The Infrared structure of gauge amplitudes in the high-energy limit

Vittorio Del Duca INFN LNF

Spring Institute LNF
17 May 2012

Why the infrared structure of gauge amplitudes?

9
Perturbation theory calculations of amplitudes beyond the leading order exhibit infrared divergences, which in physical processes must cancel between the virtual corrections and the real emissions

While the finite part of an amplitude depends on the scattering process at hand, the infrared-divergent part is process independent (but for the parton species involved): it is universal, and reveals the infrared structure of the gauge theory

9
Guesses have been made on the all-order structure of the infrared divergences (dipole formula). The high-energy limit is one more tool which allows us to constrain the all-order structure

High-energy limit

9
In perturbative QCD , in the Regge limit s » t, any scattering process is dominated by gluon exchange in the t channel

High-energy limit

Q In perturbative QCD, in the Regge limit $s \geqslant t$, any scattering process is dominated by gluon exchange in the t channel

Q For a 4-gluon tree amplitude, we obtain

$$
\begin{aligned}
& \mathcal{M}_{a a^{\prime} b b^{\prime}}^{g g \rightarrow g}(s, t)=2 g_{s}^{2}\left[\left(T^{c}\right)_{a a^{\prime}} C_{\nu_{a} \nu_{a^{\prime}}}\left(p_{a}, p_{a^{\prime}}\right)\right] \frac{s}{t}\left[\left(T_{c}\right)_{b b^{\prime}} C_{\nu_{b} \nu_{b^{\prime}}}\left(p_{b}, p_{b^{\prime}}\right)\right] \\
& C_{\nu_{a} \nu_{a^{\prime}}}\left(p_{a}, p_{a^{\prime}}\right) \text { are called impact factors }
\end{aligned}
$$

High-energy limit

Q In perturbative QCD, in the Regge limit $s \geqslant t$, any scattering process is dominated by gluon exchange in the t channel

Q For a 4-gluon tree amplitude, we obtain

$$
\begin{aligned}
& \mathcal{M}_{a a^{\prime} b b^{\prime}}^{g g \rightarrow g g}(s, t)=2 g_{s}^{2}\left[\left(T^{c}\right)_{a a^{\prime}} C_{\nu_{a} \nu_{a^{\prime}}}\left(p_{a}, p_{a^{\prime}}\right)\right] \frac{s}{t}\left[\left(T_{c}\right)_{b b^{\prime}} C_{\nu_{b} \nu_{b^{\prime}}}\left(p_{b}, p_{b^{\prime}}\right)\right] \\
& C_{\nu_{a} \nu_{a^{\prime}}}\left(p_{a}, p_{a^{\prime}}\right) \text { are called impact factors }
\end{aligned}
$$

Q leading logarithms of s / t are obtained by the substitution

$$
\frac{1}{t} \rightarrow \frac{1}{t}\left(\frac{s}{-t}\right)^{\alpha(t)}
$$

High-energy limit

- In perturbative QCD, in the Regge limit $s » t$, any scattering process is dominated by gluon exchange in the t channel

Q For a 4-gluon tree amplitude, we obtain

$$
\begin{aligned}
& \mathcal{M}_{a a^{\prime} b b^{\prime}}^{g g \rightarrow g g}(s, t)=2 g_{s}^{2}\left[\left(T^{c}\right)_{a a^{\prime}} C_{\nu_{a} \nu_{a^{\prime}}}\left(p_{a}, p_{a^{\prime}}\right)\right] \frac{s}{t}\left[\left(T_{c}\right)_{b b^{\prime}} C_{\nu_{b} \nu_{b^{\prime}}}\left(p_{b}, p_{b^{\prime}}\right)\right] \\
& C_{\nu_{a} \nu_{a^{\prime}}}\left(p_{a}, p_{a^{\prime}}\right) \text { are called impact factors }
\end{aligned}
$$

Q leading logarithms of s / t are obtained by the substitution

$$
\frac{1}{t} \rightarrow \frac{1}{t}\left(\frac{s}{-t}\right)^{\alpha(t)}
$$

Q $\alpha(t)$ is the Regge gluon trajectory, with infrared coefficients

$$
\begin{aligned}
& \alpha(t)=\frac{\alpha_{s}(-t, \epsilon)}{4 \pi} \alpha^{(1)}+\left(\frac{\alpha_{s}(-t, \epsilon)}{4 \pi}\right)^{2} \alpha^{(2)}+\mathcal{O}\left(\alpha_{s}^{3}\right) \\
& \alpha^{(1)}=C_{A} \frac{\widehat{\gamma}_{K}^{(1)}}{\epsilon}=C_{A} \frac{2}{\epsilon} \quad \alpha^{(2)}=C_{A}\left[-\frac{b_{0}}{\epsilon^{2}}+\widehat{\gamma}_{K}^{(2)} \frac{2}{\epsilon}+C_{A}\left(\frac{404}{27}-2 \zeta_{3}\right)+n_{f}\left(-\frac{56}{27}\right)\right]
\end{aligned}
$$

High-energy limit

Q In perturbative QCD, in the Regge limit $s \geqslant t$, any scattering process is dominated by gluon exchange in the t channel

Q For a 4-gluon tree amplitude, we obtain

$$
\begin{aligned}
& \mathcal{M}_{a a^{\prime} b b^{\prime}}^{g g \rightarrow g g}(s, t)=2 g_{s}^{2}\left[\left(T^{c}\right)_{a a^{\prime}} C_{\nu_{a} \nu_{a^{\prime}}}\left(p_{a}, p_{a^{\prime}}\right)\right] \frac{s}{t}\left[\left(T_{c}\right)_{b b^{\prime}} C_{\nu_{b} \nu_{b^{\prime}}}\left(p_{b}, p_{b^{\prime}}\right)\right] \\
& C_{\nu_{a} \nu_{a^{\prime}}}\left(p_{a}, p_{a^{\prime}}\right) \text { are called impact factors }
\end{aligned}
$$

Q leading logarithms of s / t are obtained by the substitution

$$
\frac{1}{t} \rightarrow \frac{1}{t}\left(\frac{s}{-t}\right)^{\alpha(t)}
$$

Q $\alpha(t)$ is the Regge gluon trajectory, with infrared coefficients

$$
\begin{aligned}
& \alpha(t)=\frac{\alpha_{s}(-t, \epsilon)}{4 \pi} \alpha^{(1)}+\left(\frac{\alpha_{s}(-t, \epsilon)}{4 \pi}\right)^{2} \alpha^{(2)}+\mathcal{O}\left(\alpha_{s}^{3}\right) \\
& \alpha^{(1)}=C_{A} \frac{\widehat{\gamma}_{K}^{(1)}}{\epsilon}=C_{A} \frac{2}{\epsilon} \quad \alpha^{(2)}=C_{A}\left[-\frac{b_{0}}{\epsilon^{2}}+\widehat{\gamma}_{K}^{(2)} \frac{2}{\epsilon}+C_{A}\left(\frac{404}{27}-2 \zeta_{3}\right)+n_{f}\left(-\frac{56}{27}\right)\right]
\end{aligned}
$$

Q in the Regge limit, the amplitude is invariant under $s \leftrightarrow u$ exchange.
To NLL accuracy, the amplitude is given by

$$
\mathcal{M}_{a a^{\prime} b b^{\prime}}^{g g \rightarrow g g}(s, t)=2 g_{s}^{2} \frac{s}{t}\left[\left(T^{c}\right)_{a a^{\prime}} C_{\nu_{a} \nu_{a^{\prime}}}\left(p_{a}, p_{a^{\prime}}\right)\right]\left[\left(\frac{s}{-t}\right)^{\alpha(t)}+\left(\frac{-s}{-t}\right)^{\alpha(t)}\right]\left[\left(T_{c}\right)_{b b^{\prime}} C_{\nu_{b} \nu_{b^{\prime}}}\left(p_{b}, p_{b^{\prime}}\right)\right]
$$

Resummation: Sudakov form factor

Q Sudakov (quark) form factor as matrix element of EM current

$$
\Gamma_{\mu}\left(p_{1}, p_{2} ; \mu^{2}, \epsilon\right) \equiv<0\left|J_{\mu}(0)\right| p_{1}, p_{2}>=\bar{v}\left(p_{2}\right) \gamma_{\mu} u\left(p_{1}\right) \Gamma\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)
$$

obeys evolution equation

$$
Q^{2} \frac{\partial}{\partial Q^{2}} \ln \left[\Gamma\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right]=\frac{1}{2}\left[K\left(\alpha_{s}\left(\mu^{2}\right), \epsilon\right)+G\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right]
$$

K is a counterterm; G is finite as $\varepsilon \rightarrow 0$

Resummation: Sudakov form factor

Q Sudakov (quark) form factor as matrix element of EM current

$$
\Gamma_{\mu}\left(p_{1}, p_{2} ; \mu^{2}, \epsilon\right) \equiv<0\left|J_{\mu}(0)\right| p_{1}, p_{2}>=\bar{v}\left(p_{2}\right) \gamma_{\mu} u\left(p_{1}\right) \Gamma\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)
$$

obeys evolution equation

$$
Q^{2} \frac{\partial}{\partial Q^{2}} \ln \left[\Gamma\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right]=\frac{1}{2}\left[K\left(\alpha_{s}\left(\mu^{2}\right), \epsilon\right)+G\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right]
$$

K is a counterterm; G is finite as $\varepsilon \rightarrow 0$
Q RG invariance requires

$$
\mu \frac{d G}{d \mu}=-\mu \frac{d K}{d \mu}=\gamma_{K}\left(\alpha_{s}\left(\mu^{2}\right)\right)
$$

Korchemsky Radyushkin I987
γ_{K} is the cusp anomalous dimension the solution is

$$
\Gamma\left(Q^{2}, \epsilon\right)=\exp \left\{\frac{1}{2} \int_{0}^{-Q^{2}} \frac{d \xi^{2}}{\xi^{2}}\left[G\left(-1, \bar{\alpha}_{s}\left(\xi^{2}, \epsilon\right), \epsilon\right)-\frac{1}{2} \gamma_{K}\left(\bar{\alpha}_{s}\left(\xi^{2}, \epsilon\right)\right) \ln \left(\frac{-Q^{2}}{\xi^{2}}\right)\right]\right\}
$$

cusp anomalous dimension

loop expansion of the cusp anomalous dimension

$$
\gamma_{K}^{(i)}=2 C_{i} \frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}+K C_{i}\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{2}+\cdots
$$

with

$$
K=\left(\frac{67}{18}-\zeta_{2}\right) C_{A}-\frac{10}{9} T_{F} N_{f}
$$

Factorisation of a multi-leg amplitude

$$
\begin{gathered}
\mathcal{M}_{N}\left(p_{i} / \mu, \epsilon\right)=\sum_{L} \mathcal{S}_{N L}\left(\beta_{i} \cdot \beta_{j}, \epsilon\right) H_{L}\left(\frac{2 p_{i} \cdot p_{j}}{\mu^{2}}, \frac{\left(2 p_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2} \mu^{2}}\right) \prod_{i} \frac{J_{i}\left(\frac{\left(2 p_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2} \mu^{2}}, \epsilon\right)}{\mathcal{J}_{i}\left(\frac{2\left(\beta_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2}}, \epsilon\right)} \\
p_{i}=\beta_{i} Q_{0} / \sqrt{2} \quad \text { value of } Q_{0} \text { is immaterial in } S, J
\end{gathered}
$$

to avoid double counting of soft-collinear region (IR double poles), J_{i} removes eikonal part from J_{i}, which is already in S
$\mathrm{J}_{\mathrm{i}} / \mathrm{J}_{\mathrm{i}}$ contains only single collinear poles

Factorisation

Q Soft gluons decouple from the hard part of the amplitude

Factorisation

Q Soft gluons decouple from the hard part of the amplitude
Q Ward identities decouple soft gluons from jets
Q soft gluons see jets as scalar particles representing the evolution of the external legs

Q colour links only the hard and soft parts of the amplitude

Factorisation

9 Soft gluons decouple from the hard part of the amplitude
Q Ward identities decouple soft gluons from jets
Q soft gluons see jets as scalar particles representing the evolution of the external legs

Q colour links only the hard and soft parts of the amplitude
9 Soft function is a matrix which mixes the colour representations and is driven by the anomalous dimension matrix Γ_{s}

Jet definition

- introduce auxiliary vector $n_{i}\left(n_{i}^{2} \neq 0\right)$ to separate collinear region
- define a jet using a Wilson line along n_{i}

partonic jet

$$
\bar{u}(p) J\left(\frac{(2 p \cdot n)^{2}}{n^{2} \mu^{2}}, \epsilon\right)=<p\left|\bar{\psi}(0) \Phi_{n}(0,-\infty)\right| 0>
$$

Wilson line

$$
\Phi_{n}\left(\lambda_{2}, \lambda_{1}\right)=P \exp \left[i g \int_{\lambda_{1}}^{\lambda_{2}} d \lambda n \cdot A(\lambda n)\right]
$$

eikonal jet

$$
\mathcal{J}\left(\frac{2(\beta \cdot n)^{2}}{n^{2}}, \epsilon\right)=<0\left|\bar{\Phi}_{\beta}(\infty, 0) \Phi_{n}(0,-\infty)\right| 0>
$$

Eikonal jet \& cusp anomalous dimension

eikonal jets are Wilson line correlators, introduced to avoid double counting

Eikonal jet \& cusp anomalous dimension

eikonal jets are Wilson line correlators, introduced to avoid double counting

Wilson line correlators are ultraviolet counterterms in DimReg IR poles \leftrightarrow UV singularities

Eikonal jet \& cusp anomalous dimension

eikonal jets are Wilson line correlators, introduced to avoid double counting

Wilson line correlators are ultraviolet counterterms in DimReg IR poles \leftrightarrow UV singularities

9
functional dependence on n_{i} constrained by classical invariance of Wilson lines under rescaling $n_{i} \rightarrow \alpha_{i} n_{i}$

Eikonal jet \& cusp anomalous dimension

eikonal jets are Wilson line correlators, introduced to avoid double counting

Wilson line correlators are ultraviolet counterterms in DimReg IR poles \leftrightarrow UV singularities
functional dependence on n_{i} constrained by classical invariance of Wilson lines under rescaling $n_{i} \rightarrow \alpha_{i} n_{i}$

Q single poles carry $(\beta \cdot n)^{2} / n^{2}$ dependence thus violate classical rescaling symmetry wrt $\beta \Rightarrow$ cusp anomalous dim

Eikonal jet \& cusp anomalous dimension

eikonal jets are Wilson line correlators, introduced to avoid double counting

Wilson line correlators are ultraviolet counterterms in DimReg IR poles \leftrightarrow UV singularities
functional dependence on n_{i} constrained by classical invariance of Wilson lines under rescaling $n_{i} \rightarrow \alpha_{i} n_{i}$
single poles carry $(\beta \cdot n)^{2} / n^{2}$ dependence thus violate classical rescaling symmetry wrt $\beta \Rightarrow$ cusp anomalous dim
double poles and kinematic dependence of single poles are controlled by cusp γ_{κ}, like in the quark form factor

$$
\mathcal{J}\left(\frac{2(\beta \cdot n)^{2}}{n^{2}}, \epsilon\right)=\exp \left\{\frac{1}{4} \int_{0}^{\mu^{2}} \frac{d \lambda^{2}}{\lambda^{2}}\left[\delta_{\mathcal{J}_{i}}\left(\alpha_{s}\left(\lambda^{2}, \epsilon\right)\right)-\frac{1}{2} \gamma_{K}\left(\bar{\alpha}_{s}\left(\lambda^{2}, \epsilon\right)\right) \ln \left(\frac{2(\beta \cdot n)^{2} \mu^{2}}{n^{2} \lambda^{2}}\right)\right]\right\}
$$

δj is a constant

Soft function S

Q soft function is a matrix which mixes the colour representations

$$
\begin{aligned}
& \left(c_{N}\right)_{i j k l} \mathcal{S}_{N L}\left(\beta_{a} \cdot \beta_{b}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) \\
& =\sum_{i^{\prime} j^{\prime} k^{\prime} l^{\prime}}<0\left|\Phi_{-\beta_{2}}^{k, k^{\prime}}(0, \infty) \Phi_{\beta_{1}}^{i, i^{\prime}}(\infty, 0) \Phi_{\beta_{3}}^{j, j^{\prime}}(0, \infty) \Phi_{-\beta_{4}}^{l, l^{\prime}}(\infty, 0)\right| 0>\left(c_{L}\right)_{i^{\prime} j^{\prime} k^{\prime} l^{\prime}}
\end{aligned}
$$

Soft function S

9
soft function is a matrix which mixes the colour representations

$$
\begin{aligned}
& \left(c_{N}\right)_{i j k l} \mathcal{S}_{N L}\left(\beta_{a} \cdot \beta_{b}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) \\
& =\sum_{i^{\prime} j^{\prime} k^{\prime} l^{\prime}}<0\left|\Phi_{-\beta_{2}}^{k, k^{\prime}}(0, \infty) \Phi_{\beta_{1}}^{i, i^{\prime}}(\infty, 0) \Phi_{\beta_{3}}^{j, j^{\prime}}(0, \infty) \Phi_{-\beta_{4}}^{l, l^{\prime}}(\infty, 0)\right| 0>\left(c_{L}\right)_{i^{\prime} j^{\prime} k^{\prime} k^{\prime}}
\end{aligned}
$$

Q matrix evolution equation
$\mu \frac{d}{d \mu} \mathcal{S}_{J L}\left(\beta_{a} \cdot \beta_{b}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)$
$=-\sum_{N}\left[\Gamma_{\mathcal{S}}\right]_{J N}\left(\beta_{a} \cdot \beta_{b}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) \mathcal{S}_{N L}\left(\beta_{a} \cdot \beta_{b}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)$
Γ_{S} soft anomalous dimension, singular due to the UV and collinear poles

Soft function S

Q soft function is a matrix which mixes the colour representations

$$
\begin{aligned}
& \left(c_{N}\right)_{i j k l} \mathcal{S}_{N L}\left(\beta_{a} \cdot \beta_{b}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) \\
& =\sum_{i^{\prime} j^{\prime} k^{\prime} l^{\prime}}<0\left|\Phi_{-\beta_{2}}^{k, k^{\prime}}(0, \infty) \Phi_{\beta_{1}}^{i, i^{\prime}}(\infty, 0) \Phi_{\beta_{3}}^{j, j^{\prime}}(0, \infty) \Phi_{-\beta_{4}}^{l, l^{\prime}}(\infty, 0)\right| 0>\left(c_{L}\right)_{i^{\prime} j^{\prime} k^{\prime} l^{\prime}}
\end{aligned}
$$

Q matrix evolution equation

$$
\begin{aligned}
& \mu \frac{d}{d \mu} \mathcal{S}_{J L}\left(\beta_{a} \cdot \beta_{b}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) \\
& =-\sum_{N}\left[\Gamma_{\mathcal{S}}\right]_{J N}\left(\beta_{a} \cdot \beta_{b}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) \mathcal{S}_{N L}\left(\beta_{a} \cdot \beta_{b}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)
\end{aligned}
$$

Γ_{S} soft anomalous dimension, singular due to the UV and collinear poles

Q in DimReg the solution is

$$
\begin{aligned}
\mathcal{S}\left(\beta_{a} \cdot \beta_{b}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) & =P \exp \left\{-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \lambda^{2}}{\lambda^{2}} \Gamma_{\mathcal{S}}\left(\beta_{a} \cdot \beta_{b}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right\} \\
\Gamma_{\mathcal{S}} & =\sum_{n=1}^{\infty} \Gamma_{\mathcal{S}}^{(n)}\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{n}
\end{aligned}
$$

Soft anomalous dimension

Q for an amplitude with an arbitrary \# of legs

$$
\Gamma_{\mathcal{S}}^{(2)}=\frac{K}{2} \Gamma_{\mathcal{S}}^{(1)} \quad \text { Aybat Dixon Sterman } 2006
$$

K is 2 -loop coefficient of cusp anomalous dimension
Γ_{s} has cusp singularities like γ_{J}

$N=4$ SUSY in the planar limit

9
colour-wise, the planar limit is trivial:can absorb S into J_{i}

$N=4$ SUSY in the planar limit

9
colour-wise, the planar limit is trivial:can absorb S into J_{i}
each slice is square root of Sudakov form factor

$$
\mathcal{M}_{n}=\prod_{i=1}^{n}\left[\mathcal{M}^{[g g \rightarrow 1]}\left(\frac{s_{i, i+1}}{\mu^{2}}, \alpha_{s}, \epsilon\right)\right]^{1 / 2} h_{n}\left(\left\{p_{i}\right\}, \mu^{2}, \alpha_{s}, \epsilon\right)
$$

$N=4$ SUSY in the planar limit

© colour-wise, the planar limit is trivial:can absorb S into J_{i}
each slice is square root of Sudakov form factor

$$
\mathcal{M}_{n}=\prod_{i=1}^{n}\left[\mathcal{M}^{[g g \rightarrow 1]}\left(\frac{s_{i, i+1}}{\mu^{2}}, \alpha_{s}, \epsilon\right)\right]^{1 / 2} h_{n}\left(\left\{p_{i}\right\}, \mu^{2}, \alpha_{s}, \epsilon\right)
$$

Q $\beta \mathrm{fn}=0 \Rightarrow$ coupling runs only through dimension

$$
\bar{\alpha}_{s}\left(\mu^{2}\right) \mu^{2 \epsilon}=\bar{\alpha}_{s}\left(\lambda^{2}\right) \lambda^{2 \epsilon}
$$

the Sudakov form factor has a simple solution
$\ln \left[\Gamma\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right]=-\frac{1}{2} \sum_{n=1}^{\infty}\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{n}\left(\frac{-Q^{2}}{\mu^{2}}\right)^{-n \epsilon}\left[\frac{\gamma_{K}^{(n)}}{2 n^{2} \epsilon^{2}}+\frac{G^{(n)}(\epsilon)}{n \epsilon}\right]$
\Rightarrow IR structure of $N=4$ SUSY amplitudes

Reduced soft function

9
$\overline{\mathcal{S}}_{J L}\left(\rho_{i j}, \epsilon\right)=\frac{\mathcal{S}_{J L}\left(\beta_{i} \cdot \beta_{j}, \epsilon\right)}{\prod_{i=1}^{n} \mathcal{J}_{i}\left(\frac{2\left(\beta_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2}}, \epsilon\right)}$
the reduced soft function is made such that the double poles cancel. It does not have cusp singularities \Rightarrow must respect rescaling $\beta_{i} \rightarrow K_{i} \beta_{i}$

Reduced soft function

9
$\overline{\mathcal{S}}_{J L}\left(\rho_{i j}, \epsilon\right)=\frac{\mathcal{S}_{J L}\left(\beta_{i} \cdot \beta_{j}, \epsilon\right)}{\prod_{i=1}^{n} \mathcal{J}_{i}\left(\frac{2\left(\beta_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2}}, \epsilon\right)}$
the reduced soft function is made such that the double poles cancel. It does not have cusp singularities \Rightarrow must respect rescaling $\beta_{i} \rightarrow K_{i} \beta_{i}$

$$
\underset{\rightharpoonup}{ } \underbrace{\mathcal{S}} \text { depends only on } \rho_{i j}=\frac{\left(\beta_{i} \cdot \beta_{j}\right)^{2}}{\frac{2\left(\beta_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2}} \frac{2\left(\beta_{j} \cdot n_{j}\right)^{2}}{n_{j}^{2}}}
$$

the factorisation becomes

$$
\mathcal{M}_{N}\left(p_{i} / \mu, \epsilon\right)=\sum_{L} \overline{\mathcal{S}}_{N L}\left(\rho_{i j}, \epsilon\right) H_{L}\left(\frac{2 p_{i} \cdot p_{j}}{\mu^{2}}, \frac{\left(2 p_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2} \mu^{2}}\right) \prod_{i} J_{i}\left(\frac{\left(2 p_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2} \mu^{2}}, \epsilon\right)
$$

$\overline{\mathcal{S}}$ has only single poles due to large-angle soft emissions

Reduced soft anomalous dimension

Q the evolution equation for the reduced soft anomalous dimension

$$
\sum_{j \neq i} \frac{\partial}{\partial \ln \rho_{i j}} \Gamma^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)=\frac{1}{4} \gamma_{K}^{(i)}\left(\alpha_{s}\right)
$$

(simplest) solution: dipole formula

$$
\left.\Gamma^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)\right|_{\text {dip }}=-\frac{1}{8} \hat{\gamma}_{K}\left(\alpha_{s}\right) \sum_{i \neq j} \ln \left(\rho_{i j}\right) T_{i} \cdot T_{j}+\frac{1}{2} \hat{\delta}_{\overline{\mathcal{S}}}\left(\alpha_{s}\right) \sum_{i=1}^{n} C_{i}
$$

with

$$
\gamma_{K}^{(i)}\left(\alpha_{s}\right)=C_{i} \hat{\gamma}_{K}\left(\alpha_{s}\right) \quad \hat{\gamma}_{K}\left(\alpha_{s}\right)=2 \frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}+K\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{2}+K^{(2)}\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{3}+\cdots
$$

Reduced soft anomalous dimension

Q the evolution equation for the reduced soft anomalous dimension

$$
\sum_{j \neq i} \frac{\partial}{\partial \ln \rho_{i j}} \Gamma^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)=\frac{1}{4} \gamma_{K}^{(i)}\left(\alpha_{s}\right)
$$

(simplest) solution: dipole formula

$$
\left.\Gamma^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)\right|_{\text {dip }}=-\frac{1}{8} \hat{\gamma}_{K}\left(\alpha_{s}\right) \sum_{i \neq j} \ln \left(\rho_{i j}\right) T_{i} \cdot T_{j}+\frac{1}{2} \hat{\delta}_{\overline{\mathcal{S}}}\left(\alpha_{s}\right) \sum_{i=1}^{n} C_{i}
$$

with

$$
\gamma_{K}^{(i)}\left(\alpha_{s}\right)=C_{i} \hat{\gamma}_{K}\left(\alpha_{s}\right) \quad \hat{\gamma}_{K}\left(\alpha_{s}\right)=2 \frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}+K\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{2}+K^{(2)}\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{3}+\cdots
$$

only 2-eikonal-line correlations

Reduced soft anomalous dimension

9
the evolution equation for the reduced soft anomalous dimension

$$
\sum_{j \neq i} \frac{\partial}{\partial \ln \rho_{i j}} \Gamma^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)=\frac{1}{4} \gamma_{K}^{(i)}\left(\alpha_{s}\right)
$$

(simplest) solution: dipole formula

$$
\left.\Gamma^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)\right|_{\text {dip }}=-\frac{1}{8} \hat{\gamma}_{K}\left(\alpha_{s}\right) \sum_{i \neq j} \ln \left(\rho_{i j}\right) T_{i} \cdot T_{j}+\frac{1}{2} \hat{\delta}_{\overline{\mathcal{S}}}\left(\alpha_{s}\right) \sum_{i=1}^{n} C_{i}
$$

with

$$
\gamma_{K}^{(i)}\left(\alpha_{s}\right)=C_{i} \hat{\gamma}_{K}\left(\alpha_{s}\right) \quad \hat{\gamma}_{K}\left(\alpha_{s}\right)=2 \frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}+K\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{2}+K^{(2)}\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{3}+\cdots
$$

Q only 2-eikonal-line correlations
generalises 2-loop solution

Reduced soft anomalous dimension

9
the evolution equation for the reduced soft anomalous dimension

$$
\sum_{j \neq i} \frac{\partial}{\partial \ln \rho_{i j}} \Gamma^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)=\frac{1}{4} \gamma_{K}^{(i)}\left(\alpha_{s}\right)
$$

(simplest) solution: dipole formula

$$
\left.\Gamma^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)\right|_{\text {dip }}=-\frac{1}{8} \hat{\gamma}_{K}\left(\alpha_{s}\right) \sum_{i \neq j} \ln \left(\rho_{i j}\right) T_{i} \cdot T_{j}+\frac{1}{2} \hat{\delta}_{\overline{\mathcal{S}}}\left(\alpha_{s}\right) \sum_{i=1}^{n} C_{i}
$$

with

$$
\gamma_{K}^{(i)}\left(\alpha_{s}\right)=C_{i} \hat{\gamma}_{K}\left(\alpha_{s}\right) \quad \hat{\gamma}_{K}\left(\alpha_{s}\right)=2 \frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}+K\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{2}+K^{(2)}\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{3}+\cdots
$$

Q only 2 -eikonal-line correlations
generalises 2-loop solution
Q colour matrix structure fixed at one loop

Reduced soft anomalous dimension

9
the evolution equation for the reduced soft anomalous dimension

$$
\sum_{j \neq i} \frac{\partial}{\partial \ln \rho_{i j}} \Gamma^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)=\frac{1}{4} \gamma_{K}^{(i)}\left(\alpha_{s}\right)
$$

(simplest) solution: dipole formula

$$
\left.\Gamma^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)\right|_{\text {dip }}=-\frac{1}{8} \hat{\gamma}_{K}\left(\alpha_{s}\right) \sum_{i \neq j} \ln \left(\rho_{i j}\right) T_{i} \cdot T_{j}+\frac{1}{2} \hat{\delta}_{\overline{\mathcal{S}}}\left(\alpha_{s}\right) \sum_{i=1}^{n} C_{i}
$$

with

$$
\gamma_{K}^{(i)}\left(\alpha_{s}\right)=C_{i} \hat{\gamma}_{K}\left(\alpha_{s}\right) \quad \hat{\gamma}_{K}\left(\alpha_{s}\right)=2 \frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}+K\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{2}+K^{(2)}\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{3}+\cdots
$$

only 2-eikonal-line correlations
generalises 2-loop solution
Q colour matrix structure fixed at one loop
Q cusp anomalous dimension plays role of IR coupling

Dipole formula for the amplitude

combining the dipole-formula solution for the reduced soft function with the jet functions, one obtains a dipole formula for the amplitude

$$
\mathcal{M}\left(\frac{p_{i}}{\mu}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=Z\left(\frac{p_{i}}{\mu_{f}}, \alpha_{s}\left(\mu_{f}^{2}\right), \epsilon\right) \mathcal{H}\left(\frac{p_{i}}{\mu}, \frac{\mu_{f}}{\mu}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)
$$

where all the collinear and soft singularities are in the dipole operator Z

$$
Z\left(\frac{p_{l}}{\mu}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\exp \left\{\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \lambda^{2}}{\lambda^{2}}\left[\frac{\widehat{\gamma}_{K}\left(\alpha_{s}\left(\lambda^{2}\right)\right)}{4} \sum_{(i, j)} \ln \left(\frac{-s_{i j}}{\lambda^{2}}\right) \mathbf{T}_{i} \cdot \mathbf{T}_{j}-\sum_{i=1}^{L} \gamma_{J_{i}}\left(\alpha_{s}\left(\lambda^{2}\right)\right)\right]\right\}
$$

Possible corrections to the dipole formula

9
the cusp anomalous dimension might violate Casimir scaling at 4 loops

$$
\gamma_{K}^{(i)}\left(\alpha_{s}\right)=C_{i} \hat{\gamma}_{K}\left(\alpha_{s}\right)+\tilde{\gamma}_{K}^{(i)}\left(\alpha_{s}\right)
$$

Possible corrections to the dipole formula

9
the cusp anomalous dimension might violate Casimir scaling at 4 loops
$\gamma_{K}^{(i)}\left(\alpha_{s}\right)=C_{i} \hat{\gamma}_{K}\left(\alpha_{s}\right)+\tilde{\gamma}_{K}^{(i)}\left(\alpha_{s}\right)$
Q 4-line correlations may appear at 3 loops;
then the solution of the reduced soft anomalous dimension would be

$$
\begin{aligned}
& \Gamma^{\overline{\mathcal{B}}}\left(\rho_{i j}, \alpha_{s}\right)=\left.\Gamma^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)\right|_{\text {dip }}+\Delta\left(\rho_{i j k l}, \alpha_{s}\right) \\
& \rho_{i j k l}=\frac{\rho_{i j} \rho_{k l}}{\rho_{i k} \rho_{j l}}
\end{aligned}
$$

Possible corrections to the dipole formula

9
the cusp anomalous dimension might violate Casimir scaling at 4 loops
$\gamma_{K}^{(i)}\left(\alpha_{s}\right)=C_{i} \hat{\gamma}_{K}\left(\alpha_{s}\right)+\tilde{\gamma}_{K}^{(i)}\left(\alpha_{s}\right)$
Q 4-line correlations may appear at 3 loops;
then the solution of the reduced soft anomalous dimension would be

$$
\begin{aligned}
& \Gamma^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)=\left.\Gamma^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)\right|_{\mathrm{dip}}+\Delta\left(\rho_{i j k l}, \alpha_{s}\right) \\
& \rho_{i j k l}=\frac{\rho_{i j} \rho_{k l}}{\rho_{i k} \rho_{j l}}
\end{aligned}
$$

Q Δ is constrained by Bose symmetry, collinear limits and transcendentality bounds

Dipole formula in the high-energy limit

Q we introduce the colour operators

$$
\begin{aligned}
\mathbf{T}_{s}=\mathbf{T}_{a}+\mathbf{T}_{b}, & \mathbf{T}_{a}+\mathbf{T}_{b}+\mathbf{T}_{a^{\prime}}+\mathbf{T}_{b^{\prime}}=0 \\
\mathbf{T}_{t}=\mathbf{T}_{a}+\mathbf{T}_{a^{\prime}}, & \mathbf{T}_{s}^{2}+\mathbf{T}_{t}^{2}+\mathbf{T}_{u}^{2}=\sum_{i=1}^{4} C_{i} \\
\mathbf{T}_{u}=\mathbf{T}_{a}+\mathbf{T}_{b^{\prime}} &
\end{aligned}
$$

Q in the limit $s » t$, the dipole operator Z becomes, to power accuracy in s / t

$$
Z\left(\frac{p_{i}}{\mu}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\widetilde{Z}\left(\frac{s}{t}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) Z_{1}\left(\frac{t}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)
$$

Dipole formula in the high-energy limit

Q we introduce the colour operators

$$
\begin{array}{ll}
\mathbf{T}_{s}=\mathbf{T}_{a}+\mathbf{T}_{b}, & \mathbf{T}_{a}+\mathbf{T}_{b}+\mathbf{T}_{a^{\prime}}+\mathbf{T}_{b^{\prime}}=0 \\
\mathbf{T}_{t}=\mathbf{T}_{a}+\mathbf{T}_{a^{\prime}}, & \mathbf{T}_{s}^{2}+\mathbf{T}_{t}^{2}+\mathbf{T}_{u}^{2}=\sum_{i=1}^{4} C_{i} \\
\mathbf{T}_{u}=\mathbf{T}_{a}+\mathbf{T}_{b^{\prime}} &
\end{array}
$$

Q in the limit $s » t$, the dipole operator Z becomes, to power accuracy in s / t

$$
Z\left(\frac{p_{i}}{\mu}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\widetilde{Z}\left(\frac{s}{t}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) Z_{1}\left(\frac{t}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)
$$

Q the operator Z_{1} is colourless and s independent

Dipole formula in the high-energy limit

Q we introduce the colour operators

$$
\begin{array}{ll}
\mathbf{T}_{s}=\mathbf{T}_{a}+\mathbf{T}_{b}, & \mathbf{T}_{a}+\mathbf{T}_{b}+\mathbf{T}_{a^{\prime}}+\mathbf{T}_{b^{\prime}}=0 \\
\mathbf{T}_{t}=\mathbf{T}_{a}+\mathbf{T}_{a^{\prime}}, & \mathbf{T}_{s}^{2}+\mathbf{T}_{t}^{2}+\mathbf{T}_{u}^{2}=\sum_{i=1}^{4} C_{i} \\
\mathbf{T}_{u}=\mathbf{T}_{a}+\mathbf{T}_{b^{\prime}} &
\end{array}
$$

Q in the limit $s » t$, the dipole operator Z becomes, to power accuracy in s / t

$$
Z\left(\frac{p_{i}}{\mu}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\widetilde{Z}\left(\frac{s}{t}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) Z_{1}\left(\frac{t}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)
$$

Q the operator Z_{1} is colourless and s independent
Q colour and s dependence are in the operator \tilde{Z}

$$
\widetilde{Z}\left(\frac{s}{t}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\exp \left\{K\left(\alpha_{s}\left(\mu^{2}\right), \epsilon\right)\left[\ln \left(\frac{s}{-t}\right) \mathbf{T}_{t}^{2}+\mathrm{i} \pi \mathbf{T}_{s}^{2}\right]\right\}
$$

which is determined by the cusp anomalous dimension, through

$$
K\left(\alpha_{s}\left(\mu^{2}\right), \epsilon\right)=-\frac{1}{4} \int_{0}^{\mu^{2}} \frac{d \lambda^{2}}{\lambda^{2}} \widehat{\gamma}_{K}\left(\alpha_{s}\left(\lambda^{2}, \epsilon\right)\right),
$$

Dipole formula in the high-energy limit

Q we introduce the colour operators

$$
\begin{array}{rlrl}
\mathbf{T}_{s} & =\mathbf{T}_{a}+\mathbf{T}_{b}, & & \mathbf{T}_{a}+\mathbf{T}_{b}+\mathbf{T}_{a^{\prime}}+\mathbf{T}_{b^{\prime}}=0 \\
\mathbf{T}_{t} & =\mathbf{T}_{a}+\mathbf{T}_{a^{\prime}}, & & \mathbf{T}_{s}^{2}+\mathbf{T}_{t}^{2}+\mathbf{T}_{u}^{2}=\sum_{i=1}^{4} C_{i} \\
\mathbf{T}_{u} & =\mathbf{T}_{a}+\mathbf{T}_{b^{\prime}} &
\end{array}
$$

Q in the limit $s » t$, the dipole operator Z becomes, to power accuracy in s / t

$$
Z\left(\frac{p_{i}}{\mu}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\widetilde{Z}\left(\frac{s}{t}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) Z_{1}\left(\frac{t}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)
$$

Q the operator Z_{1} is colourless and s independent
Q colour and s dependence are in the operator \tilde{Z}

$$
\widetilde{Z}\left(\frac{s}{t}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\exp \left\{K\left(\alpha_{s}\left(\mu^{2}\right), \epsilon\right)\left[\ln \left(\frac{s}{-t}\right) \mathbf{T}_{t}^{2}+\mathrm{i} \pi \mathbf{T}_{s}^{2}\right]\right\}
$$

which is determined by the cusp anomalous dimension, through

$$
K\left(\alpha_{s}\left(\mu^{2}\right), \epsilon\right)=-\frac{1}{4} \int_{0}^{\mu^{2}} \frac{d \lambda^{2}}{\lambda^{2}} \widehat{\gamma}_{K}\left(\alpha_{s}\left(\lambda^{2}, \epsilon\right)\right),
$$

Q the dipole operator fixes the Regge pole structure, and beyond

Q for completeness, the operator Z_{1} is

$$
Z_{1}\left(\frac{t}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\exp \left\{\sum_{i=1}^{4} B_{i}\left(\alpha_{s}\left(\mu^{2}\right), \epsilon\right)+\frac{1}{2}\left[K\left(\alpha_{s}\left(\mu^{2}\right), \epsilon\right)\left(\ln \left(\frac{-t}{\mu^{2}}\right)-\mathrm{i} \pi\right)+D\left(\alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right] \sum_{i=1}^{4} C_{i}\right\}
$$

with

$$
\begin{aligned}
D\left(\alpha_{s}\left(\mu^{2}\right), \epsilon\right) & =-\frac{1}{4} \int_{0}^{\mu^{2}} \frac{d \lambda^{2}}{\lambda^{2}} \widehat{\gamma}_{K}\left(\alpha_{s}\left(\lambda^{2}, \epsilon\right)\right) \ln \left(\frac{\mu^{2}}{\lambda^{2}}\right), \\
B_{i}\left(\alpha_{s}\left(\mu^{2}\right), \epsilon\right) & \equiv-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \lambda^{2}}{\lambda^{2}} \gamma_{J_{i}}\left(\alpha_{s}\left(\lambda^{2}, \epsilon\right)\right)
\end{aligned}
$$

Dipole formula \& leading logs

9
to leading logarithmic accuracy in s / t, the dipole operator loses the imaginary part (s-channel)

$$
\mathcal{M}\left(\frac{p_{i}}{\mu}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\exp \left\{K\left(\alpha_{s}\left(\mu^{2}\right), \epsilon\right) \ln \left(\frac{s}{-t}\right) \mathbf{T}_{t}^{2}\right\} Z_{\mathbf{1}} \mathcal{H}\left(\frac{p_{i}}{\mu}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)
$$

Dipole formula \& leading logs

9
to leading logarithmic accuracy in s / t, the dipole operator loses the imaginary part (s-channel)

$$
\mathcal{M}\left(\frac{p_{i}}{\mu}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\exp \left\{K\left(\alpha_{s}\left(\mu^{2}\right), \epsilon\right) \ln \left(\frac{s}{-t}\right) \mathbf{T}_{t}^{2}\right\} Z_{\mathbf{1}} \mathcal{H}\left(\frac{p_{i}}{\mu}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)
$$

Q in the Regge limit $s » t$, any scattering process is dominated by gluon exchange in the t channel in particular, in parton-parton scattering t-channel gluon exchange occurs at leading order, the other channel contributions being power suppressed

Q the t-channel exchange colour structure is an eigenstate of the operator

$$
\mathbf{T}_{t}^{2} \mathcal{H}^{f f \rightarrow f f} \xrightarrow{|t / s| \rightarrow 0} C_{t} \mathcal{H}_{t}^{f f \rightarrow f f}
$$

Dipole formula \& leading logs

0
to leading logarithmic accuracy in s / t, the dipole operator loses the imaginary part (s-channel)

$$
\mathcal{M}\left(\frac{p_{i}}{\mu}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\exp \left\{K\left(\alpha_{s}\left(\mu^{2}\right), \epsilon\right) \ln \left(\frac{s}{-t}\right) \mathbf{T}_{t}^{2}\right\} Z_{\mathbf{1}} \mathcal{H}\left(\frac{p_{i}}{\mu}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)
$$

Q in the Regge limit $s » t$, any scattering process is dominated by gluon exchange in the t channel in particular, in parton-parton scattering t-channel gluon exchange occurs at leading order, the other channel contributions being power suppressed

- the t-channel exchange colour structure is an eigenstate of the operator

$$
\mathbf{T}_{t}^{2} \mathcal{H}^{f f \rightarrow f f} \xrightarrow{|t / s| \rightarrow 0} C_{t} \mathcal{H}_{t}^{f f \rightarrow f f}
$$

Q to leading logarithmic accuracy in s / t, the parton-parton scattering amplitude becomes

$$
\mathcal{M}^{f f \rightarrow f f}=\left(\frac{s}{-t}\right)^{C_{A} K\left(\alpha_{s}\left(\mu^{2}\right), \epsilon\right)} Z_{\mathbf{1}} \mathcal{H}_{t}^{f f \rightarrow f f}
$$

to leading order, the cusp anomalous dimension is

$$
\widehat{\gamma}_{K}\left(\alpha_{s}\right)=2 \frac{\alpha_{s}}{\pi}+\mathcal{O}\left(\alpha_{s}^{2}\right) \quad K\left(\alpha_{s}, \epsilon\right)=\frac{1}{2 \epsilon} \frac{\alpha_{s}}{\pi}+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

so the singular part of the one-loop Regge gluon trajectory becomes
$\alpha^{(1)}=C_{A} \frac{2}{\epsilon}+\mathcal{O}\left(\epsilon^{0}\right) \quad$ in agreement with the high-energy limit of parton-parton amplitudes

Dipole formula beyond the leading logs

Q to power accuracy in s / t (thus to arbitrary logarithmic accuracy), the dipole operator Z can be rewritten as

$$
\begin{aligned}
\widetilde{Z}\left(\frac{s}{t}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) & =\left(\frac{s}{-t}\right)^{K\left(\alpha_{s}, \epsilon\right) \mathbf{T}_{t}^{2}} \exp \left\{\mathrm{i} \pi K\left(\alpha_{s}, \epsilon\right) \mathbf{T}_{s}^{2}\right\} \\
& \times \exp \left\{-\mathrm{i} \frac{\pi}{2}\left[K\left(\alpha_{s}, \epsilon\right)\right]^{2} \ln \left(\frac{s}{-t}\right)\left[\mathbf{T}_{t}^{2}, \mathbf{T}_{s}^{2}\right]\right\} \\
& \times \exp \left\{\frac{1}{6}\left[K\left(\alpha_{s}, \epsilon\right)\right]^{3}\left(-2 \pi^{2} \ln \left(\frac{s}{-t}\right)\left[\mathbf{T}_{s}^{2},\left[\mathbf{T}_{t}^{2}, \mathbf{T}_{s}^{2}\right]\right]+\mathrm{i} \pi \ln ^{2}\left(\frac{s}{-t}\right)\left[\mathbf{T}_{t}^{2},\left[\mathbf{T}_{t}^{2}, \mathbf{T}_{s}^{2}\right]\right]\right)\right\} \\
& \times \exp \left\{\mathcal{O}\left(\left[K\left(\alpha_{s}, \epsilon\right)\right]^{4}\right)\right\}
\end{aligned}
$$

Dipole formula beyond the leading logs

Q to power accuracy in s / t (thus to arbitrary logarithmic accuracy), the dipole operator Z can be rewritten as

$$
\begin{aligned}
& \widetilde{Z}\left(\frac{s}{t}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\left(\frac{s}{-t}\right)^{K\left(\alpha_{s}, \epsilon\right)} \mathbf{T}_{t}^{2} \\
& \exp \left\{\mathrm{i} \pi K\left(\alpha_{s}, \epsilon\right) \mathbf{T}_{s}^{2}\right\} \\
& \times \exp \left\{-\mathrm{i} \frac{\pi}{2}\left[K\left(\alpha_{s}, \epsilon\right)\right]^{2} \ln \left(\frac{s}{-t}\right)\left[\mathbf{T}_{t}^{2}, \mathbf{T}_{s}^{2}\right]\right\} \\
& \times \exp \left\{\frac{1}{6}\left[K\left(\alpha_{s}, \epsilon\right)\right]^{3}\left(-2 \pi^{2} \ln \left(\frac{s}{-t}\right)\left[\mathbf{T}_{s}^{2},\left[\mathbf{T}_{t}^{2}, \mathbf{T}_{s}^{2}\right]\right]+\mathrm{i} \pi \ln ^{2}\left(\frac{s}{-t}\right)\left[\mathbf{T}_{t}^{2},\left[\mathbf{T}_{t}^{2}, \mathbf{T}_{s}^{2}\right]\right]\right)\right\} \\
& \times \exp \left\{\mathcal{O}\left(\left[K\left(\alpha_{s}, \epsilon\right)\right]^{4}\right)\right\}
\end{aligned}
$$

Q NLL accuracy:
$K\left(\alpha_{s}, \epsilon\right)=\frac{\alpha_{s}}{\pi} \frac{1}{2 \epsilon}+\left(\frac{\alpha_{s}}{\pi}\right)^{2}\left(\frac{\widehat{\gamma}_{K}^{(2)}}{8 \epsilon}-\frac{b_{0}}{16 \epsilon^{2}}\right)+\mathcal{O}\left(\alpha_{s}^{3}\right)$
reproduces the singular part of the one- and two-loop Regge gluon trajectory, while the imaginary part does not Reggeise

Dipole formula beyond the leading logs

Q to power accuracy in s / t (thus to arbitrary logarithmic accuracy), the dipole operator Z can be rewritten as

$$
\begin{aligned}
& \widetilde{Z}\left(\frac{s}{t}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=\left(\frac{s}{-t}\right)^{K\left(\alpha_{s}, \epsilon\right)} \mathbf{T}_{t}^{2} \\
& \exp \left\{\mathrm{i} \pi K\left(\alpha_{s}, \epsilon\right) \mathbf{T}_{s}^{2}\right\} \\
& \times \exp \left\{-\mathrm{i} \frac{\pi}{2}\left[K\left(\alpha_{s}, \epsilon\right)\right]^{2} \ln \left(\frac{s}{-t}\right)\left[\mathbf{T}_{t}^{2}, \mathbf{T}_{s}^{2}\right]\right\} \\
& \times \exp \left\{\frac{1}{6}\left[K\left(\alpha_{s}, \epsilon\right)\right]^{3}\left(-2 \pi^{2} \ln \left(\frac{s}{-t}\right)\left[\mathbf{T}_{s}^{2},\left[\mathbf{T}_{t}^{2}, \mathbf{T}_{s}^{2}\right]\right]+\mathrm{i} \pi \ln ^{2}\left(\frac{s}{-t}\right)\left[\mathbf{T}_{t}^{2},\left[\mathbf{T}_{t}^{2}, \mathbf{T}_{s}^{2}\right]\right]\right)\right\} \\
& \times \exp \left\{\mathcal{O}\left(\left[K\left(\alpha_{s}, \epsilon\right)\right]^{4}\right)\right\}
\end{aligned}
$$

Q NLL accuracy:
$K\left(\alpha_{s}, \epsilon\right)=\frac{\alpha_{s}}{\pi} \frac{1}{2 \epsilon}+\left(\frac{\alpha_{s}}{\pi}\right)^{2}\left(\frac{\widehat{\gamma}_{K}^{(2)}}{8 \epsilon}-\frac{b_{0}}{16 \epsilon^{2}}\right)+\mathcal{O}\left(\alpha_{s}^{3}\right)$
reproduces the singular part of the one- and two-loop Regge gluon trajectory, while the imaginary part does not Reggeise

Q NNLL accuracy:

$$
\begin{aligned}
& \mathcal{O}\left(\alpha_{s}^{2}\right):--\frac{1}{2} \pi^{2} K^{2}\left(\alpha_{s}, \epsilon\right)\left(\mathbf{T}_{s}^{2}\right)^{2} \\
& \mathcal{O}\left(\alpha_{s}^{3}\right): \longrightarrow-\frac{\pi^{2}}{3} K^{3}\left(\alpha_{s}, \epsilon\right) \ln \left(\frac{s}{-t}\right)\left[\mathbf{T}_{s}^{2},\left[\mathbf{T}_{t}^{2}, \mathbf{T}_{s}^{2}\right]\right]
\end{aligned}
$$

which is non-logarithmic and non-diagonal in the t channel
breaks down the Regge-pole picture

Amplitudes in the high-energy limit

Q Regge limit of the gluon-gluon amplitude

$$
\mathcal{M}_{a a^{\prime} b b^{\prime}}^{g g \rightarrow g g}(s, t)=2 g_{s}^{2} \frac{s}{t}\left[\left(T^{c}\right)_{a a^{\prime}} C_{\nu_{a} \nu_{a^{\prime}}}\left(p_{a}, p_{a^{\prime}}\right)\right]\left[\left(\frac{s}{-t}\right)^{\alpha(t)}+\left(\frac{-s}{-t}\right)^{\alpha(t)}\right]\left[\left(T_{c}\right)_{b b^{\prime}} C_{\nu_{b} \nu_{b^{\prime}}}\left(p_{b}, p_{b^{\prime}}\right)\right]
$$

strip colour off \& expand at one loop
$m_{g g \rightarrow g g}^{(1)}=2 g_{s}^{2} \frac{s}{t}\left(\alpha^{(1)}(t) \ln \left(\frac{s}{-t}\right)+2 C_{g g}^{(1)}(t)\right)$

the Regge gluon trajectory is universal;
the one-loop gluon impact factor is a polynomial in t, ε, starting at I / ε^{2}

Amplitudes in the high-energy limit

Q Regge limit of the gluon-gluon amplitude

$$
\mathcal{M}_{a a^{\prime} b b^{\prime}}^{g g \rightarrow g g}(s, t)=2 g_{s}^{2} \frac{s}{t}\left[\left(T^{c}\right)_{a a^{\prime}} C_{\nu_{a} \nu_{a^{\prime}}}\left(p_{a}, p_{a^{\prime}}\right)\right]\left[\left(\frac{s}{-t}\right)^{\alpha(t)}+\left(\frac{-s}{-t}\right)^{\alpha(t)}\right]\left[\left(T_{c}\right)_{b b^{\prime}} C_{\nu_{b} \nu_{b^{\prime}}}\left(p_{b}, p_{b^{\prime}}\right)\right]
$$

strip colour off \& expand at one loop
$m_{g g \rightarrow g g}^{(1)}=2 g_{s}^{2} \frac{s}{t}\left(\alpha^{(1)}(t) \ln \left(\frac{s}{-t}\right)+2 C_{g g}^{(1)}(t)\right)$

the Regge gluon trajectory is universal;
the one-loop gluon impact factor is a polynomial in t, ε, starting at I / ε^{2}
0
perform the Regge limit of the quark-quark amplitude
\rightarrow get one-loop quark impact factor

Amplitudes in the high-energy limit

Q Regge limit of the gluon-gluon amplitude

$$
\mathcal{M}_{a a^{\prime} b b^{\prime}}^{g g \rightarrow g g}(s, t)=2 g_{s}^{2} \frac{s}{t}\left[\left(T^{c}\right)_{a a^{\prime}} C_{\nu_{a} \nu_{a^{\prime}}}\left(p_{a}, p_{a^{\prime}}\right)\right]\left[\left(\frac{s}{-t}\right)^{\alpha(t)}+\left(\frac{-s}{-t}\right)^{\alpha(t)}\right]\left[\left(T_{c}\right)_{b b^{\prime}} C_{\nu_{b} \nu_{b^{\prime}}}\left(p_{b}, p_{b^{\prime}}\right)\right]
$$

strip colour off \& expand at one loop
$m_{g g \rightarrow g g}^{(1)}=2 g_{s}^{2} \frac{s}{t}\left(\alpha^{(1)}(t) \ln \left(\frac{s}{-t}\right)+2 C_{g g}^{(1)}(t)\right)$

the Regge gluon trajectory is universal; the one-loop gluon impact factor is a polynomial in t, ε, starting at I / ε^{2}
perform the Regge limit of the quark-quark amplitude
\rightarrow get one-loop quark impact factor
if factorisation holds, one can obtain the one-loop quark-gluon amplitude by assembling the Regge trajectory and the gluon and quark impact factors the result should match the quark-gluon amplitude in the high-energy limit: it does

High-energy limit at 2 loops

Q in the Regge limit, the 2-loop expansion of the gluon-gluon amplitude is $m_{g g \rightarrow g g}^{(2)}=2 g_{s}^{2} \frac{s}{t}\left[\frac{1}{2}\left(\alpha^{(1)}(t)\right)^{2} \ln ^{2}\left(\frac{s}{-t}\right)+\left(\alpha^{(2)}(t)+2 C_{g g}^{(1)}(t) \alpha^{(1)}(t)\right) \ln \left(\frac{s}{-t}\right)+2 C_{g g}^{(2)}(t)+\left(C_{g g}^{(1)}(t)\right)^{2}\right]$

Q the two-loop Regge gluon trajectory is universal; the two-loop gluon impact factor is a polynomial in t, ε, starting at $\mathrm{I} / \varepsilon^{4}$

High-energy limit at 2 loops

Q in the Regge limit, the 2-loop expansion of the gluon-gluon amplitude is $m_{g g \rightarrow g g}^{(2)}=2 g_{s}^{2} \frac{s}{t}\left[\frac{1}{2}\left(\alpha^{(1)}(t)\right)^{2} \ln ^{2}\left(\frac{s}{-t}\right)+\left(\alpha^{(2)}(t)+2 C_{g g}^{(1)}(t) \alpha^{(1)}(t)\right) \ln \left(\frac{s}{-t}\right)+2 C_{g g}^{(2)}(t)+\left(C_{g g}^{(1)}(t)\right)^{2}\right]$

Q the two-loop Regge gluon trajectory is universal; the two-loop gluon impact factor is a polynomial in t, ε, starting at $\mathrm{I} / \varepsilon^{4}$

Q perform the Regge limit of the quark-quark amplitude \rightarrow get two-loop quark impact factor

High-energy limit at 2 loops

Q in the Regge limit, the 2-loop expansion of the gluon-gluon amplitude is $m_{g g \rightarrow g g}^{(2)}=2 g_{s}^{2} \frac{s}{t}\left[\frac{1}{2}\left(\alpha^{(1)}(t)\right)^{2} \ln ^{2}\left(\frac{s}{-t}\right)+\left(\alpha^{(2)}(t)+2 C_{g g}^{(1)}(t) \alpha^{(1)}(t)\right) \ln \left(\frac{s}{-t}\right)+2 C_{g g}^{(2)}(t)+\left(C_{g g}^{(1)}(t)\right)^{2}\right]$

Q the two-loop Regge gluon trajectory is universal; the two-loop gluon impact factor is a polynomial in t, ε, starting at $\mathrm{I} / \varepsilon^{4}$

Q perform the Regge limit of the quark-quark amplitude \rightarrow get two-loop quark impact factor

Q if factorisation holds, one can obtain the two-loop quark-gluon amplitude by assembling the Regge trajectory and the gluon and quark impact factors the result should match the quark-gluon amplitude in the high-energy limit: it doesn't! by a $\pi^{2} / \varepsilon^{2}$ factor

High-energy limit at 2 loops

Q in the Regge limit, the 2-loop expansion of the gluon-gluon amplitude is $m_{g g \rightarrow g g}^{(2)}=2 g_{s}^{2} \frac{s}{t}\left[\frac{1}{2}\left(\alpha^{(1)}(t)\right)^{2} \ln ^{2}\left(\frac{s}{-t}\right)+\left(\alpha^{(2)}(t)+2 C_{g g}^{(1)}(t) \alpha^{(1)}(t)\right) \ln \left(\frac{s}{-t}\right)+2 C_{g g}^{(2)}(t)+\left(C_{g g}^{(1)}(t)\right)^{2}\right]$

Q the two-loop Regge gluon trajectory is universal; the two-loop gluon impact factor is a polynomial in t, ε, starting at $\mathrm{I} / \varepsilon^{4}$

Q perform the Regge limit of the quark-quark amplitude \rightarrow get two-loop quark impact factor

Q if factorisation holds, one can obtain the two-loop quark-gluon amplitude by assembling the Regge trajectory and the gluon and quark impact factors the result should match the quark-gluon amplitude in the high-energy limit: it doesn't! by a $\pi^{2} / \varepsilon^{2}$ factor

0 is it related to $-\frac{1}{2} \pi^{2} K^{2}\left(\alpha_{s}, \epsilon\right)\left(\mathbf{T}_{s}^{2}\right)^{2} \quad$?

Breaking down of the Regge-pole picture

9
the analytic structure of an amplitude sports cuts and poles

Q in the Regge limit, cuts should occur in 3-loop non-planar double-cross diagrams
Q is it related to $-\frac{\pi^{2}}{3} K^{3}\left(\alpha_{s}, \epsilon\right) \ln \left(\frac{s}{-t}\right)\left[\mathbf{T}_{s}^{2},\left[\mathbf{T}_{t}^{2}, \mathbf{T}_{s}^{2}\right]\right]$?

Possible corrections to the dipole formula

Q the high-energy limit puts constraints on 4-line correlations which may appear at 3 loops

0
we know that corrections to Δ like
$\Delta^{(212)}\left(\rho_{i j k l}, \alpha_{s}\right)=\left(\frac{\alpha_{s}}{\pi}\right)^{3} \mathbf{T}_{1}^{a} \mathbf{T}_{2}^{b} \mathbf{T}_{3}^{c} \mathbf{T}_{4}^{d}\left[f^{\text {ade }} f^{c b e} L_{1234}^{2}\left(L_{1423} L_{1342}^{2}+L_{1423}^{2} L_{1342}\right)+\mathrm{cycl}\right]$
fulfill Bose symmetry, collinear limits and transcendentality bounds Dixon Gardi Magnea 2009

Possible corrections to the dipole formula

Q the high-energy limit puts constraints on 4-line correlations which may appear at 3 loops

9 we know that corrections to Δ like

$$
\Delta^{(212)}\left(\rho_{i j k l}, \alpha_{s}\right)=\left(\frac{\alpha_{s}}{\pi}\right)^{3} \mathbf{T}_{1}^{a} \mathbf{T}_{2}^{b} \mathbf{T}_{3}^{c} \mathbf{T}_{4}^{d}\left[f^{a d e} f^{c b e} L_{1234}^{2}\left(L_{1423} L_{1342}^{2}+L_{1423}^{2} L_{1342}\right)+\operatorname{cycl}\right]
$$

fulfill Bose symmetry, collinear limits and transcendentality bounds Dixon Gardi Magnea 2009
9
however, in the high-energy limit

$$
\begin{array}{rlrl}
\rho_{1234} & =\frac{\left(-s_{12}\right)\left(-s_{34}\right)}{\left(-s_{13}\right)\left(-s_{24}\right)}=\left(\frac{s}{-t}\right)^{2} \mathrm{e}^{-2 \mathrm{i} \pi} ; & L_{1234}=2(L-\mathrm{i} \pi) & L=\ln \left(\frac{s}{t}\right) \\
\rho_{1342}= & \frac{\left(-s_{13}\right)\left(-s_{24}\right)}{\left(-s_{14}\right)\left(-s_{23}\right)}=\left(\frac{-t}{s+t}\right)^{2} ; & L_{1342} \simeq-2 L & \\
\rho_{1423}= & \frac{\left(-s_{14}\right)\left(-s_{23}\right)}{\left(-s_{12}\right)\left(-s_{34}\right)}=\left(\frac{s+t}{s}\right)^{2} \mathrm{e}^{2 \mathrm{i} \pi} ; & L_{1423} \simeq 2 \mathrm{i} \pi \\
& & \\
\left.\Delta^{(212)}\left(\rho_{i j k l}, \alpha_{s}\right)\right)=\left(\frac{\alpha_{s}}{\pi}\right)^{3} \mathbf{T}_{1}^{a} \mathbf{T}_{2}^{b} \mathbf{T}_{3}^{c} \mathbf{T}_{4}^{d} 32 \mathrm{i} \pi\left[\left(-L^{4}-\mathrm{i} \pi L^{3}-\pi^{2} L^{2}-\mathrm{i} \pi^{3} L\right) f^{a d e} f^{c b e}\right. \\
& & \left.\left(2 \mathrm{i} \pi L^{3}-3 \pi^{2} L^{2}-\mathrm{i} \pi^{3} L\right) f^{c a e} f^{d b e}\right]+\mathcal{O}(|t / s|)
\end{array}
$$

has super-leading logs, which are incompatible with the high-energy limit

Conclusions

the dipole formula allows us to examine the infrared structure of amplitudes in the high-energy limit, and to make contact with the Regge-pole picture

Conclusions

9
the dipole formula allows us to examine the infrared structure of amplitudes in the high-energy limit, and to make contact with the Regge-pole picture

Q from the dipole formula we can derive an operator which generates all the logarithms in s/t which accompany the infrared poles, to leading power accuracy in s / t

Conclusions

Q the dipole formula allows us to examine the infrared structure of amplitudes in the high-energy limit, and to make contact with the Regge-pole picture

9 from the dipole formula we can derive an operator which generates all the logarithms in s/t which accompany the infrared poles, to leading power accuracy in s / t

Q thus one can show that the Regge-pole picture breaks down at next-to-next-to-leading-logarithmic accuracy

Conclusions

Q the dipole formula allows us to examine the infrared structure of amplitudes in the high-energy limit, and to make contact with the Regge-pole picture

9 from the dipole formula we can derive an operator which generates all the logarithms in s/t which accompany the infrared poles, to leading power accuracy in s / t

Q thus one can show that the Regge-pole picture breaks down at next-to-next-to-leading-logarithmic accuracy

Q conversely, the high-energy limit allows us to put constraints on the possible corrections to the dipole formula

