Instrumentation for μ and K_L indentification at Super Flavor Factories Institute of Nuclear Physics, Polish Academy of Sciences, Krakow

Prototype Data Analysis and Simulation

M.Chrzaszcz C.Cibinetto M.Rotondo J.Wiechczynski

IFR Workshop · Krakow PL

Prototype: FNAL-2012 setup

- Main improvement respect to 2010/2011 setup: muon and pions selected chancing N₂ pression
- Further scintillator before the prototype: Sm
 - Muons: S1 && S2 && Sm && C₁(p_μ) && !C_e
 - Pions: S1 && S2 && Sm && C₁(p_π) && !C_e

Prototype data: "tipical" events

Software

IfrRootCode

- Software for the digitization/reconstruction
- Originally developed to work with the SuperB geometry, updated to analysis the data of the prototype:
 - Both data and MC
- Use the standard Bruno to produce MC events with the prototype geometry (or any other geometry)

Many developments in IfrRootCode

- To have reasonable data/MC agreement, we tune the digitization of the simulated data
 - Adding noise
 - Simulate the different layer efficiencies
 - Merge of tracks
- Use the cleanest and understandable sample (muons at 8GeV) to define the level of noise and the cuts on the digitization

Backgrounds: electronics (and beam related)

- Muons identified with the Cherenkov:
 - S1 && S2 && Sm && C1 && !C2
- Use the FSAMPLE 7,8,9 to evaluate the noise due to the electronics
- Hits for FSAMPLE=0,3,4,5,6 is assumed to be dominated by the beam related bkg

Layer efficiency

- Adjust the cut on the total release energy in a scint-bar:
 - Cut applied using 8GeV-muons and tests on pions at 8 GeV
 - Choose Layer by layer different energy cut

The tuning work very well to reproduce the bulk of the distribution ... summing togheter all the layers: tail still not simulated properly

Track merging: multiple tracks x event

- Added hits from pions in the muon sample to try to reproduce the tails
 - With 10% of contamination we have very good agreement in the total number of hits

Events with multi-tracks have to be considered in these studies: consistent with the FNAL beam composition given by CALICE

Some other Data/MC comparison

IFR Workshop · Krakow PL

M. Rotondo

... an other variable

IFR Workshop · Krakow PL

Muon select from data and MC

- Training multivariable selectors, at 8 GeV
- Use many inputs: #hits/#layers/tracking parameters
 - No surprisingly: data/MC response looks very different

At lower energy even worse

To summarize the status...

- We still are working to understand the data
 - With the data and beam informations we have I am not sure we will come to a fully understand of the muon-identification performances using only the data in time for the TDR
- We know the noise is important and we learn that the multiple tracks / event are important
 - But we assume the added tracks are pions (reasonable), but could be everything: positions, protons!
 - The situation at 8 GeV is reasonable under control, other energy points are less clear!

For the TDR...

- We are confident that the calibration procedure is properly done
 - We assume an average layer efficiency
- Fully rely on the MC in a large range of energy, between 0 and 4 GeV
 - For the time being using the prototype geometry with pions and muons fired closer (2.5m) to the prototype!
 - For the final TDR we'll use the SuperB geometry

Informations we will have in the TDR

IFR Workshop · Krakow PL

Agenda for the Parallel Sections

- Two sessions: Parallel I: Software, Simulation, Data Analysis
 - Thursday: 14:00 15:45
 - Friday: 9:00 10:45
- All the times will be devoted to discussion/work
 - Studies needed for the TDR and future
 - Data analysis: how to further clean the sample?
 - Pattern recognition to associate correct hits to muon tracks?
 - Use the first 2-3 layers as further selection elements
 - Detector performances: with the superB full detector
 - Test that the digitization and clasterization developed for the prototype work also with the superB geometry
 - Background studies:
 - evaluate the impact on the overall performance
 - Klong: preliminary studies are available
 - need to understand the effect of the background and the geometry