IMPROPER MIXTURES I

(41)

Let Γ be a composite system made up of the subsystems Ω and Δ associated with the Hilbert
spaces H and G, respectively, so that Γ is associated with the Hilbert space H ⊗G . Let S be a
pure state of Γ represented by the unit vector |Ψ〉, or by the projection operator ρΨ=|Ψ〉〈Ψ|,
and let F = (A0, X) ∈ F be a property of Ω represented by the pair (PÂ(X), {Tψ

Â(X)}|ψ〉∈V ). Then F
corresponds to a property of Γ, and one gets from assumption AX and standard calculationsF
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Let us now put

(43)
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with ρN a density operator
obtained by tracing ρΨ over ∆.
Moreover, one gets
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It follows

hence, substituting in Eq. (42)
and tracing over ∆,

(44)

(45)

THE REPRESENTATION OF IMPROPER MIXTURES II
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Bearing in mind the operational definition of improper mixtures one can now consider the
preparation of an example of Γ as a preparation of an example of Ω in a state N which is an
improper mixture, and put . Eqs. (41) and (45) then show that the)()

~
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~
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improper mixture, and put . Eqs. (41) and (45) then show that the
density operator ρN provides the mathematical representation of N. This representation coincides
with the quantum representation of N and is basically different from the representation of a proper
mixture, which entails that the ESR model neatly distinguishes proper from improper mixtures.
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Eqs. (41) and (45) suggest that improper mixtures could be considered as generalized pure
states in the ESR model, consistently enlarging the mathematical representation of generalized
observables by replacing ψ with ρN in Eq. (3). Moreover, assumption AX can be extended to
improper mixtures, which allows one to recover the quantum formalism for mixtures in the
ESR model and suggests that QM actually deals only with improper mixtures.



TESTABLE PREDICTIONS AND PROPER MIXTURES I

Let the physical system Ω be a spin-1/2 quantum particle and let Σz be the quantum observable
“spin of Ω along the z-axis". Let S+ and S- be the eigenstates corresponding to the eigenvalues +1
and -1 of Σz , represented by the projection operators |+〉〈+| and |-〉〈-|, respectively, and let M
be a proper mixture of S+ and S- with probabilities p+ and p- = 1-p+, respectively.

Then M is represented in the

)()()( FppFppFp d
S

d
S

d
M −+ −+ +=

(46)
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Then M is represented in the
ESR model by the family of pairs
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Let Σn be the quantum observable “spin of Ω along the direction n“, let Sn be the eigenstate
corresponding to the eigenvalue +1 of Σn , represented by the projection operator |+n〉〈+n|, and
let the property Fn=(Σn, {+1}) be measured on an individual example of Ω in the state M.
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Then

(47)

TESTABLE PREDICTIONS AND PROPER MIXTURES II

Conditional probability pM(Fn)

Overall probability pM
t(Fn)

)])pp[()( nnn
Q
M TrFp ++−−+++= −+ (49)

(48)  

The probability pM
Q(Fn) that an example of Ω in the state M yield the yes

outcome when an ideal measurement of Fn is performed on it is given in QM by
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TESTABLE PREDICTIONS AND PROPER MIXTURES III

)()()( n
t
Mn

Q
MnM FpFpFp ≠≠

The predictions of the ESR model do not coincide with the predictions of QM. One can then
check Eq. (51) with different choices of n (one should construct measurements that are very
close to idealized measurements). Should the predictions of QM be violated one would get a
clue in favor of the ESR model, and try to determine experimentally the unknown parameters
pS+

d(Fn) and pS-
d(Fn), then checking Eqs. (47) and (48). Should instead the predictions of QM be

fulfilled, one must remind that pM
Q(Fn) expresses an overall probability. Because of Eq. (50)

the obtained result would be compatible with the ESR model only if pM
t(Fn) = pM

Q(Fn) for all
choices of n, which betrays the spirit of the ESR model and can be seen as a falsification of it.

(51)
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THE GENERALIZED LÜDERS POSTULATE I

GLP. Let M be a proper mixture of the pure states S1, S2, …, represented by the density operator
ρψ1

, ρψ2
, …, with probabilities p1, p2, …, respectively, and let a nondestructive idealized

measurement of a property F=(A0,X)∈F0 be performed on a physical object x in the state M.

Let the measurement yield the yes outcome. Then, the state MF of x after the measurement is
a proper mixture of the pure states S1F , S2F , …, represented by the density operators ρψ1F

, ρψ2F
, …,

respectively, with

GPP can now be extended to proper mixtures by introducing the following generalized Lüders postulate.

respectively, with

and probabilities p1F, p2F,…, respectively, with
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that x be in the state SjF

whenever F is measured
and the yes outcome is
obtained (Bayes’ theorem).
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Hence MF is represented by the family of pairs

Let the measurement yield the no outcome. Then, the state M′F of x after the measurement
is a mixture of the pure states S′1F , S′2F , …, represented by the density operators ρψ′1F

, ρψ′2F
, …,

respectively, with
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THE GENERALIZED LÜDERS POSTULATE II

=))}(),({( HpH d
MM FF

ρ
H∈F

and probabilities p′1F, p′2F,…, respectively, with
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It is now interesting to observe that the standard representation of MF in QM is
provided by the density operator

Hence M′F is represented by the family of pairs

(57)

THE GENERALIZED LÜDERS POSTULATE III
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provided by the density operator

A similar formula with ℜ\X in place of X, holds if one considers the density operator
representing M′F . But we stress that if a further measurement of a property H∈F is
performed, conditional and overall probabilities of H in the state MF (M'F) cannot be
evaluated by using ρMF

(ρM′F). One must calculate instead ρMF
(H) and pMF

d(H) (ρM′F (H)
and pM’F

d(H)) and then apply Eqs. (33) and (39), respectively.
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NONSELECTIVE MEASUREMENTS 
IN THE DISCRETE CASE I

Whenever the discrete generalized observable A0 instead of the property
F=(A0,X) is measured on the physical object x in the pure state S, one obtains one
of the outcomes a0, a1, a2, ... and a natural extension of GPP consists in assuming
that, if the outcome an is obtained and the measurement is idealized and
nondestructive, the final state of the object is given by Eq. (12) and the
probabilities of the properties F , F , F , … by Eq. (9). This assumption will be kept
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probabilities of the properties F0, F1, F2, … by Eq. (9). This assumption will be kept
in the following. Hence, in particular, if the measurement is nonselective, that is,
the actual outcome of the measurement remains unknown, the final state of x is
the mixture whose representation in the ESR model is provided by the family
of density operators

M
~
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Let S , S , …, be the eigenspaces associated with the eigenvalues a , a , …, respectively, of the

(59)

The representation of as an improper mixture is instead provided by the density operatorM
~

NONSELECTIVE MEASUREMENTS 
IN THE DISCRETE CASE II

Let S1, S2, …, be the eigenspaces associated with the eigenvalues a1, a2, …, respectively, of the

self-adjoint operator Â representing the observable A of QM from which A0 is obtained, and
let {|an

µ〉}n,µ be an orthonormal (ON) basis in H, where {|an
µ〉}µ is an ON basis in Sn. Then
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hence
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A DYNAMICAL DESCRIPTION OF 
THE MEASUREMENT PROCESS I

If one limits himself to consider pure states and discrete generalized observables
only, GPP can be partially justified by introducing a reasonable physical assumption
on the evolution of the composite system made up of the (microscopic) measured
object plus the (macroscopic) measuring apparatus. From the point of view of the
quantum measurement theory this justification rests on a measurement scheme
that is exceedingly simple and idealized, but its simplicity will allow us to better
grasp the conceptual novelties introduced by our approach.grasp the conceptual novelties introduced by our approach.

A0 an

|ψ〉 |ψFn
〉

OUTIN

Microscopic world

Macroscopic world

?
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(i) Let us consider the macroscopic apparatus measuring A0 as an individual example of a
macroscopic physical system ΩM associated with the Hilbert space HM.

(ii) Let |0〉, |1〉, |2〉, … be unit vectors of HM representing the macroscopic states of the
apparatus and corresponding to the outcomes a0, a1, a2, …, respectively (hence |0〉
represents the macroscopic state of the apparatus when it is ready to perform a
measurement or when x is not detected).

A DYNAMICAL DESCRIPTION OF 
THE MEASUREMENT PROCESS II

000
00 F

n
nnn

n
nn nacac ψβαψ ψ
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measurement or when x is not detected).

(iii) Suppose that {|0〉, |1〉, |2〉, …} is an ON basis in HM .

(iv) Consider the composite system made up of the physical system Ω and the measuring
apparatus ΩM, in an initial state S0 represented by the unit vector |Ψ0〉= |ψ〉|0〉, and
assume that it undergoes the (generally nonlinear) time evolution

(62)
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A DYNAMICAL DESCRIPTION OF 
THE MEASUREMENT PROCESS III

The final state of the compound system after the interaction is also represented
by the density operator
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JUSTIFYING THE GENERALIZED PROJECTION POSTULATE

Let us now perform the partial trace of ρC with respect to ΩM . We obtain
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By comparing Eq. (64) with Eq. (61) we get

(64)

By comparing Eq. (64) with Eq. (61) we get

CMTr ρρ =~ (65)

GPP is thus completely justified for the measured object on the basis of the assumed
evolution of the composite system made up of the measured object plus the
measuring apparatus. It must be observed that the descriptions provided by Eqs. (61)
and (65) coincide also from an interpretative point of view. Indeed, because of
objectivity of properties, all probabilities of properties of Ωm and ΩM are epistemic.
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