

Quantum Cellular Automata as extension of Quantum Field Theory

Giacomo Mauro D'Ariano GE 41, Gruppo IV, Sezione PV INFN

arXiv:1012.0535

THE DIRAC QU-AUTOMATON

Derived from first (informational) principles

- Planck-scale, field limit, ultrarelativistic limit unified in a single simple model
- *Extension*. of QFT including localized states and observables
- From first principles [informational (*)]
- Quantum *ab initio*
- Classicalization_vs quantization_(¶)
- Symmetries are approximated, and restored in the *field limit*.

(*) Chiribella, D'Ariano, Perinotti PRA **84** 012311 (2011) *Viewpoint:* Č. Brukner, Physics 4, 55 (2011) (†) D'Ariano, PLA **376** 697 (2012) (arXiv:1012.0756) (¶) D'Ariano, AIP Conf. Proc. **371** (2012) (arXiv 1012.0535)

Dirac QCA: First Quantization

CLASSICALIZATION: H FROM U $i\hbar\partial_t \boldsymbol{\psi} = [\boldsymbol{\psi}, H]$ $H = \frac{i\hbar}{2t} \boldsymbol{\psi}^{\dagger} (\mathbf{U} - \mathbf{U}^{\dagger}) \boldsymbol{\psi}$

Are we able to simulate our theory (even with a quantum computer)?

Simulating Physics with Computers Richard P. Feynman

The question is, if we wrote a Hamiltonian which involved only these operators, locally coupled to corresponding operators on the other space-time points, could we imitate every quantum mechanical system which is discrete and has a finite number of degrees of freedom? I know, almost certainly, that we could do that for any quantum mechanical system which involves Bose particles. I'm not sure whether Fermi particles could be described by such a system. So I leave that open. Well, that's an example of what I meant by a general quantum mechanical simulator. I'm not sure that it's sufficient, because I'm not sure that it takes care of Fermi particles.

Int. J. of Th. Phys. 21 467 (1982)

THE FEYNMAN PROBLEM

 $[\varphi_{\boldsymbol{n}},\varphi_{\boldsymbol{m}}]_{+} = 0, \quad [\varphi_{\boldsymbol{n}},\varphi_{\boldsymbol{m}}^{\dagger}]_{+} = \delta_{\boldsymbol{m}\boldsymbol{n}}, \quad \boldsymbol{n},\boldsymbol{m} \in \Lambda$

Anticommutation is nonlocal!

Problem: Anticommuting fields $\varphi_{\mathbf{n}}$ \longleftrightarrow commuting Pauli matrices $\sigma_{\mathbf{n}}^+$ For D=I dimensions: Jordan Wigner construction $\varphi_j = \prod_{k < j} (-\sigma_k^3) \sigma_j^- \qquad \sigma_j^3 - \sigma_j^3$

However:

$$\varphi_{j+l}^{\dagger}\varphi_j = (-)^l \sigma_j^- \underbrace{\sigma_{j+1}^3 \sigma_{j+2}^3 \dots \sigma_{j+l-1}^3 \sigma_{j+l}^+}_{j+l} \sigma_{j+l}^+$$

THE FEYNMAN PROBLEMTHE "QUBIT-IZATION" OF THE DIRAC FIELD $[\varphi_n, \varphi_m]_+ = 0, \quad [\varphi_n, \varphi_m^{\dagger}]_+ = \delta_{mn}, \quad n, m \in \Lambda$

Write φ_n using Pauli matrices

 $\sigma_{n}^{\alpha}, \tau_{n}^{\alpha}, \dots \qquad n \in \Lambda$ in such a way that any observable in the field operator

 $\varphi_{n}^{\dagger}\varphi_{m}$ contains only Pauli operators in the same locations $n, m \in \Lambda$

Also generalize to many components φ_n^a mutually commuting/anticommuting

SOLUTION OF THE FEYNMAN PROBLEM

$$\begin{aligned}
& \pi_n^+ = \varphi_n^{\dagger} \Phi^{\sigma}(n), \quad \tau_n^+ = \nu_n^{\dagger} \Phi^{\tau}(n) \\
& \chi_n = \nu_m^{\dagger} + \nu_m = \Phi(n)\tau_n^1 \\
& \eta_n = i(\nu_m^{\dagger} - \nu_m) = -\Phi(n)\tau_n^2
\end{aligned}$$

$$\Phi^{\sigma,\tau}(n) = \exp\left[i\sum_m \left(\varphi_m^{\dagger}\varphi_m + \nu_m^{\dagger}\nu_m + \zeta_m^{+}\zeta_m^{-}\right)\alpha_m^{\sigma,\tau}(n)\right] \\
& \alpha^{\sigma}{}_m^{(n)} = \alpha_m^{(n)} + \pi\delta_{mn} \\
& \alpha_m^{\tau(n)} = \alpha_m^{(n)} := \pi\theta\left[\sin^{-1}\left(\mathbf{k} \cdot \frac{n-m}{|n-m|}\right)\right]
\end{aligned}$$

SOLUTION OF THE FEYNMAN PROBLEM Vacuum

$$\begin{split} |\emptyset\rangle &= |\Omega\rangle_{\sigma} \otimes |W\rangle_{\tau\zeta}, \quad |\Omega\rangle_{\sigma} = \otimes_{\boldsymbol{n}\in\Lambda} |\downarrow\rangle_{\boldsymbol{n}}^{\sigma} \\ |W\rangle_{\tau\zeta} &= \otimes_{\boldsymbol{n}\in\Lambda} |W\rangle_{\boldsymbol{n}}^{\tau\zeta} \end{split}$$

$$|W\rangle_{\boldsymbol{n}}^{\tau\zeta} = \frac{1}{\sqrt{2}} (|\uparrow\rangle_{\tau}|\uparrow\rangle_{\zeta} + |\downarrow\rangle_{\tau}|\downarrow\rangle_{\zeta})$$

Particle states

$$\varphi_{\boldsymbol{n}_{1}}^{\dagger}\varphi_{\boldsymbol{n}_{2}}^{\dagger}\dots\varphi_{\boldsymbol{n}_{N}}^{\dagger}|\Omega\rangle_{\sigma}\otimes|W\rangle_{\tau\zeta}$$

= $s(\boldsymbol{n}_{1},\boldsymbol{n}_{2},\dots,\boldsymbol{n}_{N})\sigma_{\boldsymbol{n}_{1}}^{+}\sigma_{\boldsymbol{n}_{2}}^{+}\dots\sigma_{\boldsymbol{n}_{N}}^{+}|\Omega\rangle_{\sigma}\otimes|W\rangle_{\tau\zeta}$

Interaction terms

$$\varphi_{\boldsymbol{n}}^{\dagger}\varphi_{\boldsymbol{m}} \Longrightarrow \varphi_{\boldsymbol{n}}^{\dagger}\varphi_{\boldsymbol{m}}M_{\boldsymbol{n}\boldsymbol{m}}B_{\boldsymbol{n}\boldsymbol{m}}$$
$$\varphi_{\boldsymbol{n}}^{\dagger}\varphi_{\boldsymbol{m}}M_{\boldsymbol{n}\boldsymbol{m}}B_{\boldsymbol{n}\boldsymbol{m}}|F\rangle_{\sigma}\otimes|W\rangle_{\tau\zeta} = \sigma_{\boldsymbol{n}}^{+}\sigma_{\boldsymbol{m}}^{-}|F\rangle_{\sigma}\otimes|W\rangle_{\tau\zeta}$$