

Babar to SuperB IFR Upgrade

07092012 - IFJ Krakow - massimo.benettoni@pd.infn.it

1

SuperB IFR Baseline Flux Return detector geometry

SuperB main specifications:

INFN

- Overall IFR design thickness: 920 mm
 - (vs Babar: 650mm barrel/ 600mm endcaps)
- Number of detectors layers: 8 or 9 (vs Babar: 17 gaps)
- one scintillator layer at inner radius wrt iron (not foreseen in Babar)
- one scintillator layer at outer radius wrt iron (not foreseen in Babar)
- 6 or 7 scintillator layer inside gaps
 vs Babar: 17 detector layers

I.P.

SuperB IFR Baseline Flux Return detector geometry

Babar IFR can be fully reused if: IFR Absorber can be increased, best if to 920 mm Can lodge scintillator boxes of 25 mm of thickness

Reusing the Babar IFR means:

- About 800t of iron available
- Minimal requirement in terms of design
- Requires modifications due to last scintillator layer
- Requires modification due to increase of weight
- Requires filling of gaps with metal plates
- About 95t of brass plates available for gaps filling
- Could requires parts replacing
- Shipping management and costs

SuperB IFR Possible options to upgrade Babar IFR

Upgrade options for Barrel (doors upgrade simpler)

- a) Fill unused gaps with plates 22mm thick (as done in Babar)
- b) Fill gaps with thicker plates
- c) Add steel slabs «outside» (at outer radius wrt Babar iron)
- d) Replace inner wedges of Babar IFR

Common to all options

| **N F N**

To leave a gap for scintillators outside the barrel :

- reduce screws connecting wedges to cradle/arches
- modify outer wedges and cradle/arches accordingly

IFR weight increasing + connections reduction:

- Reduce number & reinforce connections (screws)
- Reinforce cradle and arcs in the screws region

SuperB IFR Gaps filling: plates material

Source (for pure metals): <u>http://pdg.lbl.gov/2010/AtomicNuclearProperties/</u>

Source for quotations: LME. Source for cost: suppliers

SuperB IFR Gaps filling: plates material vs magnetic prop.

100mm

- last one to be filled

to be fille

to be fille

to be fille

to be filled

to be fille

to be filled to be filled lst one to be fille

Possible configurations foreseen for magnetic field simulation

 Babar + «amagnetic» filling (brass or Ssteel = Babar)

INFN

2) Babar + mixed fillingBrass of Babar upgrade in the inner gapsSteel filling in the outer gaps

3) Babar + magnetic steel fillingof 11 gaps (as worst case comparison)

added plate										
										 П
with 25 mm plate low permeability steel	-	t o b e f	b ag of	to be f	t t o c b t e e		to be f	to be f	to be f	1 0 0 m
d with 25 mm plate low permeability steel d with 25 mm plate low permeability steel		e d	ed w.		e e d o		e d	e d w	e d w	E adde
i with 25 mm plate low permedbility steel		th 25	3 GN 74-	+++ 25 m	-th 25 m		th 25	-th 25 m	-th 25 m	d P- at
with 25 mm plate low permeability steel with 25 mm plate low permeability steel		m P I ate	ate-d w	m m p-ate	P P D D D D D D D D D D D D D D D D D D	n n Plate	m p-ate	n n n n n n n n n n n n n n n n n n n	m p-ate	e
d with 25 mm plate low permeability steel d with 25 mm plate low permeability steel	-	l o w		II oo www pp			- о ж	н «он	- o - o	
with 25 mm plate low permeability steel with 25 mm plate low permeability steel		e r m e a b	ermean.	ermeab	e e m r e o b	e e m m e e o b	er e a b	er se a v	er meab	
ואודה בס הה plote low permedoility steel		C 4	C 1	С т			E 4	C d	C d	
	1	st ee	stee	s t e e	s s e e	s s t e e e	stee	stee	stee	

SuperB IFR c) Adding steel plates outside

Add 100mm thick plates «on top» the outer wedges, in order to reach required IFR thickness

INFN

Require to deeply modify all the main parts (inner and outer wedges, cradle, arcs)

Requires either additional filling of 2 gaps wrt Babar (8 gaps x 22 mm each) or to increase thickness of the additional slabs to 140 mm.

Thicker slabs imply more difficult integration, may require replacing of cradle / arcs and larger dead space of last scint. layers

2,7426

2,3508 1,959 1,5672 1,1754 0,7836 0,3918 **0 Min**

Options	Max thickness	To do (design and workshop)	PROs	CONs
Babar IFR filled as possible with 22mm thick plates	870/892 mm with 9 or 8 scintillators layers	Modify carpentry to create a gap between wedges and cradle/arcs	Full recycling, with as less as possible modifications	Low thickness Labour intensive Cost vs thickness if brass is needed Filling with steel/Ssteel to be investigated
Babar IFR filling with thicker (25-27 mm) plates	882/907 mm with 9 or 8 scintillators layers Up to 917 with 27 mm plates	Modify carpentry to create a gap between wedges and cradle/arcs	Full recycling Could reach 920 mm	Maybe not possible, require intensive measurements campaign Could imply large deformation on top and bott. wedges May not reach design thickness on top and bott. Wedges Labour intensive Filling with steel/Ssteel to be investigated
Babar IFR modified adding slabs outside	920 mm and more	Modify carpentry to create a gap between wedges and cradle/arcs	Cheaper way to reach 920 mm	Require to deeply modify all barrel parts plus plates filling. Possible loosing of barrel geometric precision, may require adjustment. Outer scintillators layer with large dead space.
Replace inner wedges	920 mm and more	Modify carpentry to create a gap between wedges and cradle/arcs	Clean, reliable solution	Cost Big order: burocracy, long timing

Cost esteem based on preliminary offers:

- Steel plates for filling 1.5 $k \in /t + cutting etc$
- Stainless steel plates for filling, low permeability: 5 k \in /t
- Brass plates for filling 8.5 $k \in /t$
- New carpentries: 3.5 k€/t
- Other possible candidates like Zn, Pb neglected, no evident advantages
- Shipping SLAC Italy Preliminary esteem: 0.8 k€/t for pieces exceeding container dimensions

Got new quotation for main IFR parts: 540cbm/696 mtons

Pos	items	dims each	Tons/each	descr.
1	6	360x380x160 cm	40	wedge
2	2	940x390x350 cm	26	cradle
3	6	350x370x40 cm	18	plate
4	8	600x350x70	37	door

Pos 3-4 stackable only among them (3/3 - 4/4) and max up to 2 tiers Menlo Park / Palm Beach CA / Savona / Rome

€ 540.000 VAT and Duties not included

Means 0,8 k \in /t. Baseline cost for 40' high cube container: 9000 \in /pc = >300 \in /t

IFR Costs esteem (barrel only)

	max	new	new lavers	new plates to					Additional	Overall		Costs [k€] Miss						
,	equivalent thickness [mm]	carpentry to buy [tons]	of plates wrt Babar	insert [mm of thickness]	Filled layers Overall	Filling Metal	Density	Cost/t	weigth [t] of filling wr Babar	weigth [t] t barrel nut only	Transp ort	plates proc.	plates insert.	New carpent	Carpentr. modificati ons	Overall	Cost/Dmm (thick-785) [k€/mm]	thickness [mm]
a1) Babar with nodified						steel	7,8	1,5	39,0	399,0	230	58	50	0	120	458	5,3	48
cradle/arcs 2 wedges	872	0	4	89	10	S-steel	8,0	4,0	40,0	400,0	230	160	50	0	120	560	6,4	48
connection, 22 mm plates filled						Brass	8,4	8,3	42,0	402,0	230	348	50	0	120	748	8,6	48
a2) Babar with modified						steel	7,8	1,5	48,7	408,7	230	73	50	0	120	473	4,3	26
cradle/arcs 2 wedges	894	0	5	111	11	S-steel	8,0	4,0	50,0	410,0	230	200	50	0	120	600	5,5	26
connection, 22 mm plates filled						Brass	8,4	8,3	52,4	412,4	230	435	50	0	120	835	7,6	26
a) thicker(25	0.25	0	e.!!	275		steel	7,8	1,5	120,7	480,7	230	181	50	0	120	581	4,1	-5
nm) plates filling	925	0	all	2/5	11	S-steel	8,0	4,0	123,8	483,8	230	495	50	0	120	895	6,4	-5
c1) Add 100 mm Dutward	928	60	2	44	8	S-steel	7,8	3,5	19,5	439,5	230	78	36	210	210	764	5,4	-8
2) Add 140 mm Dutward	923	85	0	0	6		7,8	3,5	0,0	445,0	230	0	27	298	210	765	5,5	-3
d) Replace inner wedges	920,0	360	0	0	0		7,8	3,5	0,0	480,0	80	0	0	1260	120	1460	10,8	0
e) Replace all parrel	920,0	540	0	0	0		7,8	3,5	0,0	480,0	0	0	0	1890	0	1890	14,0	0

Steel Billet cash buyer

Variation of LME quotation affects about 50% of semifinished cost (2009–2011: steel semifinished +70%, brass +20%) source: http://www.lme.com/

Copper cash buyer

- Modify the connections between cradle/arcs and the wedges and reinforce cradle and arcs seems feasible, it requires more accurate FEA simulations.
- If overall thickness barrel thickness of 882 907 mm (9 8 scintillators) can be fine => filling as Babar with brass plus 4 - 5 additional gaps filled with steel/s-steel.
- Fill with "thicker" plates e.g. 27 mm is cost efficient and could reach the 920 mm. Requires extensive measures with proper gauges.
- Brass expensive, will use S-steel or magnetic steel according to field simulations
- Adding plates at outer diameter could be cost effective but requires extensive modifications to all main barrel parts, cost for adjustments may grow.
- Replacing of Babar wedges with new ones is more expensive but it is a reliable solution.
- The cost of candidate solutions (b: thicker plates gaps filling) is about 1.5 M€.
- Filling with magnetic steel could save up to 300 k€

SuperB IFR DIRC shielding requests

- 50 mm steel (magnetic shield)
- 100 mm lead

INFN scintillator and HDPE layers at inner radius (facing coil tank) HDPE layer inside plug and horseshoe

Wedges + doors

- ~ 1000 t, > 50% larger than Babar «as designed» (650t)
- ~ 350 t due to upgrade + shielding
- ~ 50% of weight increasing being due to Fe shielding, 10 cm thick
 Lead
- > 10 m^2 , 10 cm thick
- 12 13 t

Borated HDPE

- 250 300 m², 10cm thick
- 25 30 t

No space for 10 cm HDPE between beam pipe and magnet plugs Poor hermeticity of shielding vs cryo plants, services, cradle/arc, platforms Shielding presumable cost > 0.5 M\$

SuperB IFR SuperB Shield

- As much as possible, shield at the source:
- some cover of the beamline at least as far as the final dipoles
- May be simpler than a full enclosure.
- Shield locally to the item affected

