KLOE-2: physics prospects and upgrades

> S. Giovannella (LNF) on behalf of the KLOE-2 Collaboration

× Prospects for physics @ KLOE-2 with 5-10 fb⁻¹

× Status of detector upgrades

× Updates on current analyses

44th Scientific Committee – LNF, 4 June 2012

KLOE-2 with 5-10 fb^{-1}

The KLOE-2 physics program as originally proposed and published in year 2009, is based on 20 fb⁻¹, feasible starting with a data delivering of ~20 pb⁻¹ per day. As this is not the case, the reach of the experiment with 5-10 fb⁻¹ is being considered. Improvements are possible in several fields:

QM, CPT- and Lorentz-invariance tests with neutral Kaons, sensitive to effects at the Planck scale (10¹⁹ GeV)

cited by (th.): EPJ C72(2012)1956; PRD85(2012)085023; arXiv:1201.3045; arXiv:1102.3612; AIP Conf.Proc.1327(2011)118-127;...

SM test with **precision measurements of the V**_{us} element of the CKM mixing matrix Rev. Mod. Phys.84(2012)399; arXiv:1203.6437; arXiv:1112.1984; ...

Low-energy QCD with e.g. radiative kaon, η , and η' decays and **low-mass scalars** with e.g. the study of scalar-KK coupling

EPJA47(2011)148; PRD85(2012)054018; NPB860(2012)245-266; arXiv:1112.4384; arXiv:1109.3754; NPPS207(2010)196 JHEP 1102(2011)028; arXiv:1007.4479; EPJ C71(2011)1814;...

<u> $\gamma\gamma$ physics</u> with e.g. the measurements of the π^0 width and $\pi^0 \rightarrow \gamma\gamma^*$ transition form factor in the space-like region

EPJ C72(2012)1917;arXiv:1202.1171; AIP Conf.Proc.1257(2010)27-36; NPPS219-220(2011)217; arXiv:0905.2017; ...

Search for the U-boson from dark sector

EPJ C71(2011)1680; JHEP 1102(2011)087; arXiv:1103.0799; arXiv:1011.3082; arXiv:1004.0691;...

V_{us}

A luminosity of 5 fb⁻¹ was originally proposed for this measurement

KLOE alone, with several precision measurements of kaon decays, lifetimes, and form factors, obtained

- 0.28% fractional error on $f^+(0) \cdot V_{us}$ (w.a.: 0.23%) 0.30% fractional error on $\frac{V_{us}}{V} \cdot \frac{f_{\pi}}{f}$

KLOE-2 can improve	$f^+(0) \cdot V_{us}$ by a factor of 2
--------------------	--

Mode	$\delta f_{+}(0) V_{us}$ (%): now	BR()	τ	δ	I_{Kl}	$\delta f_{+}(0) V_{us}$ (%): KLOE-2
$K_L e3$	0.32	0.09	0.13	0.11	0.09	0.21
$K_L \mu 3$	0.42	0.10	0.13	0.11	0.15	0.25
K_Se3	0.65	0.30	0.03	0.11	0.09	0.33
$K^{\pm}e3$	0.60	0.25	0.05	0.25	0.09	0.37
$K^{\pm}\mu 3$	0.70	0.27	0.05	0.25	0.15	0.40

With $f^+(0)$ at 0.2% level (Lattice-QCD calculations recently improved from 0.8% to 0.4%), the test of lepto-quark universality can be brought from 7 to 3 per mill, dominated by V_{ud} precision.

Neutral kaons interferometry: $\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

Most precise test of quantum coherence in an entangled system:

$$\zeta_{00} = (1.4 \pm 9.5_{\text{STAT}} \pm 3.8_{\text{SYST}}) \times 10^{-7}$$

 ζ decoherence parameter (QM predicts ζ=0) PLB 642(2006) 315 Found.Phys. 40(2010)852 Quantum gravity effects might induce: 1) decoherence and CPT violation $\longrightarrow \gamma = (0)^{-20} \text{ GeV}$

2) decoherence and CPT violation induce modification of the initial correlation of the kaon pair (at most ω =O(m_K²/M_{Planck}/ $\Delta\Gamma$) ~1x10⁻³)

Sensitivity to QM coherence and CPT-invariance

 $\Delta t = /t_1 - t_2 /$

The improvement in sensitivity with 5-10 fb⁻¹ and the IT with respect to the present measurements is of a factor of ~4, slightly changing for different parameters

Sensitivity to QM coherence, CPT- and Lorentz-invariance

Param.	Present best published	KLOE-2 (IT)	KLOE-2 (IT)	KLOE-2 (IT)
	measurement	L=5 fb ⁻¹	L=10 fb ⁻¹	L=20 fb ⁻¹
ζ ₀₀	$(0.1 \pm 1.0) \times 10^{-6}$	\pm 0.26 $ imes$ 10 ⁻⁶	\pm 0.18 $ imes$ 10 ⁻⁶	$\pm 0.13 imes 10^{-6}$
$\zeta_{ m SL}$	$(0.3 \pm 1.9) \times 10^{-2}$	$\pm 0.49 \times 10^{-2}$	$\pm 0.35 \times 10^{-2}$	$\pm 0.25 \times 10^{-2}$
α	$(-0.5 \pm 2.8) \times 10^{-17} \text{ GeV}$	$\pm 5.0 imes 10^{-17} \text{GeV}$	$\pm 3.5 \times 10^{-17} \text{GeV}$	\pm 2.5 \times 10 ⁻¹⁷ GeV
β	$(2.5 \pm 2.3) \times 10^{-19} \text{ GeV}$	$\pm 0.50 imes 10^{-19} \text{GeV}$	$\pm 0.35 \times 10^{-19} \text{GeV}$	\pm 0.25 \times 10 ⁻¹⁹ GeV
γ	$(1.1 \pm 2.5) \times 10^{-21} \mathrm{GeV}$	\pm 0.75 \times 10 ⁻²¹ GeV	\pm 0.53 \times 10 ⁻²¹ GeV	\pm 0.38 \times 10 ⁻²¹ GeV
	compl. pos. hyp.	compl. pos. hyp.	compl. pos. hyp.	compl. pos. hyp.
	$(0.7 \pm 1.2) \times 10^{-21} \mathrm{GeV}$	$\pm 0.33 \times 10^{-21} \text{ GeV}$	\pm 0.23 \times 10 ⁻²¹ GeV	\pm 0.16 \times 10 ⁻²¹ GeV
Re(w)	$(-1.6 \pm 2.6) \times 10^{-4}$	\pm 0.70 $ imes$ 10 ⁻⁴	\pm 0.49 $ imes$ 10 ⁻⁴	$\pm 0.35 \times 10^{-4}$
Im(ω)	$(-1.7 \pm 3.4) \times 10^{-4}$	\pm 0.86 $ imes$ 10 ⁻⁴	\pm 0.61 $ imes$ 10 ⁻⁴	$\pm 0.43 \times 10^{-4}$
Δa_0	[(0.4 ± 1.8) × 10 ⁻¹⁷ GeV]	\pm 0.52 $ imes$ 10 ⁻¹⁷ GeV	$\pm 0.36 imes 10^{-17} \text{GeV}$	\pm 0.26 \times 10 ⁻¹⁷ GeV
$\Delta a_{\rm Z}$	$[(2.4 \pm 9.7) \times 10^{-18} \text{ GeV}]$	\pm 2.2 × 10 ⁻¹⁸ GeV	\pm 1.5 \times 10 ⁻¹⁸ GeV	\pm 1.1 $ imes$ 10 ⁻¹⁸ GeV
$\Delta a_{X,Y}$	[± 6.0× 10 ⁻¹⁸ GeV]	\pm 1.3 $ imes$ 10 ⁻¹⁸ GeV	\pm 0.95 \times 10 ⁻¹⁸ GeV	\pm 0.67 $ imes$ 10 ⁻¹⁸ GeV

[...] KLOE preliminary

$\eta' \rightarrow \pi^+ \pi^- \gamma$

Sizeable effect of the Contact Term expected both in $\Gamma(\eta/\eta' \rightarrow \pi^+\pi^-\gamma)$ and in $M_{\pi\pi}$ distribution

Decay	PDG 2010	Prediction with Contact Term (HLS)	Prediction without Contact Term
η→π⁺π⁻γ η′→π⁺π⁻γ	60±4 eV 60±5 keV	56.3±1.7 eV 48.9±3.9 keV	100.9±2.8 eV 57.5±4.0 keV
		HLS: Benayoun, Eur. Phys. J. C31 (2003) 525	

Most precise BR measurement has ~3% error:

CLEO 2009 (200 events) : $BR(\eta' \rightarrow \pi^+\pi^-\gamma) = 0.287 \pm 0.008$

π-

$\eta' \rightarrow \pi^+ \pi^- \gamma$: $\pi^+ \pi^-$ invariant mass

Existing measurements:

Crystal Ball (1997), 7 kevts L3 (1998) 2 kevts

Evidence of CT No evidence of CT

KLOE-2: 60/120 kevts with 5/10 fb⁻¹ (efficiency included)

The $\eta \rightarrow \pi^0 \gamma \gamma$ decay

ChPT "golden mode": p² null, p⁴ suppressed, p⁶ dominates

KLOE Preliminary, 2006: 70 signal events, 3σ signal with 450 pb⁻¹, BR lower than Crystal-Ball:

5

10

15

20

substantially improves background suppression:2.00E+0358% of the selected events with 5 photons in the1.50E+03central calorimeter has 1-2 photons within the5.00E+02CCALT acceptance, i.e. polar angle of 10° -21°0.00E+00

CB@AGS

²⁵ L [fb⁻¹]

The $\eta \rightarrow \pi^0 \gamma \gamma$ decay: $\gamma \gamma$ invariant mass

• γγ invariant mass distribution to distinguish among different models

- Difference in number of σ between the two models, by assuming a bckg fraction of 87% as in the KLOE preliminary analysis
- For a 3 σ separation 7 8 fb⁻¹ are needed
- There are also more exotic models such as the quark-box model, PR C78(2008)015206, easier to separate

10

Low-mass scalar contributions to $\eta' \rightarrow \pi^+ \pi^- \eta$

KLOE-2: 60 kevts with ~8 fb⁻¹ (conservative estimate including efficiency and background subtraction), using $\eta' \rightarrow \pi^+\pi^-\eta$, $\eta \rightarrow \gamma\gamma$ decay chain

$\eta' \rightarrow \pi^+\pi^-\eta$ @ KLOE-2

Scalar coupling to KK: $\phi \rightarrow K_S K_S \gamma$

Low-mass scalar production @ 1.02 GeV: $\phi \rightarrow (a_0/f_0)\gamma \rightarrow KK\gamma$

Never observed before KLOE U.L. : 1.9 × 10⁻⁸ @ 90% C.L. [PLB 679 (2009) 10] 4q structure of $a_0/f_0(980)$ is the "favourite"

option from our own measurement of $\phi \rightarrow (a_0/f_0)\gamma \rightarrow (\eta \pi/\pi \pi) \gamma$ (neutral/charged pions analyzed)

A factor of ~2 improvement in the background rejection is expected from IT installation

With 5 – 10 fb⁻¹ we can improve the U.L. by a factor of 2 excluding other models for the scalars, including the KLOE favourite 4q model

$\gamma\gamma$ physics: HET taggers

Test on DA Φ NE confirms the feasibility of the measurements in coincidence with KLOE and the LET stations: bunch structure clearly visible (2.7 ns), low background levels per bunch (3-4 10⁵ Hz), high rejection levels on the KLOE triggers (>10³)

$\gamma\gamma$ physics: $e^+e^- \rightarrow e^+e^-\pi^0$

$\Gamma(\pi^0 \rightarrow \gamma \gamma)$ width

 $\overline{\Gamma(\pi^0 \rightarrow \gamma \gamma)}$: best measurement from Primakoff-process, PrimEX @ Jlab, at 2.8%: PRL **106**(2011)162303

HET (e $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ at 1% feasible at KLOE-2 with 5-6 fb⁻¹ The coincidences between KLOE central detector and HET taggers SELECT a very clean sample of ~ 1900 events per fb⁻¹ ($\sigma_{\rm eff} = 3.4 \ \rm pb$)

The radiative Bhabha-scattering events fully cut out by

KLOE-HET coincidence

HET (e⁺)

$\gamma\gamma$ physics: $e^+e^- \rightarrow e^+e^-\pi^0$

 $\pi^0
ightarrow \gamma\gamma^*$ transition form factor in the space-like region at low Q²

F(Q²,0)I [GeV]¹

 $\mathbf{F}_{\pi^0 \gamma\gamma^*}$ at 5-6% feasible at KLOE-2 with 5 fb⁻¹ The coincidences between KLOE central detector

and one of the HET stations are used

Light-by-light term to muon anomaly: both measurements, width and $\mathbf{F}_{\pi^0 \gamma\gamma^*}$ contribute to a factor of ~2 reduction in the theoretical error, dominated by pseudoscalar (π^0) contribution

Search for dark forces

Hypothesis: existence of a hidden gauge sector, able to explain several unexpected astrophysical observations, weakly coupled with SM through a mixing mechanism of a new gauge boson, U, with the photon

 $\gamma^* U$

- KLOE published U.L. @ 90% C.L. on φ→ηU, using $η→π^+π^-π^0$, U→ e^+e^- PLB 706 (2012)
- Analysis of the $\eta \rightarrow \pi^0 \pi^0 \pi^0$ and $\eta \rightarrow \gamma \gamma$ channels in progess to cover 95% of the η decay channels: factor ~ 2 improvement expected
- Analysis of $e^+e^- \rightarrow U\gamma \rightarrow \mu^+\mu^-\gamma$ started on: i) 2 fb⁻¹ sample with small-angle
 - (undetected) photon
 - ii) 200 pb⁻¹ @ 1 GeV sample with large-angle (detected) ISR photons

KLOE measurements, using ISR method:

Prospects for $a_u^{had,\pi\pi}$

- The analysis of $\sigma(\pi^+\pi^-\gamma)/\sigma(\mu^+\mu^-\gamma)$ reduces (from 0.6 to 0.2-0.3%) the theoretical uncertainties from radiator function and vacuum polarization
- FSR corrections for LA events can be improved studying of the F-B asymmetry

• KLOE-2 with 1-2 fb⁻¹ of off-peak data and the analysis of $\sigma(\pi^+\pi^-\gamma)/\sigma(\mu^+\mu^-\gamma)$ at large angle, can obtain 0.5% fractional precision on $a_{\mu}^{had,\pi\pi}$ from 1 GeV down to the 2π threshold (KLOE LA+SA: 1.2%)

IT: tests on Layer 2

The detector is formed by 4 layers of **cylindrical triple-GEM**, with a twodimensional readout (X-V) equipped with a dedicated ASIC (GASTONE)

- X Layer 2 built and extensively tested in temperature and with a β source. After facing many problems, the detector is now working properly.
- We implemented a very good method for the X-talk cancellation (blocking capacitor), already used in LHCb GEM detectors.

IT: construction schedule

Layer 1:

- Construction completed
- ✗ Gas tightness > 99%
- **×** Construction uniformity tested with β source
- X Next: cosmic rays run with L1&L2

Layer 3:

- Cathode built
- ✗ 2 CGEM electrodes are ready
- × Anode just shipped
- X One GEM electrode still missing
- Expected to be completed by end of July

Layer 4:

- X Moulds delivered
- Construction will begin in September

Electronics and services:

- ✗ GASTONE chip mounted and tested on L1/L2
- K GIB ready and tested
- Final HV system used in CR/source tests

CCALT: test of delivered crystals

First two crystals delivered and under test using ²²Na source and PM readout:

- Pedestal = 253 ADC counts
- ✗ 10% energy resolution @ 511 keV

CCALT: construction schedule

- Aluminum support shells already produced (INFN Naples)
- **×** Final crystals under production from SICCAS. Delivery expected mid of June
- ✗ (4 × 4) mm² SiPMs from ADVANSID already produced. Expected by June
- **×** PCB for mounting SiPM designed @ LNF. Delivery expected end of June
- × Preamplifier and LED calibration driver under construction
- Standard read out with ADC and TDC boards from KLOE detectors

QCALT: construction status

- X Two calorimeters of 12 modules (one modified to insert LET), each one divided into 2 halves
- First 6 modules completed
 - Each tile tested using Sr source to check the fiber-tile coupling
 - Cosmic ray run to check towers
 - × Test beam @ BTF planned in June

QCALT: construction status

- × All the material (tiles, fibers, tungsten) needed to complete QCALT already @ LNF
- **×** Construction of second half started: 2 weeks needed to complete the assembling
- Construction of second calorimeter will start in July (~1 month of work)
 - Mechanical structure ready
 - X Tiles: first milling in progress at external company, groove milling @ LNF
- PCBs: next week @ LNF
- **×** FEE @ LNF: final tests in progress

Updates on analysis

Conclusions

- Construction of upgrades and KLOE data analyses are progressing (Physics Workshop scheduled for 25-26 June, Workshop on Dark Forces at Accelerators @ LNF, 16-19 October 2012)
- Physics goals achievable with 5-10 fb⁻¹ of integrated luminosity in a 2-3 years running period at DAΦNE motivate the efforts of the Collaboration to provide the accelerator experts with all the support and feedbacks needed for the machine commissioning
- They also motivate the efforts for the completion of the detector upgrades
- A machine delivering 12 pb⁻¹ per day with stable operation and controlled background levels in the hot region of the endcaps, is needed for the data taking
- The feasibility of such kind of operation must be proved soon
- For this, it is mandatory to fix machine hardware criticality that have affected the operation since the beginning

$\eta \rightarrow \pi^+ \pi^- \gamma$: fit to the $M_{\pi\pi}$ spectrum

Fit with Simple parametrization

"Model-independent approach to $\eta/\eta' \rightarrow \pi^+\pi^-\gamma$ (Stollenwerk, Hanhart, Kupsc, Meißner and Wirzba PLB707 (2012) 184-190)

 $\frac{d\Gamma(\eta \to \pi^+ \pi^- \gamma)}{ds_{\pi\pi}} = |AP(s_{\pi\pi})F_V(s_{\pi\pi})|^2 \Gamma_0(s_{\pi\pi})$ $F_{V}(s_{\pi\pi}) = 1 + (2.12 \pm 0.01)s_{\pi\pi} + (2.13 \pm 0.01)s_{\pi\pi}^{2} + (13.80 \pm 0.14)s_{\pi\pi}^{3}$ $P(s_{\pi\pi}) = 1 + \alpha \cdot s_{\pi\pi}$ $\Gamma_{0}(s_{\pi\pi}) = \frac{1}{3 \cdot 2^{11} \cdot \pi^{3} m_{\eta}^{3}} (m_{\eta}^{2} - s_{\pi\pi})^{3} s_{\pi\pi} \sigma(s_{\pi\pi})^{3}$ $\sigma(s_{\pi\pi}) = \sqrt{1 - 4m_{\pi}^2/s_{\pi\pi}}$ $\alpha = 1.31$ $A \\ \alpha$ Free parameters: 0.4 500 Max (MeV)

Time schedule for detector installation

A detailed plan for the installation of new detectors has been prepared, consisting of about six months of operations

KLOE results on Large Angle analysis

Systematic errors on $a_{\mu}^{\pi\pi}(0.1-0.85 \text{ GeV}^2)$:

Reconstruction Filter	< 0.1%			
Background	0.5%			
$f_0 + \rho \pi$	0.4%			
Omega	0.2%			
Trackmass	0.5%			
π /e-ID and TCA	< 0.1%			
Tracking	0.3%			
Trigger	0.2%			
Acceptance	0.4%			
Unfolding	negligible			
Software Trigger	0.1%			
Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$	0.3%			
Experimental fractional error on $a_{\mu} = 1.0 \%$				
FSR resummation	0.7%			
Radiator H	0.5%			
Vacuum polarization	< 0.1%			
Theoretical fractional error on $a_{\mu} = 0.9 \%$				

0.9% 0.4% 1.0%

KLOE results on $\pi\pi\gamma/\mu\mu\gamma$ ratio

KLOE08 KLOE11

Good agreement btw the two measurements, especially in the p region!!!

KLOE11: a₁^{ππ}, (0.35-0.95 GeV²) = (384.1 ± 1.2stat ± 4.0sys ± 1.2theo) · 10⁻¹⁰ KLOE08: $a_{\mu}^{\pi\pi}(0.35-0.95 \text{ GeV}^2) = (387.2 \pm 0.5 \text{ stat} \pm 2.4 \text{ sys} \pm 2.3 \text{ theo}) \cdot 10^{-10}$

New measurement in agreement with previous KLOE measurements

$\eta \rightarrow \pi^+ \pi^- e^+ e^-$: KLOE analysis

Angular asymmetry between e^+e^- and $\pi^+\pi^-$ planes: test of non-CKM CP violation [D.Gao, Mod.Phys.Lett.A17 (2002) 1583]

Within SM constrained by BR($\eta \rightarrow \pi^+ \pi^-$): using experimental upper bound: A_{ϕ} < 10⁻⁴ using theoretical predictions: A_{ϕ} ~ 10⁻¹⁵

PLB 675 (2009) 283

The unconventional CPV term increases A_{ϕ} up to 10^{-2}

$\eta \rightarrow \pi^+ \pi^- e^+ e^-$: results

PLB 675 (2009) 283

 $BR(\eta \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}(\gamma)) = (26.8 \pm 0.9_{stat} \pm 0.7_{syst}) \times 10^{-5}$

$\eta \rightarrow \pi^+ \pi^- e^+ e^-$: prospects

PLB 702 (2011) 324

$\eta \rightarrow \mu^+ \mu^- e^+ e^-$

Data sample: **1.7 fb**⁻¹ MC simulation according to J.Bijnens and F. Persson, arXiv:0106130 **KLOE-2** with O(10 fb⁻¹) A BEACH * can obtain first observation of the di-muon channel and alphi can attempt the study of the M_{uu} - M_{ee} distribution TVOLIDING DONGLOUID HOLD decays subtracted Fit to M_{eeee} distribution with MC background shapes for signal + events from the continuum

Search for dark forces: the $\phi \rightarrow \eta U$ channel

Hypothesis: existence of a hidden gauge sector, able to explain several unexpected astrophysical observations, weakly coupled with SM through a mixing mechanism of a new gauge boson, U, with the photon

- KLOE published U.L. @ 90% C.L. using $\eta \rightarrow \pi^+ \pi^- \pi^0$, $U \rightarrow e^+ e^-$
- Analysis of the $\eta \rightarrow \pi^0 \pi^0 \pi^0$ and $\eta \rightarrow \gamma \gamma$ channels in progess to cover 95% of the η decay channels
- Due to larger branching ratio and analysis efficiency, an improvement of ~2 is expected
- 10 fb⁻¹ will increase U.L. of a factor ~2

Search for dark forces: the $e^+e^- \rightarrow U\gamma$ channel

- Analysis of $e^+e^- \rightarrow U\gamma \rightarrow \mu\mu\gamma$ started on:
 - i) 2 fb⁻¹ sample with small-angle (un-detected) photon
 - ii) 200 pb⁻¹ @ 1 GeV sample with large-angle (detected) ISR photons
 - → SA will provide the best results in the range ~500 <M_U< 1000 MeV</p>
- KLOE-2 @ 10 fb⁻¹ will improve of a factor of ~3:
 - → in the mass range 100<Mu<400 MeV with the $\phi \rightarrow \eta U$ channel
 - → in the mass range 500-1000 MeV with the SA sample of $e^+e^- \rightarrow U\gamma \rightarrow \mu\mu\gamma$

