IN N

Quantum Cellular Automata as extension of Quantum Field Theory

Giacomo Mauro D'Ariano
GE 4I, Gruppo IV, Sezione PV INFN

THE DIRAC QU-AUTOMATON

 $$
r-x]
$$
 $$
\boldsymbol{\psi}_{n}:=\left[\begin{array}{l} \psi_{n}^{+} \\ \psi_{n}^{n} \end{array}\right]
$$
 $$
\psi_{n-1}^{t-1} \psi_{n-1-1}^{*} \psi_{n}^{t} \psi_{n}
$$
 $$
\boldsymbol{\psi}(t+\mathfrak{t})=U^{\dagger} \boldsymbol{\psi}(t) U=\mathbf{U} \boldsymbol{\psi}(t)
$$

$$
c^{2}+s^{2}=1
$$

$$
\begin{aligned}
& A_{n}=\exp \left[-i \theta\left(\sigma_{2 n-1}^{-} \sigma_{2 n}^{+}+\sigma_{2 n-1}^{+} \sigma_{2 n}^{-}\right)\right] \\
& B_{n}=\exp \left[-i \frac{\pi}{2}\left(\sigma_{2 n}^{+} \sigma_{2 n+1}^{-}+\sigma_{2 n}^{-} \sigma_{2 n+1}^{+}\right)\right]
\end{aligned}
$$

$$
\mathbf{U}=\left[\begin{array}{cc}
\mathrm{S} \hat{\partial}_{-} & -i \mathrm{c} \\
-i \mathrm{c} & \mathrm{~s} \hat{\partial}_{+}
\end{array}\right]
$$

$c=\cos \theta=\omega t=\frac{\mathfrak{a}}{\lambda}=\frac{m}{m}, \quad s=\sin \theta=\zeta=\sqrt{1-\left(\frac{m}{m}\right)^{2}}$

$$
\mathfrak{m}:=\frac{\hbar}{\mathfrak{a} \mathfrak{c}}
$$

THE DIRAC QU-AUTOMATON MASS-DEPENDENT REFRACTION INDEX OF VACUUM

Unitariety of QCA
 $$
c \rightarrow \zeta c, \quad \zeta=\zeta(m)
$$

Information halts at the Planck mass

THE DIRAC QU-AUTOMATON
 Derived from first (informational) principles

- Planck-scale, field limit, ultrarelativistic limit unified in a single simple model
- Extension of QFT including localized states and observables
- From first principles [informational $\left({ }^{*}\right)$]
- Quantum ab initio
- Classicalization vs quantization (9)
- Symmetries are approximated, and restored in the field limit

${ }^{(*)}$) Chiribella, D'Ariano, Perinotti PRA 84 oI23II (20II) Viewpoint: Č. Brukner, Physics 4,55 (201I) (\dagger) D'Ariano, PLA 376697 (2012) (arXiv:Ioı2.0756)
(』) D'Ariano, AIP Conf. Proc. 371 (2012) (arXiv ioı2.0535)

Dirac QCA: First Quantization

Dirac QCA: First Quantization

CLASSICALIZATION: H FROM U

$i \hbar \widehat{\partial}_{t} \boldsymbol{\psi}=[\boldsymbol{\psi}, H]$

$$
H=\frac{i \hbar}{2 \mathfrak{t}} \boldsymbol{\psi}^{\dagger}\left(\mathbf{U}-\mathbf{U}^{\dagger}\right) \boldsymbol{\psi}
$$

Planckian Particles

$$
\mathbf{U}=\left(\begin{array}{cc}
\hat{\mathrm{s}}_{-} & -i \mathrm{c} \\
-i \mathrm{c} & \mathrm{~s} \hat{\partial}_{+}
\end{array}\right)=\left(\begin{array}{cc}
\mathrm{s} e^{i k} & -i \mathrm{c} \\
-i \mathrm{c} & \mathrm{se} \mathrm{e}^{-i k}
\end{array}\right)
$$

Alessandro Tosini
(Foldy-Wouthuysen)
Dispersion relation

$$
\omega(k)=\cos ^{-1}(\mathrm{scos} \mathrm{k})
$$

Eigenvectors in k-space
$\frac{1}{2 N^{(\pm)}(k)}\binom{i \mathrm{c}}{\mathrm{s} e^{i k}-e^{ \pm i \omega(k)}} \quad N^{(\pm)}(k)=\sqrt{1-\mathrm{s} \cos [\mathrm{k} \pm \omega(\mathrm{k})]}$ $\omega^{(\pm)}(\mathrm{k}) \quad$ Planck
Ultra-relativistic

Planckian Particles

$$
i \partial_{t} A(x, t)=\left[-i d \partial_{x}-\frac{D}{2} \partial_{x}^{2}\right] A(x, t)
$$

$$
A(x, t)=\frac{1}{\sqrt[4]{2 \pi \Delta^{2}(t)}} \exp \left[-\frac{(x-x(t))_{2}^{2}}{4 \Delta^{2}(t)}\right]
$$

$$
x(t)=d \quad \Delta(t)=\Delta \sqrt{1+i \frac{D}{2 \Delta^{2}} t}
$$

$$
-\frac{5 \sin \mathrm{k}}{d^{(\pm)}(\mathrm{k})}
$$

First Quantization particle antiparticle

\square
\square

Are we able to simulate our theory (even with a quantum computer)?

Simulating Physics with Computers Richard P. Feynman

The question is, if we wrote a Hamiltonian which involved only these operators, locally coupled to corresponding operators on the other space-time points, could we imitate every quantum mechanical system which is discrete and has a finite number of degrees of freedom? I know, almost certainly, that we could do that for any quantum mechanical system which involves Bose particles. I'm not sure whether Fermi particles could be described by such a system. So I leave that open. Well, that's an example of what I meant by a general quantum mechanical simulator. I'm not sure that it's sufficient, because I'm not sure that it takes care of Fermi particles.

$$
\text { Int. J. of Th. Phys. } 21467 \text { (1982) }
$$

THE FEYNMAN PROBLEM

$\left[\varphi_{n}, \varphi_{m}\right]_{+}=0, \quad\left[\varphi_{n}, \varphi_{m}^{\dagger}\right]_{+}=\delta_{m n}, \quad \boldsymbol{n}, \boldsymbol{m} \in \Lambda$
Anticommutation is nonloca!!

Problem:

Anticommuting fields $\varphi_{\mathbf{n}}$ commuting Pauli matrices $\sigma_{\mathbf{n}}^{+}$
For $\mathrm{D}=\mathrm{I}$ dimensions: Jordan Wigner construction
$\varphi_{j}=\prod_{k<j}\left(-\sigma_{k}^{3}\right) \sigma_{j}^{-} \quad \sigma^{3}-\sigma^{3}-\sigma^{3}-\sigma^{3}-\sigma^{3}-\sigma_{j}^{-} \cdot \cdots$

However:

$$
\varphi_{j+l}^{\dagger} \varphi_{j}=(-)^{l} \sigma_{j}^{-} \underbrace{\sigma_{j+1}^{3} \sigma_{j+2}^{3} \ldots \sigma_{j+l-1}^{3}}_{l-1} \sigma_{j+l}^{+}
$$

THE FEYNMAN PROBLEM

 THE "QUBIT-IZATION" OF THE DIRAC FIELD$\left[\varphi_{\boldsymbol{n}}, \varphi_{\boldsymbol{m}}\right]_{+}=0, \quad\left[\varphi_{\boldsymbol{n}}, \varphi_{m}^{\dagger}\right]_{+}=\delta_{\boldsymbol{m} \boldsymbol{n}}, \quad \boldsymbol{n}, \boldsymbol{m} \in \Lambda$
Write $\varphi_{\boldsymbol{n}}$ using Pauli matrices

$$
\sigma_{n}^{\alpha}, \tau_{n}^{\alpha}, \ldots \quad n \in \Lambda
$$

in such a way that any observable in the field operator

$$
\varphi_{n}^{\dagger} \varphi_{m}
$$

contains only Pauli operators in the same locations $\boldsymbol{n}, \boldsymbol{m} \in \Lambda$

Also generalize to many components φ_{n}^{a} mutually commuting/anticommuting

SOLUTION OF THE FEYNMAN PROBLEM THE SOLUTION

qubits:

σ associated to the Dirac field φ_{n}
τ associated to Majorana fields η_{n}, χ_{n}
ζ additional qubits

SOLUTION OF THE FEYNMAN PROBLEM THE SOLUTION

$\sigma_{\boldsymbol{n}}^{+}=\varphi_{\boldsymbol{n}}^{\dagger} \Phi^{\sigma}(\boldsymbol{n}), \quad \tau_{\boldsymbol{n}}^{+}=\nu_{\boldsymbol{n}}^{\dagger} \Phi^{\tau}(\boldsymbol{n})$
$\chi_{n}=\nu_{m}^{\dagger}+\nu_{m}=\Phi(\boldsymbol{n}) \tau_{\boldsymbol{n}}^{1}$
$\eta_{\boldsymbol{n}}=i\left(\nu_{m}^{\dagger}-\nu_{m}\right)=-\Phi(\boldsymbol{n}) \tau_{\boldsymbol{n}}^{2}$

$$
\Phi^{\sigma, \tau}(\boldsymbol{n})=\exp \left[i \sum_{\boldsymbol{m}}\left(\varphi_{m}^{\dagger} \varphi_{\boldsymbol{m}}+\nu_{m}^{\dagger} \nu_{\boldsymbol{m}}+\zeta_{\boldsymbol{m}}^{+} \zeta_{\boldsymbol{m}}^{-}\right) \alpha_{\boldsymbol{m}}^{\sigma, \tau(n)}\right]
$$

$$
\alpha^{\sigma(\boldsymbol{n})}=\alpha_{\boldsymbol{m}}^{(\boldsymbol{n})}+\pi \delta_{\boldsymbol{m} \boldsymbol{n}}
$$

$$
\alpha_{\boldsymbol{m}}^{\tau(\boldsymbol{n})}=\alpha_{\boldsymbol{m}}^{(\boldsymbol{n})}:=\pi \theta\left[\sin ^{-1}\left(\boldsymbol{k} \cdot \frac{\boldsymbol{n}-\boldsymbol{m}}{|\boldsymbol{n}-\boldsymbol{m}|}\right)\right]
$$

SOLUTION OF THE FEYNMAN PROBLEM
 Vacuum
 THE SOLUTION

$$
\begin{aligned}
& |\emptyset\rangle=|\Omega\rangle_{\sigma} \otimes|W\rangle_{\tau \zeta}, \quad|\Omega\rangle_{\sigma}=\otimes_{\boldsymbol{n} \in \Lambda}|\downarrow\rangle_{\boldsymbol{n}}^{\sigma} \\
& |W\rangle_{\tau \zeta}=\otimes_{\boldsymbol{n} \in \Lambda}|W\rangle_{\boldsymbol{n}}^{\tau \zeta} \\
& |W\rangle_{\boldsymbol{n}}^{\tau \zeta}=\frac{1}{\sqrt{2}}\left(|\uparrow\rangle_{\tau}|\uparrow\rangle_{\zeta}+|\downarrow\rangle_{\tau}|\downarrow\rangle_{\zeta}\right)
\end{aligned}
$$

Particle states

$$
\begin{aligned}
& \varphi_{\boldsymbol{n}_{1}}^{\dagger} \varphi_{\boldsymbol{n}_{2}}^{\dagger} \ldots \varphi_{\boldsymbol{n}_{N}}^{\dagger}|\Omega\rangle_{\sigma} \otimes|W\rangle_{\tau \zeta} \\
& =s\left(\boldsymbol{n}_{1}, \boldsymbol{n}_{2}, \ldots, \boldsymbol{n}_{N}\right) \sigma_{\boldsymbol{n}_{1}}^{+} \sigma_{\boldsymbol{n}_{2}}^{+} \ldots \sigma_{\boldsymbol{n}_{N}}^{+}|\Omega\rangle_{\sigma} \otimes|W\rangle_{\tau \zeta}
\end{aligned}
$$

Interaction terms

$\varphi_{n}^{\dagger} \varphi_{m} \Longrightarrow \varphi_{n}^{\dagger} \varphi_{m} M_{n m} B_{n m}$ $\varphi_{n}^{\dagger} \varphi_{m} M_{n m} B_{n m}|F\rangle_{\sigma} \otimes|W\rangle_{\tau \zeta}=\sigma_{n}^{+} \sigma_{m}^{-}|F\rangle_{\sigma} \otimes|W\rangle_{\tau \zeta}$

