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only if we allow for a renormalization c → ζ c [7] (see also the following), namely
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where ̂∂t = t−1
̂∂ and ̂∂x = a−1

̂∂ (with the shift ̂∂± in the appropriate discrete variable),
t denoting the execution time of the LQCA. The time-difference in the LQCA (5)
corresponds to the difference between the unitary matrices U and U†, given by
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ŝ∂+ +ic
+ic ŝ∂−
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where
c = ω t = a/λ , s = ζ , (7)

and with unitarity implying the identity

c2+s2 = 1. (8)

Using Eq. (7) and parameterizing c and s by an angle θ , one has
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which shows that ζ−1 is a mass-dependent vacuum refraction index which is strictly
greater than 1 for nonzero mass, monotonically increasing versus m, and becoming
infinite at m = m. For a the Planck length m is the Planck mass, and the automaton
becomes stationary (i. e. there is no propagation of information) at the Planck mass: this
interesting violation of dispersion relation has been presented in Ref. [7], and is due only
to discreteness in conjunction with the unitarity of the automaton (see Fig. 2).

3.1. Margolus scheme for the Dirac LQCA

The Dirac automaton (5) can be achieved with the Margolus scheme in Fig. 1.
The form of the gates A and B can be derived assuming, without loss of generality,

FIGURE 2. The inverse vacuum refraction index ζ versus the mass m of the Dirac field. The mass scale
is given by the Planck mass m = h̄

a c , a denoting the period of the automaton (from Ref. [7]).
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Majorana fields, whose state is entangled. I will also provide analytical relations between
the “emergent” and the “time-interpolating” Hamiltonians, and devote an entire section
to the Quantum Random Walks of the LQCA, namely its first-quantization, providing
the first numerical evaluations for one and two particle states in the Planck regime. I will
conclude the paper with some open problems and a brief discussion about possible ways
out.

2. THE FIELD-LINEAR QUANTUM CELLULAR AUTOMATON

We will consider quantum fields on a one-dimensional lattice Z. We will use the follow-
ing notations for the field:

1. φn (n ∈ Z) denotes a generic scalar (Boson or Fermion) field;
2. φφφ n = {φ α

n }, α in a finite set, denotes the vector field whose component generate
the local algebra of the automaton at n;

3. for the specific case of Dirac field the letter φ is substituted by the letter ψ ;
4. ϕn denotes a generic scalar anticommuting field.

Later on we will also consider fields on a D-dimensional lattice with D> 1, e. g. ZD, and
will use the boldface notation n for the labeling on the lattice. We consider the special
case of quantum cellular automaton, whose algebra evolution is assigned by a linear
evolution of a quantum field on the lattice.4 We now focus on the case of D = 1, and
consider D > 1 in Subsect. 3.5 and in the concluding section.

In a linear quantum field cellular automaton (LQCA), the (formally unitary) operator
U of the evolution transforms the field as follows

φφφ(t + t) =U†φφφ(t)U = Uφφφ(t), (1)

where t is a multiple of the time t of each step of the automaton. Since the evolution must
preserve the (anti)commutation relations for the field, the unbounded matrix U := ‖Ui j‖
must be itself unitary. The inverse evolution thus is φφφ(t) =Uφφφ(t + t)U† = U†φφφ(t + t).

A LQCA evolves the operator algebra locally. This corresponds to having only a finite
number of nonvanishing elements in the rows and columns of the matrix U, namely U is
a band matrix. An example of LQCA is depicted in Fig. 1 with local algebra generated
by the Fermi-field vector

ψψψ :=







. . .
ψψψn

ψψψn+1
. . .







, ψψψn :=
[

ψ+
n

ψ−
n

]

, [ψα
n ,ψβ

m
†]+ = δαβ δnm. (2)

4 Considering boundary conditions on a bounded lattice does not affect derivations as long as we contem-
plate evolutions for finite numbers of time-steps of Fock states, namely states localized over a quiescent
“vacuum” (see the following), and we can take the evolution as formally unitary, even for unbounded
lattice.
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−ŝ∂ −ic
−ic ŝ∂
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Planck length

• Planck-scale, field limit, ultrarelativistic 
limit unified in a single  simple model

• Extension of QFT including localized 
states and observables

• From first principles [informational (*)]

• Quantum ab initio

• Classicalization vs quantization (¶)

• Symmetries are approximated, and 
restored in the field limit

THE DIRAC QU-AUTOMATON
Derived from first (informational ) principles

(*) Chiribella, D'Ariano, Perinotti PRA 84 012311 (2011) Viewpoint: Č. Brukner, Physics 4, 55 (2011)
(†) D’Ariano, PLA 376 697 (2012) (arXiv:1012.0756)

(¶) D'Ariano, AIP Conf. Proc. 371 (2012) (arXiv 1012.0535)
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1. Some single-particle states

a. Gaussian particle-antiparticle states.

|Ψ〉 = N− 1
2

∑

n∈Z
ei

2πn
k − (n−n0)2

2∆2 (|ψ+
n 〉± |ψ−

n 〉), (80)

where + is for the particle and − for antiparticle.
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FIG. 6: The evolution of a single-particle Gaussian packet
of the form in Eq. (80) with x0 = 0, ∆ = 2, k = 8, for
Nt = 180 time-steps (t = 2Nt) and a total dimension of 128,
corresponding to 128 qubits, half of them for left and half
of them for right particles. The red line is the typical path,
corresponding to the classical trajectory. The parameter c =
cos(θ) with θ = π/8 here corresponds to m ! .92mP .

b. Some invariant single-particle states. Consider
the following state

|ψ(t)〉 =
∑

n

(
un(t)(ψ

+
n )

† + vn(t)(ψ
−
n )

†) |Ω〉

=
∑

n

[
un(t) 0
0 vn(t)

]
|ψn〉

(81)

In components we write

ψn(t) = 〈ψn|ψ(t)〉 =
[
u
v

]

n

(82)

Using Eq. (70) we evaluate the unitary evolution
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+
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†|Ω〉+

+(i cun(t) + s vn−1(t))(ψ
−
n )

†|Ω〉,

(83)

FIG. 7: Details in 3D of the evolution of the single-particle
Gauss-packet in Fig. 6 limited to dimension 64 and for Nt =
20.
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FIG. 8: A “double-slit” state |Ψ〉 = 1√
2
(|ψ+

n 〉 + |ψ−
−n〉) for

n = 10, Nt = 80, θ = π/10.

and in components

ψn(t+ t ) = U†
[
u(t)
v(t)

]

n

=

[
s ∂̂+ i c

i c s ∂̂−
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n

. (84)
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Dirac QCA: First Quantization
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Dirac QCA: First Quantization
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CLASSICALIZATION: H  FROM  U
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U

unit determinants |A| = |B| = 1. Then, one has [7] B11 = B22 = 0, B12 = B21 = ±i,
A21 = A12 =∓is, and A22 = A11 =∓c. In the following, we will adopt the solution

A =

[

c is
is c

]

, B =

[

0 −i
−i 0

]

. (10)

3.2. Emergent Hamiltonian for the LQCA

The LQCA has no Hamiltonian: all unitary transformations are far from the identity.
The Hamiltonian, becomes an “emergent” notion: it can be written in terms of the LQCA
unitary matrix as follows (we remind the vector notation in Eq. (2))

H =
ih̄
2 t

ψψψ†(U−U†)ψψψ. (11)

It is easy to show that one has
ih̄̂∂tψψψ = [ψψψ,H] (12)

and in this sense H is an Hamiltonian associated to the LQCA. It is formally iden-
tical to the classical field Hamiltonian, which gives the field equation via Poisson
brackets. Notice that Eq. (11) would also hold using the non Hermitian Hamilto-
nian H = ih̄ t−1ψψψ†(U1 −U†

2)ψψψ satisfying Eq. (12) for a halved-time finite-difference
derivative, with U1 and U2 the unitary transformations associated to the two rows of
gates in the Margolus scheme. Eq. (12) provides a three-point automaton evolution-
rule ψψψ(t + t) = ψψψ(t − t)−2i t h̄−1[ψψψ(t),H], which can be time-reversed as ψψψ(t − t) =
ψψψ(t + t)+2i t h̄−1[ψψψ(t),H]. Thus the automaton invertibility is due to the existence of a
three-point updating rule, and not to Hermiticity of the Hamiltonian: the fact that Hamil-
tonian can be chosen Hermitian is a consequence only of time-homogeneity of evolution
(the association of reversibility of a cellular automaton with a three-time updating has
been first noticed in Ref. [18]).

The mapping between Hamiltonian and unitary evolution operator for the LQCA can
be considered the discrete version of the operator exponential mapping. One has

U = exp[−isin−1(H t/h̄)] (13)

in terms of the matrix

H :=
ih̄
2 t

(U−U†) = [[ψψψ,H],ψψψ†]+, (14)

corresponding to
H = ψψψ†Hψψψ. (15)

This Hamiltonian is different from the time-interpolating Hamiltonian H̃ defined
through the identity

U =: exp(−iH̃ t/h̄), (16)
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corresponding to
H = ψψψ†Hψψψ. (15)

This Hamiltonian is different from the time-interpolating Hamiltonian H̃ defined
through the identity

U =: exp(−iH̃ t/h̄), (16)
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Planckian Particles

(Foldy-Wouthuysen)

U =

(

s ̂∂
−

−i c

−i c s ̂∂+

)

=

(

s eik −i c
−i c s e−ik

)

1

2N (±)(k)

(

i c
s eik − e±iω(k)

)

Eigenvectors 
in k-space

N
(±)(k) =

√

1− s cos[k± ω(k)]

Alessandro Bisio Alessandro Tosini

Dispersion relation
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ω(k) = cos−1(s cos k) √

m2 + k2
π

2
−

√

1−m2 cos k

Ultra-relativistic

Planck
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i∂tA(x, t) =

[

−id∂x −

D

2
∂2x

]

A(x, t)

A(x, t) =
1

4

√

2π∆2(t)
exp

[

−

(x− x(t))2

4∆2(t)

]
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Planckian Particles

d
(±) = ±

s sin k
√

1− s2 cos2 k

D
(±) = ±

sc2 cos k
√

1− s2 cos2 k
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First Quantization: particle-antiparticle
singlet triplet
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The question is, if we wrote a Hamiltonian which involved 
only these operators, locally coupled to corresponding 
operators on the other space-time points, could we imitate 
every quantum mechanical system which is discrete and 
has a finite number of degrees of freedom? I know, almost 
certainly, that we could do that for any quantum 
mechanical system which involves Bose particles. I'm not 
sure whether Fermi particles could be described by such a 
system. So I leave that open. Well, that's an example of 
what I meant by a general quantum mechanical simulator. 
I'm not sure that it's sufficient, because I'm not sure that it 
takes care of Fermi particles.

Are we able to simulate our theory 
(even with a quantum computer)?

Int. J. of Th. Phys. 21 467 (1982)

Simulating Physics with Computers
Richard P. Feynman
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THE  FEYNMAN  PROBLEM

ϕ†

j+l
ϕj = (−)lσ−

j
σ3

j+1σ
3

j+2 . . .σ
3

j+l−1
︸ ︷︷ ︸

l−1

σ+

j+l

However: 

[ϕn,ϕm]+ = 0, [ϕn,ϕ
†
m
]+ = δmn, n,m ∈ Λ

Anticommutation is nonlocal!

ϕj =
∏

k<j

(−σ3

k)σ
−

j

For D=1 dimensions:   Jordan Wigner construction

σ3 σ3 σ3 σ3 σ3

j

σ−

Anticommuting fields σ+

n
ϕn commuting Pauli matrices

Problem:
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[ϕn,ϕm]+ = 0, [ϕn,ϕ
†
m
]+ = δmn, n,m ∈ Λ

THE  FEYNMAN  PROBLEM

Also generalize to many components 
mutually commuting/anticommuting

ϕa

n

THE  “QUBIT-IZATION”  OF  THE  DIRAC  FIELD

Λ

Write       using Pauli matrices ϕn

σα

n
, τα

n
, . . . n ∈ Λ

contains only Pauli operators in the 
same locations              n,m ∈ Λ

in such a way that any observable
in the field operator

ϕ†
n
ϕm
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SOLUTION  OF  THE  FEYNMAN PROBLEM

σ

ζ

τ

associated to the Dirac field

associated to Majorana fields       , 

ϕn

χnηn

qubits:

additional qubits

THE SOLUTION
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SOLUTION  OF  THE  FEYNMAN PROBLEM

χn = ν†
m

+ νm = Φ(n)τ1
n

ηn = i(ν†
m

− νm) = −Φ(n)τ2
n

σ+

n
= ϕ†

n
Φσ(n), τ+

n
= ν†

n
Φτ (n)

Φσ,τ (n) = exp

[

i
∑

m

(

ϕ†
m
ϕm + ν†

m
νm + ζ+

m
ζ−
m

)

ασ,τ

m

(n)

]

ασ(n)

m
= α(n)

m
+ πδmn

ατ(n)

m
= α(n)

m
:= πθ

[

sin−1

(

k ·
n−m

|n−m|

)]

THE SOLUTION
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SOLUTION  OF  THE  FEYNMAN PROBLEM

ϕ†
n
ϕmMnmBnm|F 〉σ ⊗ |W 〉τζ = σ+

n
σ−

m
|F 〉σ ⊗ |W 〉τζ

|∅〉 = |Ω〉σ ⊗ |W 〉τζ , |Ω〉σ = ⊗n∈Λ|↓〉
σ

n

|W 〉τζ = ⊗n∈Λ|W 〉

τζ

n

|W 〉

τζ

n
= 1

√

2
(|↑〉τ |↑〉ζ + |↓〉τ |↓〉ζ)

Vacuum

ϕ†
n1
ϕ†
n2

. . .ϕ†
nN

|Ω〉σ ⊗ |W 〉τζ

= s(n1,n2, . . . ,nN )σ+

n1
σ+

n2
. . .σ+

nN
|Ω〉σ ⊗ |W 〉τζ

Particle states

Interaction terms

ϕ†
n
ϕm =⇒ ϕ†

n
ϕmMnmBnm

THE SOLUTION
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