$WW \rightarrow l\nu jj$ status report

Francesco Nuti Chiara Roda Federico Bertolucci

INFN Pisa

05 June 2012

Overview

- Overview of the note
- structure of the analysis
- Control Regions
- Inclusive Selection
- fit and systematics
- Exclusive Selection
- Conclusions

The aim is to prepare a note assessing the first evidence of the semileptonic WW at ATLAS using 5 ${\rm fb}^{-1}$ of data (2011), $\sqrt{s}=7$ TeV. The considered channels are the electron and muon channels.

Overview of the note

ATLAS NOTE

June 3, 2012

Draft version 0.0

Evidence of the di-boson WW+WZ production in $\sqrt{s} = 7$ TeV proton-proton collisions with the ATLAS detector in the semileptonic decay channel

- A. Annovi^e, F. Bertolucci^a, V. Cavaliere^b, B.E. Lindquist^e, M. Neubauer^b, F. Nuti^a, D. Puldon^e,
 C. Roda^a, D. Tsybychev^e, A. Solodkov^d
- going for a CONF note and possibly a pubblication
- goal: to have the note ready by the end of July
- first draft of the note on CDS (link)

Points in the note (I)

18 Contents

19	1	Introduction	
20	2	Data sample and physics objects	
21		2.1 Data sample	1
22		2.2 Trigger	1
23		2.2.1 Electron Trigger	ě
24		2.2.2 Muon Trigger	4
25		2.2.3 Application to the analysis	
26		2.3 Object reconstruction and identification	
27		2.3.1 Electrons	
28		2.3.2 Muons	
29		2.3.3 Jets	
30		2.3.4 Missing Transverse Energy	(
31	3	Standard Model Prediction	
32	4	Event preselection	•
33	5	Control regions with preselection	
34		5.1 W mass sideband regions	
35		5.2 Z + jet control region	20
36		5.3 Top control region	3
37	6	From the pre-selection to the selection to extract the signal	3(
38			31

Points in the note (II)

39	7	The fitting procedure: the template method	5
40		7.0.1 Validation: Significance Calculation	5.
41		7.0.2 Validation: Nuisance parameters validation	5
42		7.0.3 Validation: linearity of the methods	5
43	8	Evaluation of the systematics	5
44		8.1 Uncertainty on the jet energy measurement	5
45		8.1.1 Jets	5
46		8.2 W+jet shape and normalization uncertainties	5
47		8.2.1 Truth Level studies	5
48		8.3 QCD shape and normalization uncertainties	5
49		8.3.1 Varying the standard selection	5
50		8.3.2 QCD multi jet background estimation using ABCD method	5
51		8.4 Normalization and shape uncertainty for top signal	5
52	9	Results on the inclusive selection	6
53	10	Summary	6
54	11	Work to be finished	6
55	A	Exclusive selection - the alternative selection	6

Selections

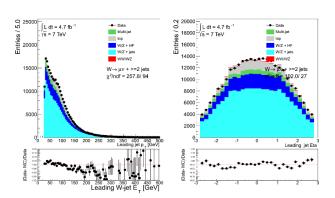
preselection:

- lepton with $p_T > 25$ GeV and central η
- \(\mathbb{E}_T > 25\) GeV, \(M_T(W) > 40\) GeV
- jets with $p_T > 25$ GeV, central η
- quality checks on leptons and jets, second lepton veto, overlap removal
- other cuts to improve signal shape and significance

inclusive selection:

- $\Delta \eta_{ii} < 1.5$
- $\Delta R_{ii} > 0.7$
- $|\Delta \phi_{ii}| < 2.7$
- b-jet veto

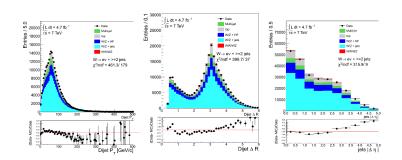
tight selection:


- $p_T(jj) > 80 \text{ GeV}$
- p_T(WW) < 35 GeV
- $\Delta R_{ii} > 0.7$
- b-jet veto

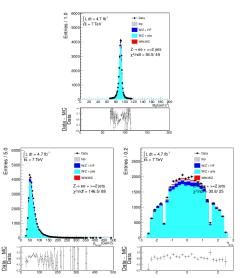
Control Regions:

- sidebands
 - preselection
 - 60 GeV $< M_{jj} < 110$ GeV
- Z + jets
 - two opposite-sign leptons in the preselection (instead of $\not\!\!E_T$ and M_T cuts)
 - 66 GeV $< M_{\rm II} < 116$ GeV
- t \(\overline{t} \)
- preselection
- at least 3 jets, at least 1 btagged and 2 non bjets

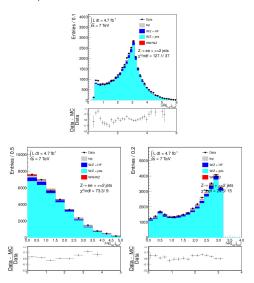
CR: sidebands (I)


Region to check the description: events in the dijet region consistent with the W mass are excluded; no btag veto applied.

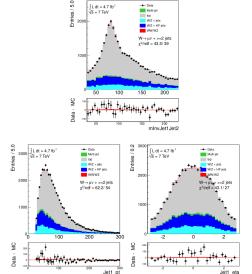
CR: sidebands (II)


Major mis-modelings:

- dijet p_T
- dijet ΔR
- dijet $\Delta \eta$

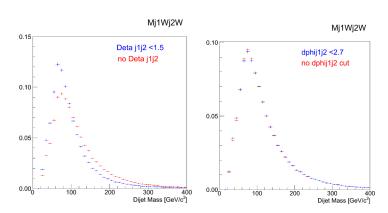

CR: Z + jets (I)

 $Z+{
m jets}$: similar to $W+{
m jets}$, but almost multijet free. The selection follows that of the $Z+{
m jets}$ measurement.


CR: Z + jets (II)

This control region checks whether the mis-modeling is due to problems in the $W+{
m jets}$ samples or not:

CR: $t\bar{t}$


 $t\bar{t}$ is sensible to the jet energy scale: the presence of the W peak in this selection is an indication of how well JES and JER are described in MC.

Inclusive selection

The nominal selection is called *inclusive*; it adds to the preselection the followings:

- $\Delta R_{hh} > 0.7$ to avoid a mismodeling at low ΔR in Alpgen
- $|\eta_{jet}| < 2.0$: W + jets have mismodeling at higher η
- $\Delta \eta_{hh} < 1.5$ and $|\Delta \phi_{hh}| < 2.7$ to improve S/B

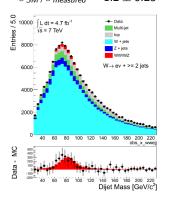
Inclusive selection: numbers

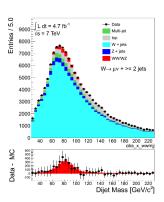
Process	electron	muon
WW/WZ → lνjj	2140±261	2316 ± 276
W + jet	89617 ± 385	94270 ± 404
W/Z + HF	27082 ± 222	28201.6 ± 230
top	12516.2 ± 629	12449 ± 642
multi – jetQCD	12204 ± 110	8921 ± 94
Z + jet	8516.3 ± 201	6072 ± 206
Total SM prediction	152076 ± 846	152230 ± 390
Total Data	152318 ± 390	152417 ± 871
Total Data	152318 ± 390	152417 ± 871

	Preselection	Inclusive selection	
ϵ	38.4%	32%	
S/B	0.9%	3.2%	

The fitting procedure (I)

brief description:

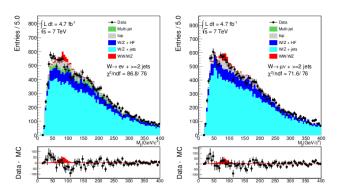

- based on binned maximum-likelihood method
- create histogram templates for signal, W + jets, Z + jets, top, QCD
- simultaneous fit of muon and electron channels
- systematics are constrined by using nuisance parameters
- fitting procedure has been validated: nuisance parameters and linearity
- fit is also used to estimate the expected significance (part of validation)


systematics included:

- main systematics:
 - JES and JER
 - modeling of the $W+\mathrm{jets}$ shape
 - bin-by-bin
- "minor" systematics:
 - multijet
 - normalization
 - uncertainties on top
- treated in the fitting procedure by means of nuisance parameters

The fitting procedure (II)

- test:
 - linearity
 - test shifting the JES up and down
- results:
 - expected significance: 5.4 σ (bin-by-bin not included)
 - $\sigma_{SM}/\sigma_{measured} = 1.2 \pm 0.23$



The errors in the plots are wrong, should be recalculated!

Exclusive Selection

A different selection is presented, the so called exclusive selection.

The idea here is to study a set of different cuts which allow to observe the diboson peak on a smoothly falling background: this is done by modifying the dijet background shape.

- improved S/B
- less sensitivity

Also plots with additional selections for data/MC improvement have been produced.

Work to be finished

■ 11 Work to be finished.

- In this section we just list the items on which we are working and that will be finalized soon. None of
- these points will change the results of the analysis and will only give small corrections.
 - Jet Vertex Fraction: efficiency and modeling
 - Effect of ISR/FSR on signal template
 - Moving the analysis cuts
 - Z-vertex reweighing
 - results with the exclusive selection

other important points:

- assess/check correct procedure for systematics and fit method
- mismodeling: why exclusive selection does not work as aspected?
- production of CR plots for jet $p_T > 25$ GeV
- comparison with other analysis to check results on CR
- waiting for EB

Conclusions

- the main issues in the analysis are done/on-going
- minor effects will be next step
- working for the note has been a very powerful and effective way to converge
- first steps with Shih-Chieh and John (mainly focalized on the fit method)

BACK-UP

Cut table

	Preselection	Inclusive	Tight	tī CR	mjj sideband CR	Z CR
Requirement		selection	selection			
Muon p_T	> 25 GeV	> 25 GeV	> 25 GeV	> 25 GeV	> 25 GeV	> 25 GeV
Muon $ \eta $	< 2.4	< 2.4	< 2.4	< 2.4	< 2.4	< 2.4
Electron p_T	> 25 GeV	> 25 GeV	> 25 GeV	> 25 GeV	> 25 GeV	> 25 GeV
Electron η	< 2.47	< 2.47	< 2.47	< 2.47	< 2.47	< 2.47
exclude crack						
N of leptons	== 1	== 1	== 1	== 1	== 1	≥ 2
2nd lepton veto	yes	yes	yes	yes	yes	_
same flavor						
2^{nd} lepton p_T	20 GeV	20 GeV	20 GeV	20 GeV	20 GeV	20 GeV
2 nd lepton η	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
Opposite charge	-	-	-	-	-	yes
Jet p _T	> 25 GeV	> 25 GeV	> 25 GeV	> 25 GeV	> 25 GeV	> 25 GeV
Jet η	< 2.8	< 2	< 2	< 2.8	< 2.8	< 2.8
N of jets	≥ 2	≥ 2	≥ 2	\geq 3, 2 no b-tag	≥ 2	≥ 2
$\Delta \eta(j_1, j_2)$	-	< 1.5	_	-	-	-
$\Delta R(j_1, j_2)$	-	> 0.7	> 0.8	-	-	-
$\Delta \phi(j_1, j_2)$	-	< 2.7	-	-	-	-
$\Delta \phi(E_{\rm T}^{\rm miss}, j_1)$	> 0.8	> 0.8	-	> 0.8	> 0.8	> 0.8
b-jet veto	-	yes	yes	-	-	-
b -jet p_T						
N of b-jets	-	_	_	≥ 1	-	-
$\Delta R(\ell, j)$	> 0.5	> 0.5	> 0.5	> 0.5	> 0.5	> 0.5
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 25 GeV	> 25 GeV	> 25 GeV	> 25 GeV	> 25 GeV	-
$m_{\rm T}$	> 40 GeV	> 40 GeV	> 40 GeV	> 40 GeV	> 40 GeV	-
$m_{\ell\ell}$	-	_	_	-	-	> 66 GeV
						< 116 GeV
m_{jj}	-	_	_	-	< 60 GeV	_
					> 110 GeV	
$p_T(jj)$	-	-	> 80 GeV	-	-	-
$p_T(WW)$	-	-	< 35 GeV	-	-	-

Nuisance parameters in the fitting procedure

Source of Systematic	Type	uncertainty	Comments
	31	,	
W+jets cross-section	Norm.	40%	1 parameter affecting both channels
Z+jets cross-section	Norm.	40%	1 parameter affecting both channels
top cross-section	Norm.	5%	1 parameter affecting both channels
QCD rate	Norm.	30%	1 parameter affecting both channels
Electron efficiency	Norm.	2%	1 parameter affecting all of the components
			except for QCD in the electron channel
Muon efficiency	Norm.	2%	1 parameter affecting all of the components
			except for QCD in the muon channel
Luminosity	Norm.	3.7%	1 parameter affecting all of the components
			except for QCD in both channels
JES	Shape	N.A.	1 parameter affecting all of the components
			except for QCD in both channels
JER	Shape	N.A.	1 parameter affecting all of the components
			except for QCD in both channels
Pileup	Shape	N.A.	1 parameter affecting all of the components
			except for QCD in both channels
Clusters	Shape	N.A.	1 parameter affecting all of the components
			except for QCD in both channels
Bin-by-Bin	Bin-by-Bin	N.A.	82 parameters, 41 in each channel
Uncertainties			